

Información de Soporte

Un procedimiento para la obtención de los espectros IR, RAMAN y RMN de compuestos orgánicos mediante cálculos mecánico-cuánticos con el software ORCA-5.0.3

Moléculas utilizadas en este estudio:

Acetaldehído, Acetato de etilo, Ácido acético, Ácido benzoico, Ácido fórmico, Anilina, Ciclohexanona, Etanol, Fenol, Formaldehído.

FIGURA S1. Estructura de la acetanilida

optimizada usando el force field MMFF94 en

el programa Avogadro-1.2.0.

FIGURA S2. Estructura de la molécula de tetrametilsilano optimizada con el programa Avogrado-1.2.0.

Sección S1. Ejemplo de la entrada para la optimización de las geometrías moleculares usando el programa Orca-5.0.3

! B3LYP	• 6-31+G(d,p) OPT	DEFGRID2 TIGHTSC	D3BJ PAL8
!geom			
iter	200		
end			
* xyz	0 1		
C	-0.30784	-0.03631	-0.18571
С	-0.99415	-0.08270	-1.40959
С	-2.36976	-0.28843	-1.44267
С	-3.08407	-0.45141	-0.25418
С	-2.40061	-0.40497	0.96054
С	-1.02103	-0.19940	1.01040
С	1.99835	0.26605	0.78811
С	3.43481	0.49751	0.34624
Ν	1.08695	0.17613	-0.23925
0	1.70514	0.16930	1.96990
Н	-0.44454	0.04343	-2.34012
Н	-2.88202	-0.32103	-2.39973
Н	-4.15736	-0.61209	-0.27643
Н	-2.94405	-0.53018	1.89268
Н	-0.49557	-0.16382	1.95377
Н	4.04718	-0.33523	0.70499
Н	3.56209	0.59103	-0.73657
Н	3.80389	1.40743	0.82821
Н	1.46260	0.27469	-1.17059
*			

Nota: Para realizar la optimización geométrica se utiliza la instrucción OPT. Luego, se debe especificar el funcional y el conjunto base a utilizar. En este cálculo fue usado el funcional B3LYP con el conjunto base 6-31+G(d,p). La instrucción PAL8 indica el número de núcleos del procesador a utilizar para ejecutar el cálculo. En este caso, PAL8 indica el uso de los 8 hilos de un procesador i7.

Sección S2. Entrada en el programa ORCA para la obtención de los espectros Infrarrojos y Raman

avogadro generated ORCA input file # Basic Mode # B3LYP 6-31+G(d,p) NumFreq DEFGRID2 TIGHTSCF D3BJ PAL8 I. %elprop Polar 1 end * xyz 0 1 С -0.30663 -0.03507 -0.18989 С -0.99393 -0.08508 -1.41472С -2.37155 -0.29068 -1.44429С -3.08460 -0.45155 -0.25228 С -2.39790-0.40285 0.96295 С -1.01668 -0.19623 1.01010 С 1.99622 0.26412 0.78757 С 3.43355 0.49757 0.34951 Ν 1.08823 0.17849 -0.24425 0 1.69766 0.16031 1.97212 Н -0.44544 0.03925 -2.34620 -2.88594 -2.40024 Н -0.32549 Н -4.15815 -0.61184 -0.27216 Н -2.93932 -0.52668 1.89654 Н -0.48825 -0.15888 1.95187 Н 4.04434 -0.33834 0.70325 Н 3.56100 0.59819 -0.73249 Н 3.80201 1.40406 0.83796 0.28070 Н 1.46537 -1.17534

fue alcanzada, se sustituyen las coordenadas iniciales en el archivo de entrada *.inp por las coordenadas xyz obtenidas del último paso de optimización contenidas en el archivo con extensión *.out. Luego se reinicia el cálculo con estas nuevas coordenadas. Para más información sobre la sintaxis utilizada por Orca se puede consultar su manual.

Nota: Si la convergencia no

Sección S3. Salida que muestra los valores obtenidos de los espectros Infrarrojos y Raman

Mode	freq	eps	Int	T**2	тх	ΤY	TZ
	cm**-1	L/(mol*cm) km/mol	a.u.			
6:	46.97	0.0002	22 1.12	0.001474	(0.008204	-0.037475	-0.001608)
7:	57.80	0.0013	55 6.85	0.007317	(-0.011598	0.084680	0.003378)
8:	97.90	0.0001	56 0.79	0.000497	(0.003219	-0.021565	-0.004652)
9:	175.08	0.0013	55 6.85	0.002415	(-0.045458	-0.005932	-0.017714)
10:	259.35	0.0000	67 0.34	0.000080	(0.001251	-0.008813	-0.000960)
11:	340.20	0.0003	32 1.68	0.000304	(0.015771	0.002608	-0.006994)
12:	353.75	0.0001	32 0.66	0.000116	(-0.008277	-0.000427	-0.006880)
12: RAMAN	353.75 SPECTRUM	0.0001	32 0.66	0.000116	(-0.008277	-0.000427	-0.006880)
12: RAMAN Mode	353.75 SPECTRUM freq (0.0001 cm**-1)	32 0.66 Activity	0.000116 Depolariza	(-0.008277	-0.000427	-0.006880)
12: RAMAN Mode 6:	353.75 SPECTRUM freq (0.0001 cm**-1) 6.97	32 0.66 Activity 0.080848	0.000116 Depolariza 0.74483	(-0.008277 ation 35	-0.000427	-0.006880)
12: RAMAN Mode 6: 7:	353.75 SPECTRUM freq (4 5	0.0001 cm**-1) 6.97 7.80	32 0.66 Activity 0.080848 0.487068	0.000116 Depolariza 0.7448 0.74987	(-0.008277 ation 35 79	-0.000427	-0.006880)
12: RAMAN Mode 6: 7: 8:	353.75 SPECTRUM freq (4 5 9	0.0001 cm**-1) 6.97 7.80 7.90	32 0.66 Activity 0.080848 0.487068 1.292490	0.000116 Depolariza 0.7448 0.74987 0.74971	(-0.008277 ation 35 79 15	-0.000427	-0.006880)
12: RAMAN Mode 6: 7: 8: 9:	353.75 SPECTRUM freq (4 5 9 17	0.0001 cm**-1) 6.97 7.80 7.90 5.08	Activity 0.080848 0.487068 1.292490 0.633829	0.000116 Depolariza 0.7448 0.74987 0.74971 0.28376	(-0.008277 ation 35 79 15	-0.000427	-0.006880)
12: AMAN Mode 6: 7: 8: 9: 10:	353.75 SPECTRUM freq (4 5 9 17 25	0.0001 cm**-1) 6.97 7.80 7.90 5.08 9.35	Activity 0.080848 0.487068 1.292490 0.633829 0.977269	0.000116 Depolariza 0.7448 0.74987 0.74971 0.28376 0.7498	(-0.008277 ation 35 79 15 51 57	-0.000427	-0.006880)
12: RAMAN Mode 6: 7: 8: 9: 10: 11:	353.75 SPECTRUM freq (4 5 9 17 25 34	0.0001 cm**-1) 6.97 7.80 7.90 5.08 9.35 0.20	Activity 0.080848 0.487068 1.292490 0.633829 0.977269 3.420362	0.000116 Depolariza 0.7448 0.74987 0.74971 0.28376 0.7498 0.20764	(-0.008277 ation 35 79 15 51 57 17	-0.000427	-0.006880)

34

Nota: Verificar que no existan valores de frecuencia imaginarias después de la optimización. Si está presente una frecuencia imaginaria, esto indica que la estructura obtenida corresponde a un máximo local. Si este es el caso, se recomienda construir nuevamente la molécula en Avogadro y realizar la optimización geométrica.

Orca no genera directamente la intensidad en el espectro Raman sino sus actividades, ya que parten de las frecuencias vibracionales en el IR, para ello se pueden convertir dichos valores usando la ecuación 1:

$$I_{i} = \frac{C(v_{0} - v_{i})^{4} S_{i}}{v_{i} B_{i}}; B_{i} = 1 - exp\left(\frac{-hcv_{i}}{k_{B}T}\right)$$
(1)

En la ecuación 1, i denota el modo de vibración, C es un factor de normalización adicional, h, c, k_{B} , son la constante de Planck (6.626⁻³⁴J.s), la velocidad de la luz (2.998*10¹⁰ cm/s) y la constante de Boltzman (1.3806*10⁻²³ J/K), S en la actividad en el Raman, v es la frecuencia vibracional, v_{0} frecuencia de la luz incidente. En este procedimiento, el valor óptimo obtenido fue de una longitud de onda de 1064 nm (9398.5 cm⁻¹) a una temperatura de 298.15 K. Sin embargo, en otros sistemas estudiados, el valor recomendado para la frecuencia de la luz incidente fue de 532 nm (Liu et al., 2020).

Sección S4. Ejemplo de la entrada en ORCA para la estimación de los desplazamientos químicos de H¹ y C¹³ para la obtención de los espectros de RMN

!	B3LYP	6-311+G(2d,p)	AutoAux	DEFGRID2	TIGHTSCF	D3BJ
*	xyz 0	1				
	C	-0.30663	-0.0	3507	-0.1898	39
	С	-0.99393	-0.0	8508	-1.4147	72
	С	-2.37155	-0.2	9068	-1.4442	29
	С	-3.08460	-0.4	5155	-0.2522	28
	С	-2.39790	-0.4	0285	0.9629	95
	С	-1.01668	-0.1	.9623	1.010	10
	С	1.99622	0.2	26412	0.787	57
	С	3.43355	0.4	9757	0.349	51
	Ν	1.08823	0.1	7849	-0.2442	25
	0	1.69766	0.1	.6031	1.972	12
	Н	-0.44544	0.0	3925	-2.3462	20
	Н	-2.88594	-0.3	32549	-2.4002	24
	Н	-4.15815	-0.6	51184	-0.2722	16
	Н	-2.93932	-0.5	2668	1.896	54
	Н	-0.48825	-0.1	5888	1.9518	37
	Н	4.04434	-0.3	3834	0.7032	25
	Н	3.56100	0.5	9819	-0.7324	49
	Н	3.80201	1.4	0406	0.8379	96
	Н	1.46537	0.2	8070	-1.175	34
*						
%E	PRNMR					
	N	UCLEI = ALL H	{ssall}			

```
END
```

a) Tabla que contiene las constantes de acoplamiento isotrópico de la molécula usada como ejemplo

	SUMMARY O	F ISOTROPIC	COUPLING CO	NSTANTS (H	<u>z</u>)	
	10 H	11 H	12 H	13 H	14 H	1 15
H						
10 H	0.000	6.882	0.599	0.375	1.860	0.000
11 H	6.882	0.000	6.357	1.056	0.445	0.000
12 H	0.599	6.357	0.000	6.330	0.720	0.000
13 H	0.375	1.056	6.330	0.000	7.414	0.000
14 H	1.860	0.445	0.720	7.414	0.000	-0.167
15 H	0.000	0.000	0.000	0.000	-0.167	0.000

) Liitia	ua para	i ci calculo y la co	instruction der	cspeed o Rom	
	! B3LY * XV7	P 6-311+G(2d,p) 0 1	NMR AutoAux DEFG	RID2 TIGHTSCF D3B	5
	C	-0 30663	-0 03507	-0 18080	
	C C	-0.90303	-0.03507	-1 /1/72	
	C C	-0.99595	-0.00000	-1.41472	
	C C	-3.08460	-0.29008	-0.25228	
	C C	-2 39790	-0.40100	0.25228	
	C C	-1 01668	-0.40205	1 01010	
	C C	1 99622	0.26412	0 78757	
	C C	2 /2255	0.20412	0.78757	
	N	1 00073	0.49757	0.34931	
		1 60766	0.17849	1 07212	
	U U	0 44544	0.10031	1.97212	
		2 99501	0.03923	2.34020	
	п Ц	1 15015	0.52549	-2.40024	
	п Ц	-4.13013	0.52669	1 20654	
		-2.95952	-0.32008	1.05004	
		-0.40025	0.1000	1.95107	
		4.04454 2 E6100	-0.55654	0.70525	
		2.00100	1 40406	-0.73249	
		5.00ZUI 1 46E27	1.40400	0.03/90	
	п *	1.40557	0.28070	-1.1/554	
	Vonnn	n			
	%eprnii	I. NMDC no ot num tinuo			
		NMRSpectrum true NMRCouplingFile	= "acetanilide-	spin"	
		NMRSpecFreq = 40	0.00 #spectrome	ter freq [MHz] (de	efault 400)
		NMRCoal = $1.0 \#t$	hreshold for me	rged lines [Hz] (default 1)
		NMRREF[1] 31.835	3		
		NMRREF[6] 182.57	78		
		NMREquiv			
		1 {10 14}	end		
		2 {11 13}	end		
		3 {15 16 1	17} end		
		end			
	end				

b) Entrada para el cálculo y la construcción del espectro RMN

c) Valores necesarios para graficar el espectro RMN en la sección "NMR Spectrum"

----- NMR SPECTRUM -----------NMR Peaks for atom type 1, ref value 31.8353 ppm : _____ shift[ppm] rel.intensity Atom 4.00 10 8.04 8.04 2.00 10 8.03 2.00 10 10 8.02 4.00 11 7.53 2.00... _ _ _ _ _ -----NMR Peaks for atom type 6, ref value 182.5778 ppm : _ _ _ _ _ _ _ _ _ _ _ Atom shift[ppm] rel.intensity 0 146.77 1.00 120.32 1.00 1 2 133.48 1.00 3 128.46 1.00...

Nota : Para realizar el cálculo de los desplazamientos químicos se utiliza la instrucción NMR seguido de AutoAux (Neese, 2022). En la sección %EPRNMR se especifica la creación el espectro RMN (NMRSpectrum), el nombre del archivo que contiene las constantes de acoplamiento químico (NMRCouplingFile), la frecuencia del espectrómetro (NMRSpecFreq), NMRREF[X] define los acoplamientos químicos de referencia para los núcleos de hidrógeno (TMS: 31.8353) y carbono (TMS: 182.5778). NMREquiv se define los núcleos de hidrógenos equivalentes en el compuesto.

Nota : la numeración de los átomos comienza con el número 0. Para graficar los espectros RMN de H¹ y C¹³ se puede utilizar los programas Gnuplot y QtGrace.

Enlaces	Distancia (Å)	Experimental (Brown y Corbridge, 1954)	Enlaces	Distancia (Å)	Experimental (Brown y Corbridge, 1954)
C1-C2	1.405	1.366	C2-H11	1.088	-
C2-C3	1.393	1.413	C3-H12	1.086	-
C3-C4	1.398	1.369	C4-H13	1.086	-
C4-C5	1.397	1.402	C5-H14	1.086	-
C5-C6	1.397	1.388	C6-H15	1.081	-
C1-C6	1.404	1.384	C8-H16	1.094	-
C7-C8	1.521	1.476	C8-H17	1.094	-
C7-N9	1.377	1.330	C8-H18	1.094	-
C1-N9	1.412	1.426	N9-H19	1.010	-
C7-010	1.226	1.226			
				I	RMSE=0.0278

TABLA S1. Valores de distancia de enlaces (Å) entre átomos estimados para la acetanilida a un nivel de teoría B3LYP/6-31+G(d,p).

Ángulo de enlace	ൗ	Experimental (Brown y Corbridge, 1954)	Ángulo de enlace	(°)	Experimental (Brown y Corbridge, 1954)
C2-C1-N9	117.06	115.39	C1-C6-C5	119.22	119.17
C2-C1-C6	119.58	121.11	C5-C6-H15	121.19	-
C6-C1-N9	123.36	122.44	C1-C6-H15	119.59	-
C3-C2-H11	119.81	-	N9-C7-010	123.92	121.42
C1-C2-H11	119.70	-	C8-C7-010	121.43	120.25
C1-C2-C3	120.49	119.33	C8-C7-N9	114.64	117.44
C2-C3-H12	119.45	-	H17-C8-H18	109.04	-
C2-C3-C4	120.21	119.55	С7-С8-Н18	108.48	-
C4-C3-H12	120.34	-	H16-C8-H17	108.96	-
C3-C4-C5	119.14	119.49	C7-C8-H17	114.15	-
C5-C4-H13	120.48	-	H16-C8-H18	107.51	-
C3-C4-H13	120.37	-	C7-C8-H16	108.50	-
C4-C5-C6	121.36	120.10	C7-N9-H19	116.00	-
C6-C5-H14	118.72	-	C1-N9-H19	114.82	-
C4-C5-H14	119.92	-	C1-N9-C7	129.19	129.18
				RMSE=1.44	

TABLA S2. Valores de ángulos entre enlaces en grados estimados para la acetanilida a un nivel de teoría B3LYP/6-31+G(d,p).

En la tabla S1 y S2 es reportado el Error Cuadrático Medio de los parámetros geométricos (RMSE por sus siglas en inglés), los cuales fueron calculados con la ecuación 2:

$$RMSE = \sqrt{\left(\sum_{1}^{n} \left[d_{i} - d_{exp}\right]^{2}\right)}$$
(2)

Donde d_i representa las distancias de los enlaces ó los ángulos formados entre los átomos, los cuales fueron calculados por el método mecánico-cuántico utilizado. El término d_{exp} corresponde a los valores experimentales de las distancias de los enlaces ó los ángulos formados entre los átomos reportados para la molécula.

Tipo de vibración	Frecuencia teórica (cm [.] ¹)	Frecuencia experimental (cm ⁻¹)*	Frecuencia calculada (cm ⁻¹) ^s
N-H	3500-3100	3466	3505.49
C-H	3150-3100	3070	3148.61
C=O	1670-1640	1730	1696.68
C=C	1600-1745	1514	1593.83

FIGURA S3. (a) Espectros Infrarrojos (experimental y calculado) para la acetanilida en fase gaseosa, y (b) Curva utilizada para obtener el factor de escalamiento.

TABLA S3. Comparación entre los valores de las frecuencias vibracionales reportadas, experimentales y calculadas para la acetanilida.

* Espectro Infrarrojo experimental en fase gaseosa (Linstrom, et al., 2022). ^sLa frecuencia calculada esta escalada usando el factor de escalamiento de 0.9679 para B3LYP/6-31+G(d,p).

FIGURA S4. Espectros Raman experimental (en puntos negros) y calculado (línea roja) con el nivel de teoría B3LYP/6-31+G(d,p) para la acetanilida.

38

# H	calculada	experimental	Δδ
19	6.70	7.79	1.09
11,15	8.03	7.49	0.54
12,14	7.52	7.30	0.22
13	7.26	7.10	0.16
16,17,18	1.99	2.14	0.15
RMSE	0.56		

RMN de H¹ de la acetanilida calculado en el nivel de teoría B3LYP/6-31+G(d,p).

FIGURA S6. Espectro de Resonancia magnética nuclear de C13 de la acetanilida calculado en el nivel de teoría B3LYP/6-31+G(d,p).

TABLA S4. Comparación entre las señales experimentales v calculadas de RMN de H1 (en ppm) de la acetanilida.

# C	B3LYP/6-311+G(2d,p)	Experimental	Δδ
7	172.37	169.48	2.89
1	146.77	138.17	8.60
3,5	134.61	128.77	5.84
4	128.46	124.23	4.23
2,6	122.25	120.39	1.86
8	25.30	24.18	1.12
RMSE	4.81		

Acetaldehído					
Distancia	B3LYP/6-31+G(d,p)	Experimental			
C1-C2	1.506	1.501			
C1-03	1.214	1.216			
C1-H4	1.113	1.114			
C2-H5	1.092	1.086			
С2-Н6	1.098	1.086			
С2-Н7	1.098	1.086			
RMSE	0.007				

Acetato de etilo					
Distancia	B3LYP/6-31+G(d,p)	Experimental			
C1-C2	1.509	1.508			
C2-O3	1.352	1.345			
03-C4	1.449	-			
C4-C5	1.517	1.515			
C2-06	1.215	1.203			
C1-H7	1.095	1.105			
C1-H8	1.095	1.105			
C1-H9	1.090	1.105			
C4-H10	1.095	-			
C4-H11	1.095	-			
C5-H12	1.095	-			
C5-H13	1.095	-			
C5-H14	1.095	-			
RMSE	0.010				

	Ácido Acético	
Distancia	B3LYP/6-31+G(d,p)	Experimental
C1-C2	1.506	1.517
C1-03	1.213	1.212
C1-04	1.359	1.361
C2-H5	1.090	1.100

TABLA S5. Comparación entre las señales experimentales y calculadas de RMN de C¹³ (en ppm) de la acetanilida.

TABLAS S6. Longitudes de enlace teóricas y experimentales para las moléculas usadas en este procedimiento.

C2-H6	1.095	1.100
С2-Н7	1.095	1.100
04-H8	0.972	-
RMSE	0.007	

Ácido Benzoico		
Distancia	B3LYP/6-31+G(d,p)	Experimental
C1-C2	1.485	1.480
C2-C3	1.403	1.390
C3-C4	1.395	1.410
C4-C5	1.399	1.370
C5-C6	1.399	1.360
C6-C7	1.394	1.420
C2-C7	1.403	1.390
C1-08	1.217	1.240
C1-09	1.360	1.290
C3-H10	1.084	0.730
C4-H11	1.086	0.960
C5-H12	1.086	0.910
C6-H13	1.086	-
C7-H14	1.085	0.790
09-H15	0.971	-
RMSE	0.144	

Ácido Fórmico		
Distancia	B3LYP/6-31+G(d,p)	Experimental
C1-02	1.208	1.202
C1-03	1.348	1.343
C1-H4	1.099	1.097
03-H5	0.974	0.972
RMSE	0.004	

Anilina		
Distancia	B3LYP/6-31+G(d,p)	Experimental
C1-C2	1.406	1.392
C2-C3	1.395	1.392
C3-C4	1.398	1.392
C4-C5	1.398	1.392
C5-C6	1.395	1.392
C1-C6	1.406	1.392
C1-N7	1.399	1.431
С2-Н8	1.088	1.084

СЗ-Н9	1.087	1.084
C4-H10	1.085	1.084
C5-H11	1.087	1.084
C6-H12	1.088	1.084
N7-H13	1.011	-
N7-H14	1.011	-
RMSE	0.011	

	Ciclohexanona	
Distancia	B3LYP/6-31+G(d,p)	Experimental
C1-C2	1.521	1.503
C2-C3	1.543	1.542
C3-C4	1.535	1.545
C4-C5	1.535	1.542
C5-C6	1.543	1.542
C1-C6	1.521	1.503
C1-07	1.220	1.229
С2-Н8	1.101	-
С2-Н9	1.093	1.088
C3-H10	1.096	-
C3-H11	1.099	-
C4-H12	1.100	-
C4-H13	1.096	-
C5-H14	1.096	-
C5-H15	1.099	-
C6-H16	1.101	-
C6-H17	1.093	1.088
RMSE	0.010	

	Etanol	
Distancia	B3LYP/6-31+G(d,p)	Experimental
C1-C2	1.519	1.512
C2-03	1.432	1.431
C1-H4	1.096	1.088
С1-Н5	1.095	1.088
С1-Н6	1.095	1.098
C2-H7	1.101	1.086
С2-Н8	1.101	1.086
03-Н9	0.965	0.971
RMSE	0.009	

Fenol			
Distancia	B3LYP/6-31+G(d,p)	Experimental	
C1-C2	1.399	1.398	
C2-C3	1.398	1.398	
C3-C4	1.397	1.398	
C4-C5	1.400	1.398	
C5-C6	1.395	1.398	
C1-C6	1.399	1.398	
C1-07	1.372	1.364	
С2-Н8	1.088	1.084	
СЗ-Н9	1.086	1.076	
C4-H10	1.085	1.082	
C5-H11	1.086	1.076	
C6-H12	1.085	1.084	
07-H13	0.966	0.956	
RMSE	0.006		

Formaldehído		
Distancia	B3LYP/6-31+G(d,p)	Experimental
C1-02	1.210	1.205
С1-Н3	1.109	1.111
C1-H4	1.109	1.111
RMSE	0.003	

Acetaldehído			
Angulo de Enlace	B3LYP/6-31+G(d,p)	Experimental	
03-C1-H4	119.96	-	
C2-C1-H4	115.43	117.50	
C2-C1-O3	124.61	123.90	
H5-C2-H6	110.10	108.30	
С1-С2-Н6	109.52	-	
С1-С2-Н7	109.52	-	
H6-C2-H7	106.69	-	
H5-C2-H7	110.10	108.30	
С1-С2-Н5	110.83	-	
RMSE	1.68		

Acetato de etilo			
Angulo de Enlace	B3LYP/6-31+G(d,p)	Experimental	
H7-C1-H8	107.41	-	
С2-С1-Н7	109.97	-	
H7-C1-H9	110.01	-	

TABLAS S7. Ángulos entre enlaces obtenidos para las 10 moléculas orgánicas .

С2-С1-Н9	109.45	107.70
С2-С1-Н8	109.97	-
H8-C1-H9	110.00	-
C1-C2-O3	111.18	111.90
C1-C2-O6	125.45	124.10
03-C2-06	123.38	124.00
C2-03-C4	116.30	115.70
03-C4-H11	108.55	-
C5-C4-H10	112.20	-
03-C4-H10	108.54	108.30
C5-C4-H11	112.19	-
03-C4-C5	107.47	108.20
H10-C4-H11	107.79	108.10
H13-C5-H14	108.36	-
H12-C5-H14	108.43	-
C4-C5-H14	110.96	-
H12-C5-H13	108.36	-
C4-C5-H13	109.65	108.10
C4-C5-H12	111.00	-
RMSE	0.72	

Ácido Acético		
Angulo de Enlace	B3LYP/6-31+G(d,p)	Experimental
03-C1-04	122.23	123.00
C2-C1-O3	126.07	126.60
C2-C1-O4	111.70	110.60
H5-C2-H6	110.13	-
С1-С2-Н6	109.83	-
С1-С2-Н7	109.85	-
H6-C2-H7	107.39	-
H5-C2-H7	110.15	-
С1-С2-Н5	109.48	-
С1-04-Н8	107.05	-
RMSE	0.83	

Ácido Benzoico		
Angulo de Enlace	B3LYP/6-31+G(d,p)	Experimental
C2-C1-09	113.25	118.00
08-C1-09	121.73	122.00
C2-C1-08	125.02	122.00
C1-C2-C7	118.01	122.00

C1-C2-C3	121.93	119.00
C3-C2-C7	120.06	119.00
C2-C3-H10	119.67	-
C2-C3-C4	119.75	120.00
C4-C3-H10	120.58	-
C3-C4-H11	119.81	-
C3-C4-C5	120.11	122.00
С5-С4-Н11	120.08	-
С6-С5-Н12	119.94	-
C4-C5-H12	119.91	-
C4-C5-C6	120.16	118.00
C5-C6-C7	119.98	123.00
С7-С6-Н13	119.89	-
С5-С6-Н13	120.13	-
C6-C7-H14	121.31	-
C2-C7-H14	118.74	-
C2-C7-C6	119.95	118.00
С1-09-Н15	106.50	-
RMSE	2.67	

Ácido Fórmico		
Angulo de Enlace	B3LYP/6-31+G(d,p)	Experimental
02-C1-03	124.97	124.90
03-C1-H4	109.87	-
02-C1-H4	125.16	124.10
С1-03-Н5	107.80	106.30
RMSE	1.06	

Anilina		
Angulo de Enlace	B3LYP/6-31+G(d,p)	Experimental
C2-C1-C6	118.71	-
C2-C1-N7	120.61	-
C6-C1-N7	120.63	-
C1-C2-C3	120.44	-
С1-С2-Н8	119.47	-
СЗ-С2-Н8	120.09	-
С4-С3-Н9	120.05	-
С2-С3-Н9	119.20	-
C2-C3-C4	120.76	-
C5-C4-H10	120.54	-
C3-C4-H10	120.55	-

C3-C4-C5	118.90	-
C4-C5-H11	120.02	-
C4-C5-C6	120.78	-
C6-C5-H11	119.21	-
C1-C6-C5	120.42	-
C5-C6-H12	120.10	-
С1-С6-Н12	119.48	-
H13-N7-H14	112.26	113.90
C1-N7-H14	115.67	114.92
C1-N7-H13	115.68	114.92
RMSE	1.13	

Ciclohexanona		
Angulo de Enlace	B3LYP/6-31+G(d,p)	Experimental
C6-C1-07	122.31	-
C2-C1-07	122.30	-
C2-C1-C6	115.39	115.30
C1-C2-C3	111.70	111.50
СЗ-С2-Н8	108.90	-
С3-С2-Н9	112.19	-
С1-С2-Н8	107.30	-
H8-C2-H9	107.85	106.00
С1-С2-Н9	108.71	-
C4-C3-H10	110.76	-
C2-C3-H10	109.53	-
H10-C3-H11	106.63	-
C4-C3-H11	109.25	-
C2-C3-H11	109.04	-
C2-C3-C4	111.51	110.80
C3-C4-C5	111.00	-
H12-C4-H13	106.71	-
С5-С4-Н13	110.09	-
СЗ-С4-Н13	110.09	-
C5-C4-H12	109.42	-
C3-C4-H12	109.43	-
H14-C5-H15	106.63	-
C4-C5-H15	109.22	-
C6-C5-H14	109.55	-
C4-C5-H14	110.74	-
C6-C5-H15	109.05	-
C4-C5-C6	111.51	-

C1-C6-H17	108.72	-
С5-С6-Н16	108.89	-
C1-C6-H16	107.33	-
C1-C6-C5	111.66	-
H16-C6-H17	107.86	-
С5-С6-Н17	112.20	-
RMSE	1.00	

Etanol		
Angulo de Enlace	B3LYP/6-31+G(d,p)	Experimental
С2-С1-Н6	110.48	-
H4-C1-H5	108.57	-
H4-C1-H6	108.57	-
С2-С1-Н5	110.47	-
C2-C1-H4	110.40	-
Н5-С1-Н6	108.29	-
H7-C2-H8	107.87	-
C1-C2-O3	107.87	107.80
03-С2-Н8	110.40	-
С1-С2-Н8	110.16	-
03-C2-H7	110.38	-
C1-C2-H7	110.16	-
С2-О3-Н9	109.23	105.40
RMSE	2.71	

Fenol		
Angulo de Enlace	B3LYP/6-31+G(d,p)	Experimental
C2-C1-C6	120.22	-
C2-C1-07	122.56	-
C6-C1-07	117.21	-
СЗ-С2-Н8	120.25	-
С1-С2-Н8	120.06	-
C1-C2-C3	119.69	-
С4-С3-Н9	120.19	-
С2-С3-Н9	119.28	-
C2-C3-C4	120.53	-
C5-C4-H10	120.39	-
C3-C4-H10	120.34	-
C3-C4-C5	119.26	-
C4-C5-H11	119.99	-
C4-C5-C6	120.76	-

C6-C5-H11	119.26	-
C1-C6-C5	119.54	-
С5-С6-Н12	121.44	-
С1-С6-Н12	119.02	-
С1-07-Н13	109.93	109.00
RMSE	0.93	

Formaldehido			
Angulo de Enlace	B3LYP/6-31+G(d,p)	Experimental	
02-C1-H4	121.89	121.90	
H3-C1-H4	116.22	116.13	
02-C1-H3	121.89	121.90	
RMSE	0.05		

Factor de Escalamiento

TABLAS S8. Señales de Infrarrojo y Raman para los 10 compuestos orgánicos estudiados.

B3LYP/6-31+G(d,p)	Error
0.9679	0.0022

Acetaldehído			
Frecuencia (cm ⁻¹)	Frecuencia Escalada (cm ^{.1})	Frecuencia Experimental (cm ⁻¹)	Actividad Raman
150.63	145.79	-	1.36
508.22	491.91	519.15	1.34
774.58	749.72	-	5.43
890.83	862.23	935.59	6.07
1129.96	1093.69	1130.43	2.72
1130.84	1094.54	-	1.21
1381.22	1336.88	1371.13	4.41
1422.09	1376.44	1409.33	4.88
1462.51	1415.56	-	13.81
1471.70	1424.46	-	7.32
1811.88	1753.72	1725.17	12.03
2900.90	2807.78	2820.39	162.77
3032.54	2935.20	-	163.07
3090.11	2990.92	2937.55	70.03
3153.38	3052.16	2984.67	50.41

Acetato de etilo				
Frecuencia (cm ⁻¹)	Frecuencia Escalada (cm ⁻¹)	Frecuencia Experimental (cm ⁻¹)	Actividad Raman	
49.22	47.64	-	0.16	
76.43	73.98	-	0.36	
153.45	148.52	-	0.01	
193.32	187.11	-	0.32	
261.55	253.15	-	0.02	
367.89	356.08	-	3.20	
430.65	416.83	-	0.42	
605.49	586.05	-	0.99	
635.46	615.06	634.15	8.35	
814.42	788.28	-	0.31	
860.73	833.10	856.35	8.15	
950.80	920.28	934.77	2.27	
1014.38	981.82	-	1.46	
1065.55	1031.35	1060.52	0.06	
1073.24	1038.79	-	2.81	
1136.67	1100.18	1099.22	7.12	
1178.40	1140.57	-	0.70	
1277.35	1236.35	-	0.84	
1296.80	1255.17	1313.51	8.23	
1392.25	1347.56	1378.74	2.32	
1408.04	1362.84	-	0.53	
1434.38	1388.34	-	3.52	
1474.42	1427.09	1473.81	8.54	
1480.41	1432.89	-	7.61	
1489.65	1441.83	-	9.72	
1502.28	1454.06	-	12.29	
1520.57	1471.76	-	1.54	
1796.98	1739.30	1761.61	7.97	
3047.11	2949.30	2997.41	138.86	
3061.46	2963.19	-	174.38	
3065.99	2967.57	-	80.37	
3104.60	3004.94	-	97.25	
3119.33	3019.20	-	77.24	
3126.41	3026.05	-	58.42	
3130.46	3029.97	-	12.39	
3174.24	3072.35	-	64.40	

Ácido Acético			
Frecuencia (cm ⁻¹)	Frecuencia Escalada (cm ⁻¹)	Frecuencia Experimental (cm ⁻¹)	Actividad Raman
82.81	80.15	-	0.17
422.68	409.11	-	0.33
544.86	527.37	-	1.86
580.17	561.55	-	2.37
669.67	648.17	-	0.38
864.27	836.53	-	11.31
1002.53	970.35	983.77	1.73
1066.81	1032.57	-	0.41
1206.22	1167.50	1184.04	2.72
1336.41	1293.51	-	4.33
1413.47	1368.10	1385.13	0.74
1474.83	1427.49	-	9.87
1481.49	1433.93	-	7.57
1822.66	1764.15	1803.10	10.82
3063.82	2965.47	-	135.82
3128.40	3027.98	-	61.20
3180.15	3078.07	-	52.55
3754.19	3633.68	3577.98	96.89

Ácido Benzoico			
Frecuencia (cm ⁻¹)	Frecuencia Escalada (cm ⁻¹)	Frecuencia Experimental (cm ⁻¹)	Actividad Raman
70.60	68.33	-	0.49
156.95	151.91	-	1.87
215.41	208.50	-	0.09
384.26	371.93	-	4.01
414.19	400.89	-	0.02
432.01	418.14	-	0.16
497.02	481.07	-	1.12
592.62	573.60	-	2.51
629.75	609.54	-	6.55
634.79	614.41	-	0.40
701.39	678.88	-	0.02
725.25	701.97	710.79	0.62
777.08	752.14	-	16.66
819.35	793.05	-	0.83
863.99	836.26	-	0.51
961.52	930.66	-	0.03

998.67	966.61	-	0.00
1015.09	982.51	-	0.09
1018.83	986.13	1021.58	38.39
1048.02	1014.38	-	15.46
1096.39	1061.20	1077.70	0.24
1120.96	1084.98	-	1.67
1186.21	1148.13	-	6.32
1191.50	1153.25	1181.30	19.74
1211.68	1172.79	-	14.15
1344.99	1301.82	-	0.14
1365.36	1321.53	-	2.62
1372.80	1328.73	1341.01	13.20
1485.64	1437.95	-	1.69
1529.52	1480.42	-	0.76
1630.59	1578.25	-	5.70
1651.64	1598.62	-	80.52
1790.52	1733.04	1764.03	95.90
3185.11	3082.87	-	58.65
3197.19	3094.56	-	108.27
3206.05	3103.14	3076.26	149.05
3220.90	3117.51	-	99.98
3228.66	3125.02	-	118.59
3766.64	3645.73	3581.30	141.59

Ácido Fórmico			
Frecuencia (cm ⁻¹)	Frecuencia Escalada (cm ^{.1})	Frecuencia Experimental (cm ⁻¹)	Actividad Raman
624.40	604.36	-	3.57
693.19	670.94	676.85	0.45
1045.03	1011.48	1058.68	1.95
1133.85	1097.45	1199.36	2.52
1294.32	1252.77	-	1.60
1400.83	1355.86	1400.32	7.00
1819.19	1760.79	1677.65	11.02
3086.93	2987.84	2951.77	123.09
3731.44	3611.66	- -	73.73

Anilina				
Frecuencia (cm ⁻¹)	Frecuencia Escalada (cm ⁻¹)	Frecuencia Experimental (cm ⁻¹)	Actividad Raman	
220.56	213.48	-	0.98	
291.33	281.98	-	0.24	
383.19	370.89	-	0.66	
420.71	407.21	-	0.01	
507.21	490.93	489.48	0.67	
535.41	518.22	-	4.40	
573.38	554.97	-	6.84	
633.92	613.57	-	4.58	
698.69	676.26	684.26	0.21	
762.58	738.10	743.06	3.55	
831.26	804.58	-	1.26	
832.72	805.99	-	21.53	
885.41	856.99	873.49	0.43	
967.31	936.26	-	0.04	
986.81	955.13	-	0.33	
1008.11	975.75	-	34.85	
1049.52	1015.83	-	21.00	
1065.08	1030.89	-	0.03	
1135.30	1098.86	-	2.31	
1180.58	1142.68	-	4.03	
1200.91	1162.36	1174.70	3.33	
1305.29	1263.39	-	15.79	
1363.17	1319.41	-	1.30	
1364.06	1320.27	-	0.40	
1502.98	1454.73	-	1.16	
1535.25	1485.97	1500.79	1.79	
1634.03	1581.58	-	4.48	
1650.28	1597.31	-	13.92	
1668.17	1614.62	1617.75	32.53	
3168.44	3066.73	-	27.15	
3169.46	3067.72	-	110.22	
3185.39	3083.14	-	170.60	
3191.13	3088.69	-	30.95	
3207.09	3104.14	-	245.06	
3575.64	3460.86	3410.69	184.19	
3680.99	3562.83	3497.43	55.70	

Ciclohexanona			
Frecuencia (cm ⁻¹)	Frecuencia Escalada (cm ⁻¹)	Frecuencia Experimental (cm ⁻¹)	Actividad Raman
90.16	87.27	-	0.59
186.13	180.16	-	0.08
308.03	298.14	-	0.55
407.27	394.20	-	1.10
416.73	403.35	-	1.22
481.83	466.36	-	0.35
492.19	476.39	-	1.54
657.28	636.18	-	6.78
755.05	730.81	-	10.96
766.32	741.72	-	0.35
843.65	816.57	-	6.03
876.64	848.50	896.91	0.09
899.43	870.56	-	1.12
919.58	890.06	-	0.82
1002.52	970.34	-	3.23
1027.94	994.94	-	8.79
1062.44	1028.34	1060.70	0.79
1081.22	1046.51	-	4.58
1136.57	1100.09	-	2.20
1137.03	1100.53	1121.30	2.17
1241.71	1201.85	1224.88	1.92
1247.18	1207.15	-	5.84
1272.66	1231.81	-	7.67
1287.79	1246.45	-	3.55
1338.94	1295.96	1319.58	3.94
1347.03	1303.79	-	7.37
1366.20	1322.34	-	0.28
1380.21	1335.91	-	0.61
1381.04	1336.71	-	1.22
1468.05	1420.93	-	12.33
1475.73	1428.36	-	6.18
1494.98	1446.99	-	9.18
1495.79	1447.78	1431.78	6.95
1510.59	1462.10	-	1.68
1787.80	1730.41	1737.29	17.27
3013.40	2916.67	-	8.30
3015.72	2918.92	-	173.80

3018.76	2921.86	-	222.45
3029.01	2931.78	-	29.29
3030.62	2933.34	2872.07	70.38
3073.24	2974.59	2944.00	194.06
3075.23	2976.52	-	76.54
3079.63	2980.77	-	103.99
3113.02	3013.09	-	78.65
3113.81	3013.86	-	122.53

Etanol			
Frecuencia (cm ⁻¹)	Frecuencia Escalada (cm ⁻¹)	Frecuencia Experimental (cm ⁻¹)	Actividad Raman
238.30	230.65	-	0.26
278.03	269.11	-	1.34
417.11	403.72	-	0.35
821.54	795.17	-	0.15
899.95	871.06	895.30	6.36
1032.69	999.54	1050.76	4.14
1100.57	1065.24	1064.09	6.88
1178.80	1140.96	-	0.76
1258.27	1217.88	1250.63	3.31
1297.35	1255.71	-	8.73
1404.26	1359.18	-	0.27
1448.61	1402.11	1450.51	3.11
1486.46	1438.74	-	9.39
1504.22	1455.93	-	13.46
1529.19	1480.10	-	3.74
2989.55	2893.59	2969.54	125.50
3018.78	2921.88	-	112.05
3045.01	2947.27	-	144.73
3115.62	3015.61	-	64.92
3124.05	3023.77	-	47.57
3834.02	3710.95	3680.20	105.93

Fenol			
Frecuencia (cm ⁻¹)	Frecuencia Escalada (cm ⁻¹)	Frecuencia Experimental (cm ⁻¹)	Actividad Raman
226.67	219.39	-	1.24
328.10	317.57	-	1.97
406.97	393.91	-	0.28
418.91	405.46	-	0.02

510.12	493.75	495.44	0.28
534.41	517.26	-	5.65
630.89	610.64	-	4.80
684.29	662.32	687.09	0.06
754.66	730.44	746.41	2.06
823.58	797.14	-	1.23
830.19	803.54	814.86	18.22
890.46	861.88	878.75	0.27
965.43	934.44	-	0.03
987.20	955.51	-	0.07
1011.49	979.02	1011.08	32.85
1045.66	1012.09	1056.71	17.92
1095.70	1060.53	-	0.99
1178.51	1140.68	-	1.76
1188.94	1150.78	1184.49	4.98
1192.83	1154.54	-	4.67
1286.35	1245.06	1257.50	15.20
1360.19	1316.53	-	0.50
1369.85	1325.88	-	0.84
1503.60	1455.33	-	0.67
1533.33	1484.11	1499.35	1.92
1644.21	1591.43	-	12.46
1654.75	1601.63	1599.74	14.01
3164.82	3063.23	-	79.15
3185.03	3082.79	-	87.82
3192.81	3090.32	3059.97	87.70
3206.84	3103.90	-	73.35
3213.09	3109.95	-	249.30
3825.82	3703.01	3648.63	111.98

Formaldehido			
Frecuencia (cm ⁻¹)	Frecuencia Escalada (cm ⁻¹)	Frecuencia Experimental (cm ⁻¹)	Actividad Raman
1190.87	1152.64	1166.23	1.21
1260.08	1219.63	1275.75	3.29
1534.84	1485.57	1531.30	13.19
1818.68	1760.30	1745.76	9.07
2912.24	2818.76	2863.75	159.96
2975.67	2880.15	2891.13	109.56

TABLAS S6. Valores	
de desplazamientos	
químicos obtenidos para	
la Resonancia Magnética	
Nuclear de H ¹	

Acetaldehído			
#H	B3LYP/6-31+G(d,p)	Experimental	
4	10.38	9.79	
5, 6, 7	2.13	2.21	
RMSE	0.42		

Acetato de etilo				
#H	B3LYP/6-31+G(d,p)	Experimental		
10, 11	4.055	4.12		
7, 8, 9	1.97	2.04		
12, 13, 14	1.23	1.26		
RMSE	0.06			

Ácido Acético (ppm)			
#H	B3LYP/6-31+G(d,p)	Experimental	
8	5.61	11.42	
5, 6, 7	2.01	2.10	
RMSE	4.11		

Ácido Benzoico (ppm)			
#H	B3LYP/6-31+G(d,p)	Experimental	
15	5.80	12.09	
10, 14	8.55	8.12	
12	7.83	7.62	
11, 13	7.68	7.45	
RMSE	3.16		

Ácido Fórmico (ppm)			
#H	B3LYP/6-31+G(d,p)	Experimental	
5	5.88	10.99	
4	8.11	8.06	
RMSE	3.62		

Anilina			
#H	B3LYP/6-31+G(d,p)	Experimental	
9, 11	7.34	7.12	
10	6.89	6.73	
8, 12	6.77	6.64	
13, 14	3.10	3.55	
RMSE	0.27		

Ciclohexanona			
#H	B3LYP/6-31+G(d,p)	Experimental	
8, 9, 16, 17	2.29	2.35	
10, 11, 14, 15	1.82	2.07	
12, 13	1.71	1.55	
RMSE	0.17		

Etanol			
#H	B3LYP/6-31+G(d,p)	Experimental	
7, 8	3.91	3.69	
9	0.08	2.61	
4, 5, 6	1.19	1.23	
RMSE	1.46		

Fenol		
#H	B3LYP/6-31+G(d,p)	Experimental
9,11	7.45	7.24
10	7.09	6.93
8, 12	6.93	6.84
13	3.67	5.35
RMSE	0.85	

Formaldehido		
#H	B3LYP/6-31+G(d,p)	Experimental
3, 4	10.32	9.60
RMSE	0.72	

Acetaldehído		
#C	B3LYP/6-31+G(d,p)	Experimental
1	206.01	199.93
2	33.73	30.89
RMSE	4.75	

Acetato de etilo		
#C	B3LYP/6-31+G(d,p)	Experimental
2	178.90	171.08
4	65.47	60.44
1	21.64	21.00
5	15.19	14.28
RMSE	4.68	

TABLA S9. Valoresde desplazamientosquímicos obtenidos paralas Resonancia MagnéticaNuclear de C13.

Ácido Acético (ppm)		
#C	B3LYP/6-31+G(d,p)	Experimental
1	178.61	178.12
2	19.84	20.80
RMSE	0.76	

Ácido Benzoico (ppm)		
#C	B3LYP/6-31+G(d,p)	Experimental
1	173.44	172.77
5	139.31	133.83
3, 7	137.39	130.28
2	134.54	129.44
4, 6	133.52	128.49
RMSE	5.14	

Ácido Fórmico (ppm)		
#C	B3LYP/6-31+G(d,p)	Experimental
1	166.22	166.22
RMSE	0.00	

Anilina		
#C	B3LYP/6-31+G(d,p)	Experimental
1	154.36	146.51
3, 5	135.01	129.26
4	122.47	118.39
2,6	117.89	115.07
RMSE	5.46	

Ciclohexanona		
#C	B3LYP/6-31+G(d,p)	Experimental
1	218.96	211.56
2,6	46.02	42.00
3, 5	32.38	27.11
4	30.10	25.07
RMSE	5.57	

Etanol		
#C	B3LYP/6-31+G(d,p)	Experimental
1	63.71	57.79
2	18.13	18.13
RMSE	4.19	

Fenol		
#C	B3LYP/6-31+G(d,p)	Experimental
1	165.12	155.02
3, 5	135.25	129.79
4	124.94	121.09
2,6	118.61	115.48
RMSE	6.25	

Formaldehido		
#C	B3LYP/6-31+G(d,p)	Experimental
1	201.86	84.29
RMSE	117.57	

