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Resumen: Se propone una metodología para la estimación del valor en riesgo (var) 
del índice de precios y cotizaciones (ipc) de la Bolsa Mexicana de Valores mediante 
el uso combinado de modelos autorregresivos y medias móviles (arma); tres dife-
rentes modelos de la familia arch, de los cuales uno es simétrico (garch) y dos asi-
métricos (gjr-garch y egarch); y la teoría de valores extremos. Los modelos arma se 
usaron para obtener residuales no correlacionados que sirvieron de base para el 
análisis de valores extremos. Los modelos garch, gjr-garch y egarch, al incluir en 
el modelo las volatilidades pasadas, son particularmente útiles tanto en periodos 
de inestabilidad como de calma. Más aún, los modelos asimétricos gjr-garch y 
egarch modelan de manera distinta el impacto de los shocks positivos y negativos 
del mercado. Todo esto surge de la necesidad de calcular la pérdida máxima que 
puede tener el ipc en un cierto nivel de confiabilidad y en un periodo de tiempo 
dado, mediante modelos más eficientes que estimen la volatilidad de manera di-
námica. En forma paralela se usó el método Riskmetrics a manera de compara-
ción para la metodología propuesta. Se concluye que la metodología de los modelos 
de heteroscedasticidad condicional con teoría de valores extremos para la estima-
ción del valor en riesgo presentó un desempeño mejor que el método Riskmetrics; 
particularmente el modelo egarch presentó menos violaciones del var, pero en 
general los tres modelos de la familia arch funcionaron de manera adecuada y 
generaron estimaciones más pequeñas comparadas con las de Riskmetrics, eva-
luadas en el mismo nivel de error y de confiabilidad mediante la prueba de propor-
ción de fallas de Kupiec. 
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Abstract: This work proposes an approach for estimating value at risk (var) of the 
Mexican stock exchange index (ipc) by using a combination of the autoregressive 
moving average models (arma); three different models of the arch family, one sym-
metric (garch) and two asymmetric (gjr-garch and egarch); and the extreme value 
theory (evt).The arma models were initially used to obtain uncorrelated residuals, 
which were later used for the analysis of extreme values. The garch, egarch and 
gjr-garch models, by including past volatility, are particularly useful both in in-
stability and calm periods. Moreover, the asymmetric models gjr-garch and 
egarch handle differently the impact of positive and negative shocks in the mar-
ket.The importance of the ipc in the Mexican economy raises the need to study its 
variations, particularly its downward movement; so, we propose to use var to cal-
culate the maximum loss that ipc may have, at a certain level of reliability, in a 
given period of time, using more efficient models to dynamically quantify volatili-
ty. The RiskMetrics approach was parallelly used as a way to compare the meth-
odology proposed. The results indicate that the arma-garch-evt methodology 
showed a better performance than RiskMetrics, because of the simultaneous ad-
justment of arma-garch models for returns and variances respectively. Although 
estimates of the egarch models had fewer violations of var, the estimates of the 
three models used for volatility were more accurate than the others, evaluated at 
the same error and reliability levels through the Kupiec Likelihood Ratio test. 

Keywords: arma, var, garch, evt, financial risk. 
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Introducción 

El valor en riesgo (var por sus siglas en inglés-value at risk) se define 
como la pérdida máxima que puede sufrir un activo (y en su caso más 

general un portafolio, el cual está formado por un conjunto de activos) en 
un cierto nivel de confiabilidad a. En términos estadísticos se define como 
el 1 – a-ésimo cuantil de la distribución de las pérdidas de un activo 
(Bhattacharyya y Ritolia, 2008). 

El var surge como un método para estimar el riesgo con técnicas esta-
dísticas tradicionales ya empleadas en otros campos de la investigación, 
por ejemplo el uso de la teoría de valores extremos en la toma de decisio-
nes en ingeniería (Chryssolouris et al., 1994); para estimar la corrosión 
marina del acero en el largo plazo (Melchers, 2008); en la estimación del 
ozono urbano (Reyes et al., 2009), entre otros. Formalmente, el var estima 
la pérdida máxima sobre un horizonte de tiempo dado, en condiciones nor-
males del mercado, en un nivel de confiabilidad dado (Fernández, 2003). 
por ejemplo, un banco puede decir que el var diario para su portafolio es 
de 15 millones de dólares al 99 por ciento de confiabilidad. Esto significa 
que en uno de cien casos, en condiciones normales de mercado, sus pérdi-
das serán superiores a los 15 millones (Christoffersen, 2003). 
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El manejo del riesgo y el desarrollo del var tiene sus orígenes en los 
famosos desastres financieros ocurridos a comienzos de los años noventa 
que provocaron enormes pérdidas, como el caso del Orange County en Es-
tados Unidos, con una pérdida de 1.81 billones de dólares, el Barings en 
Inglaterra, con 1.33 billones de dólares, el Metallgesellschaft en Alemania, 
con 1.34 billones de dólares, y el Daiwa en Japón, que perdió 1.1 billones 
de dólares, entre otros más. Estos desastres demuestran que sin la debida 
supervisión y manejo del riesgo se pueden perder billones de dólares en un 
periodo de tiempo relativamente corto (Crouhy et al., 2000). 

Durante los últimos años se han multiplicado las pérdidas ocasionadas 
por los derivados, que son instrumentos financieros empleados para reali-
zar coberturas en operaciones de compra y venta de acciones. De 1987 a 
1998 estas pérdidas han sumado cerca de 28 billones de dólares; compara-
dos con los 90 trillones de dólares del mercado representan 0.03 por ciento 
del total (Jorion, 2000). 

para el caso de México, la crisis financiera de 1995, provocada por el abu-
so de la política cambiaria, sirvió para bajar y estabilizar la inflación de 160 
por ciento en 1987 a 7 por ciento en 1994. Sin embargo, el déficit de la cuenta 
corriente comenzó a crecer a medida que la inflación bajaba. Su financia-
miento reposó en los flujos de capitales externos,que sirvieron para financiar 
la inversión y el consumo, y por medio de esto generar el auge crediticio, que 
sirvió como antecedente de la crisis bancaria (Millán-Valenzuela, 1999). 

Generalmente, las series financieras presentan distribuciones de colas 
pesadas (Gencay y Selcuk, 2004). para el modelado de estas colas se han 
propuesto la distribución log-normal, la distribución generalizada del 
error, y mezclas de la distribución normal (Boothe y Glassman, 1987). 

Sin embargo, para la asignación de probabilidades a los cuantiles en el 
cálculo del valor en riesgo es más conveniente el modelado paramétrico de 
las colas de la distribución de los retornos, en lugar de ajustar una distri-
bución a la muestra entera (Gencay y Selcuk, 2004). Una buena aproxima-
ción a estos modelos lo constituye la teoría del valor extremo. 

Existen numerosas metodologías para el cálculo del var, entre las que 
sugieren usar las colas de una distribución a los valores extremos (Embre-
chts, 2000). McNeil (1999) propone el uso del análisis de valores extremos 
(evt, por sus siglas en inglés-extreme value theory) en el cálculo del var, y 
la pérdida esperada (es) para el manejo de riesgos de mercado, operacional 
y de crédito, entre otros. Glasserman et al. (2000) analizan el uso de la si-
mulación Montecarlo. El uso del var mediante modelos garch con evt es 
empleado por Gencay y Selcuk en 2004 en nueve economías emergentes, 
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mientras que Bhattacharyya y Ritolia lo emplean en 2008 para el caso del 
principal índice de la India. 

A la fecha se han desarrollado numerosas metodologías para medir el 
var en mercados emergentes (Dimitrakopoulos et al., 2010), entre las cua-
les se ha propuesto utilizar modelos de heteroscedasticidad condicional, 
valores extremos, o la combinación de ambas (Gencay y Selcuk, 2004); sin 
embargo, se ha desestimado el hecho de que la metodología de valores ex-
tremos requiere de observaciones no correlacionadas (Bhattacharyya y 
Ritolia, 2008). Es por ello que se propone utilizar adicionalmente modelos 
arma para eliminar dichas correlaciones. 

para evaluar la eficiencia y la validez del método propuesto en este 
trabajo, el mismo se comparó con la metodología RiskMetrics (desarrolla-
da por la compañía J. p. Morgan en octubre de 1994), también conocida 
como el método de suavizamiento exponencial. Dicha metodología consis-
te en un promedio de las volatilidades a lo largo del tiempo, y actualmente 
es la metodología estándar para la medición del riesgo financiero. 

I. Modelos de volatilidad y teoría de valores extremos 

I.1. modelos de volatilidad 

La volatilidad se define como la varianza condicional de los retornos de los 
activos, y es un factor importante en la valoración de opciones y el merca-
do financiero (Tsay, 2002). Aunque las correlaciones de los retornos de los 
activos son pequeñas, los cuadrados correspondientes son altos, siendo lo 
más apropiado para su estimación el empleo de modelos de series de tiem-
po (Bhattacharyya y Ritolia, 2008). 

Los modelos más usados para explicar estos casos son los de volatilidad 
dinámica, de la forma: 

�r�t = �t + σ�t �Z �t (1)

donde rt es el retorno en el tiempo t, mt es la media esperada para el retorno 
en el tiempo t, st es la volatilidad en el tiempo t, y Zt es la parte estocástica 
del modelo y depende de los residuales (Bhattacharyya y Ritolia, 2008). 

I.1.1. Modelos de heteroscedasticidad condicional 
Engle (1982) introdujo los primeros modelos sistemáticos para la volatili-
dad. El modelo propuesto fue conocido como arch(q), el cual se describe a 
continuación: 
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(2) 

(3) 

(4) 

Donde rt es el retorno, mt es la media esperada de los retornos, et es el error 
de predicción, st

2 es la varianza condicional en el tiempo t, zt es una va-
riable aleatoria con media cero y varianza unitaria, y finalmente las a’s 
son los coeficientes del modelo arch(q). 

posteriormente, Bollerslev (1986) amplió estos modelos al añadir a la 
ecuación de la varianza las estimaciones de la misma en periodos anterio-
res; estos modelos fueron conocidos como modelos autorregresivos genera-
lizados de heteroscedasticidad condicional, el garch(p, q): 

�q �p
�2 �2 �2+ �b�j�t = �a�0 + �a�i �t �i �t �j (5) 

�i=�1 �j=�1

Donde a > 0, ai ≥ 0, para i = 1,..., q, y b ≥ 0 para j = 1,..., p. Además, se debe 0 

�i=�1

�q

=�1

�p j 
�a�i +cumplir que �b�j <�1 para que la varianza incondicional de et sea finita. 

�j
Si observamos el modelo garch(1,1) se puede apreciar que la volatili-

dad en el tiempo t depende de la volatilidad en el tiempo t-1, por lo que se 
deduce que estos modelos son apropiados para agrupaciones de periodos, 
con altas o bajas varianzas. 

I.1.1.1. Modelos egarch. Los modelos egarch fueron introducidos por 
Nelson (1991). Bollerslev y Mikkelsen (1996) propusieron la siguiente re-
formulación: 

�1 �1+�l�n �t
�2 = + �1 �L �L( ) ( ) �g( �t �1)

�g( ) = �E )�t �1 �t + �2 ( �t �t

E|et |depende de las suposiciones hechas sobre la distribución de et. para 
la distribución normal 

�2�E �t =

para la distribución t-student tenemos que 

�r�t = μ �t + �t

�t = �z�t �t

�t
�2 = �a�0 + �a�i �t �i

�2

�i=�1

�q

�2 �v �2 ((�v +�1) �/ �2)
�E =�t (�v �1) (�v �2)
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I.1.1.2. Modelos gjr-garch. Estos modelos fueron propuestos por Glosten, 
Jagannathan y Runkle (1993). Su versión generalizada es la siguiente: 

�q �p
�2 �2 �2 ) + �2= + +�t ( �i �t �i �i�S�t �i �t �i �j �t �j

�i=�1 �j=�1

–Donde St es una variable dummy que toma el valor de 1 si et< 0 y 0 si et ≥ 0. 
En estos modelos el impacto de los errores et 2 sobre la varianza condi-

cional σt 
2 es diferente cuando et es positivo o negativo. Los modelos tarch 

de Zakoian (1994) son muy similares a los modelos gjr-garch; la única di-
ferencia es que utilizan la desviación estándar condicional en lugar de la 
varianza condicional. 

I.1.2. Estimación en modelos de heteroscedasticidad condicional 
La estimación más común se hace por el método de máxima verosimilitud 
(Tsay, 2002). En este caso, la función de máxima verosimilitud para un 
modelo arch(m) es como sigue: 

�1 �a) (6) �f ( �,�.�.�.�, �T �a) = �f ( �F�m ) �f ( �1�,�.�.�.�, �m�T �F�T �1) �f ( �T �1 �F�T �2 ) �.�.�. �f ( �m+�1
�2�T �1 �t �a) (7) = �e�x�p �f ( �1�,�.�.�.�, �m�2 �2 �t
�2

�t=�m+�1 �2 �t

Donde a = (a0, a1 ,..., am)’ y f (e1 ,..., em|a) son la densidad conjunta de e1 ,..., em. 
Generalmente esta última expresión es muy complicada y simplemente se 
utiliza la función de verosimilitud condicional: 

�2�T �1 �t�f ( �,�.�.�.�, �T �a�, �1�,�.�.�.�, �m ) = �e�x�p (8) �m+�1 �2 �t
�2

�t=�m+�1 �t�2 �2

El logaritmo de la verosimilitud es: 
�T �2

�1
�1 �1 �2 �1 �t�l ( �m+�1�,�.�.�.�, �T �a�, �,�.�.�.�, �m ) = �l�n �2 ) �l�n( �t )( (9) �2

�t=�m+�1 �2 �2 �2 �t

Y finalmente, como 2p no contiene parámetros, se tiene que: 
�2�T �1 �2 �1 �t�l ( �,�.�.�.�, �T �a�, �1�,�.�.�.�, �m ) = �l�n( �t ) (10) �m+�1 �2

�t �2 �2=�m+�1 �t

En algunos casos sucede que zt tiene una distribución de colas pesadas, tal 
como la distribución t de student o la distribución de errores generalizada 



�v +�1
�2
�l�n �1+ �t

�2

�v �2( ) �t
�2 +
�1
�2
�l�n �t

�2( )
�t=�m+�1

�T

�l �m+�1�,�.�.�.�, �T �a�,�v�, �1�,�.�.�.�, �m( )

= �T �m( ) �l�n �v +�1( ) �2( ) �l�n �v �2( )( ) �0�.�5 �l�n �v �2( )( )
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(ged por sus siglas en inglés). para el caso de la distribución t de student 
con v grados de libertad la varianza será ν / ν – 2, y para ν>2 se tiene que 
�z�t = �x�v �v �v �2. (Recuérdese que zt tiene distribución con media cero y varian-
za unitaria.) por lo tanto, la función de densidad de et es: 

(�v+�1
�z�t
�2((�v +�1) �2) ) �2

�v �2
�1+ �, �v > �2 (11) 
�v �2) (�v �2)(

Donde G (x) es la función gamma evaluada en x: 

�x =
�0
�y�x �1�e �y �d�y (12) ( )

Si recordamos que et = zt σt se tiene que la función de verosimilitud condi-
cional es: 

(�v+�1) �2�2�T ((�v +�1) �2) �1�f ( �m+�1�,�.�.�.�, �T �a�, �1�,�.�.�.�, �m ) = �1+ �t
�2�v �2

(13) (�v �2)) (�v �2) �t�t=�m+�1 ( �t

Donde ν>2, por lo que el logaritmo de la verosimilitud es: 
�2�T �v +�1 �1 �2�l ( �m+�1�,�.�.�.�, �T �a�, �1�,�.�.�.�, �m ) = �l�n �1+ �t

�2 + �l�n( �t ) (14) �2 (�v �2) �2�t=�m+�1 �t

La ecuación anterior se aplica cuando los grados de libertad son especifi-
cados, y generalmente se utilizan valores para ν de entre 3 y 6 grados (An-
gelidis et al., 2004). 

Si se desea estimar conjuntamente los grados con los parámetros de los 
modelos se utiliza la siguiente log-verosimilitud: 

�l ( �,�.�.�.�, �T �a�,�v�, �1�,�.�.�.�, �m )�m+�1

(15) 
= (�T �m) �l�n( (�v +�1) �2) �l�n( )) �0�.�5 �l�n( (�v �2)( )

�2�T �v +�1 �1 �2�l�n �1+ �t
�2 + �l�n( �t )�2 (�v �2)�t=�m+�1 �t

�v �2

�2

Adicionalmente se puede utilizar una distribución más general de colas 
pesadas conocida como la distribución de errores generalizada (Nelson, 
1991), cuya función de densidad es: 



�1+ �v �1( )�l�n �2( ) �l�n �1
�v

�1
�2
�l�n �t

�2

�l �m+�1�,�.�.�.�, �T �a�, �1�,�.�.�.�, �m( ) = �l�n �v �1
�2

�t �t
�v

�t=�m+�1

�T
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�v )�v�e�x�p( �0�.�5 �z�t
�D �z�t �;�v = �1 �, �v > �0 (16) ( )

�1+
�v�2 (�v �1)

y l es el parámetro de qué tan pesada o delgada es la cola; así: 
�1
�2�1

(17) �v
�2 �3�2 �v
�v

Nótese que cuando ν = 2 zt se distribuye normal estándar. para ν<2 esta 
distribución tiene colas más pesadas que la distribución normal; por ejem-
plo, si ν= 1 entonces zt sigue una distribución doble exponencial, y para 
ν>2 esta distribución tiene colas más delgadas. 
La función de log-verosimilitud para este caso es: 

�v�T �v �1 �t�l ( �,�.�.�.�, �T �a�, �1�,�.�.�.�, �m ) = �l�n�m+�1 �2�t=�m+�1

�t

(18) �1 �1 �2�1+ �v �1)�l�n �2 �l�n �l�n( ( ) �t�v �2

En general, se tiene que la función de log-verosimilitud puede escribirse 
en términos de la función de densidad de zt en la siguiente forma (Angeli-
dis et al., 2004): 

�T �1 �2 ,�l ( �,�.�.�.�, �T �a�, �1�,�.�.�.�, �m ) = �l�n �D �z�t �;�v) �l�n �t(�m+�1 (19) �2�t=�m+�1

donde D(zt; ν) es la función de densidad de zt. 

I.2.Teoría de valores extremos (evt) 

Una alternativa al uso de los cuantiles de la distribución de los retornos 
para calcular el var, es el uso de la distribución de los valores extremos de 
los retornos para modelar exclusivamente los valores extremos y usar los 
cuantiles de esta distribución para obtener una mejor estimación del valor 
en riesgo. En este contexto, la teoría de los valores extremos juega un rol 
importante para encontrar la distribución de los valores máximos de una 
serie de datos (Finkenstadt y Rootzen, 2001). 
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I.2.1. Metodologías para encontrar los valores extremos de una serie 
El primero es el llamado máximo por bloques, donde se dividen las series 
de tiempo en secciones de igual tamaño y se escoge el valor más grande 
dentro de cada bloque. La ventaja de este método es que se escogen valo-
res sobre todo el conjunto de datos; sin embargo, se pueden omitir los si-
guientes valores extremos dentro del mismo bloque que posiblemente 
sean mayores que el máximo dentro de otro bloque. 

I.2.1.1. máximos por bloques. Fisher y Tippet (1928) y más tarde Gne-
denko (1943) demostraron que las únicas distribuciones límite para mode-
lar los valores extremos son las siguientes: 

�I �) �G�u�m�b�e�l �: ( )�x = �e�x�p ( �e �x ) �x �R (20) 

�0�, �x �0
�I�I �) �F�r�é�c�h�e�t �: ( ) (21) �x =

�e�x�p{ �x }�, �x > �0�, > �0

�e�x�p( ( �x )) �x �0�, < �0
( ) = (22) �I�I�I �) �W�e�i�b�u�l�l �: �x

�1�, �x > �0

Donde a > 0 se denomina el parámetro de forma para las familias Fréchet 
y Weibull. Este grupo de funciones se conoce como las distribuciones del 
valor extremo. 

En términos prácticos, para la estimación de los máximos en bloques el 
método es como sigue: (1) se seleccionan los máximos dentro de cada blo-
que, (2) se elige una distribución a priori del tipo G (x) anterior, y final-
mente (3) se estiman los parámetros por máxima verosimilitud. 

para evitar la selección de una función a priori se utiliza la expresión 
dada por Von Mises (1936) y Jenkinson (1955), conocida como la distribu-
ción generalizada de los valores extremos, gev (del inglés Generalized Ex-
treme Value distribution): 

�e�x�p{( (�1+ �x) �1 )} �s�i �0
�H �x =( ) (23) 

�e�x�p{ �e �x} �s�i = �0

donde 1 + ex > 0. El parámetro ξ se conoce como el índice de cola y está 
relacionado con la forma de la distribución. La distribución Fréchet puede 



�,
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obtenerse a partir de la gev al fijar ξ = a –1; para la distribución Weibull se 
tiene que ξ = – a –1 y para la Gumbell ξ = 0. 

De lo anterior se observa que es posible realizar la estimación en la 
metodología de máximos por bloques si se aplica el método de máxima 
verosimilitud a la distribución gev. 

I.2.1.2. El método de picos sobre umbral (pot). El método de picos sobre 
umbral (pot, por sus siglas en inglés) selecciona los valores más grandes 
que sobrepasan un umbral; así, la mayor parte de los resultados de este 
método se basa en la distribución de los excesos sobre dicho umbral. 

Supóngase que se tiene una variable R con función de distribución FR; 
la función condicional de R, dado que es mayor que un umbral u, se conoce 
como la distribución de los excesos de R, FR,u, y está dada por: 

�F�R�,�u �y = �P �R{ �y �R > �u} (24) ( ) �u

donde 0 £ y £ Ru–u, y Ru, corresponde al extremo superior de la variable 
aleatoria. 

En la búsqueda de la distribución de los excesos existe el siguiente teo-
rema (Balkema y De Hann, 1974; pickands, 1975). 

para una gran clase de funciones de distribución, la distribución de 
los excesos de R, FR,u para valores grandes de u, es aproximadamente 
igual a: 

) �1�1 (�1+ �y �s�i �0
�y = (25) �F�R�,�u �y �G( ) ( )

�1 �e�x�p( �y ) �s�i = �0

donde ξ ∈R b =s + ξ ( u – m). ξ y b se conocen como los parámetros de for-
ma y escala, y Gξ, b se conoce como la distribución generalizada de pareto 
(gdp por sus siglas en inglés) (pickands, 1975). 

Según el valor del parámetro ξ de la gpd se obtienen tres tipos de fun-
ciones de distribución. Si ξ > 0, la gpd es una distribución de pareto con 
parámetros a = 1 /ξ, k = b /ξ, para valores y ≥ 0. para ξ = 0 la gpd corres-
ponde a una distribución exponencial con parámetro 1 / b y y ≥ 0. Final-
mente, si ξ< 0, las gpd toman la forma de una distribución tipo pareto II, 
la cual está definida en el rango 0 £ y £ b /ξ. 

I.2.1.2.1. Métodos para la selección del umbral“u”.Un método para estimar el 
valor de u consiste en utilizar el valor esperado de los excesos, definido como: 



�P �u �R �y + �u( )
�P �R > �u( )

=
�F�R �y + �u( ) �F�R �u( )
�1 �F�R �u( )

�F�R�, �u �y( ) = �P �R �u �y �R > �u{ } = �P �R �u �y�, �R > �u( )
�P �R > �u( )
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�1 �N�u

�e�ˆ �u =( ) (�r( )�i �u) (26) �N�U �i=�1

Donde r(1), r(2), r(Nũ ) son las Nũ observaciones mayores que ũ ; ũ<rmax y rmax 

corresponden a la observación más grande de la muestra. A partir de ese 
estimador de la media de los excesos se analiza la tendencia de la gráfica 
de las parejas ordenadas (ũ , ê (ũ )). Si Gξ, b es una aproximación válida de 
FR,u para un umbral dado u*, el gráfico de la media de los excesos debe ser 
aproximadamente lineal alrededor de u*, lo cual permite seleccionar in-
tervalos a partir de los cuales seleccionar el umbral u. 

I.3. Cálculo del valor en riesgo mediante el uso de valores extremos 

Sea Rt una serie de tiempo estrictamente estacionaria que representa las 
pérdidas de un activo; nótese que la función de excesos de pérdida de Rt es: 

�P �R �u �y�, �R > �u)(�y = �P �R �u �y �R > �u} = = ( 27) �F�R�, �u( ) {
�P �R > �u)(

�P �u �R �y + �u) �y + �u) �F�R �u( �F�R ( ( )
= =

�P �R( > �u) �u�1 �F�R ( )

Sea x = y + u si la distribución de los máximos de R converge a la distribu-
ción generalizada de los extremos He (x); entonces, la distribución de los 
excesos “y” converge a una distribución generalizada de pareto Gξ, b (y) y se 
tiene que: 

�F�R�,�u (�x �u) = �G (�x �u).

Al reemplazar este resultado en la ecuación anterior tenemos: 

�y + �u �u
�,

�y + �u �u�F�R ( ) �F�R ( ) �F�R ( ) �F�R ( )�F�R�,�u (�x �u) = �G (�x �u) =
�1 �F�R �u �1 �F�R �u (28) ( ) ( )

�F�R �x = ( �u( ) �1 �F�R ( ))�G �, �x �u) + �F�R ( )( �u

Si se conoce la función de distribución FR el cálculo del var sólo requiere 
el cálculo de los parámetros de su distribución y encontrar el cuantil 1 –a 
de dicha distribución. Sin embargo, esta función generalmente se desco-
noce, por lo que se utiliza el resultado anterior, donde FR depende de FR (u) 
y de Gξ, b (x–u) . 

�,
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Si usamos como estimador de FR (u) su función de distribución empíri-
ca, se llega al siguiente resultado (Byström-Hans, 2004): 

(29)�k
�ˆ

�ˆ �x �u
�1 �ˆ

�F�ˆ�R �x = �1 �n
�1+( )

Entonces, dada la definición de valor en riesgo se tiene: 

(30) 
�ˆ

�ˆ�V�a�R �u�F�R (�V�a�R ) =
�k

�1 �ˆ

= �1 �1+
�n

y al despejar para el valor en riesgo tenemos finalmente la expresión si-
guiente: 

�ˆ
�ˆ

�ˆ
(31)�1 ,�V�a�R = �u + �1

�k �n

=donde ξ ∈ R b s +ξ (u – m).Aquí ξ es el parámetro de forma y b el de esca-
la, y se calculan por máxima verosimilitud.1 

II. Datos y metodología 

II.1. Obtención y preparación de los datos de estudio 

Se obtuvo la serie del índice de precios y cotizaciones de la Bolsa Mexicana 
de Valores del periodo comprendido entre el 27 de febrero de 2009 y el 26 
de febrero de 2010. Dicho periodo coincidió con la etapa final de la crisis 
financiera global de octubre de 2008, durante la cual se vivieron periodos 
con mucha volatilidad, y en el que el manejo del riesgo se convirtió en una 
de las principales herramientas para evitar las enormes pérdidas caracte-
rísticas de esos periodos. 

para cada uno de los valores de la serie se calculó el retorno logarítmico 
en la siguiente forma: 

�P�t�P�t�r�t = �l�n�r�t = �l�n �P�t�P �1�t �1
1 Recuérdese que los máximos obtenidos por el método de picos sobre umbral a los residua-

les estandarizados del modelo arma-garch ajustado a los retornos, tienen una distribución ge-
neralizada de pareto. 
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Donde Pt representa el valor del índice en el tiempo t. Conviene aclarar 
que la serie de los retornos logarítmicos es aproximadamente igual a la 
serie de las ganancias (retorno simple). Finalmente, como debemos obte-
ner la serie de las pérdidas, simplemente cambiamos de signo la serie an-
terior. En la gráfica 1 se puede observar el histograma de los retornos lo-
garítmicos de la serie. 

Gráfica 1. Histograma de los retornos logarítmicos del índice 
de precios y cotizaciones (ipc) 

80

60

40
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0

−0.06 −0.04 −0.02 0.00 0.02 0.04

Retorno logarítmico

Fuente: Elaboración propia con datos de la Bolsa Mexicana de Valores (bmv). 

II.2. modelado de la media y la varianza de los residuales 

para modelar la media de los retornos se utilizó un modelo de series tem-
porales, se ajustaron modelos de medias móviles y autorregresivos, y se 
escogió el modelo que minimizó el criterio de información de Akaike y que 
cumplió con las pruebas de Ljung-Box sobre la no correlación de los resi-
duales (Tsay, 2002). Simultáneamente se ajustó el modelo garch(p,q) con 
el menor número de parámetros y que modeló correctamente las varian-
zas condicionales de los retornos. 

para lo anterior Francq y Zakoian (2004) sugieren minimizar la si-
guiente función de Quasi-verosimilitud con respectó a los parámetros de 
la serie arma y garch simultáneamente. 

Fr
ec

ue
nc

ia
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donde {
te por: 

(32) 

son procesos definidos recursivamen-

�l �m+�1�,�.�.�.�, �T �a�, �1�,�.�.�.�, �m( ) = �1
�2
�l�n �t

�2( ) �1�2
�t
�2

�t
�2

�t=�m+�1

�T

�l �m+�1�,�.�.�.�, �T �a�, �1�,�.�.�.�, �m( ) = �1
�2
�l�n �t

�2( ) �1�2
�t
�2

�t
�2

�t=�m+�1

�T

�ˆ �t �:�1 �t �n{ }�t �:�1 �t �n �y}

�P �Q

= = �X�t �c �i (�X�t �i �c) +�t �t ( ) �j �t �j (33)
�i=�1 �j=�1

�ˆ �t
�p �q

�2 �2 �2= �ˆ �t
�2 ( ) = �a�0 + +�a�i �t �i �b�j �ˆ �t �j (34)

�i=�i �j=�1

para el caso de este trabajo se utilizó el programa Oxmetrics, el cual calcula 
los parámetros del modelo arma para la media y garch para la varianza de 
manera simultánea (véase An Introduction to Oxmetrics 6 de Doornik,2009). 

II. 3.var mediante modelos garch y teoría de valores extremos 

Al utilizar únicamente los modelos garch para las colas pesadas, típicas en 
los retornos financieros, se pueden subestimar los valores extremos de es-
tas series. por otro lado, para poder utilizar la teoría de los valores extre-
mos para modelar los máximos de la serie de los retornos financieros, se 
requiere que dicha serie no esté correlacionada, lo cual en la práctica gene-
ralmente no sucede. 

Los resultados obtenidos en teoría de valores extremos asumen que las 
series son independientes e idénticamente distribuidas. Sin embargo, nor-
malmente las distribuciones de los retornos presentan autocorrelaciones; 
ante esta situación, Bhattacharyya y Ritolia (2008) propusieron realizar un 
análisis de valores extremos a los residuales estandarizados de una serie 
arima-garch, y con este resultado calcular el var de los retornos como sigue: 

�V�a�R (�r�t+�1) = μ�t+�1 + �t+�1�V�a�R �z (35)( )
Donde vara (z) es el var calculado a los residuales estandarizados del mo-
delo ajustado a los retornos. 

II.4. Pérdida esperada (Expected Shortfall-ES) 

El Expected Shortfall indica cuál es el valor esperado de la pérdida, dado 
que esta es superior al var; es una medida desarrollada por Artzner et al. 
(1998) definida como: 
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�E�S = �E �r �r >�V�a�R ) (36) (
El cálculo del es para una distribución continua se define como: 

1 U

ES = E r r >VaR ) = rfR r (37) ( )dr( 1 FR (VaR ) VaR

Donde U representa el extremo superior de los retornos, y FR (•) y fR (•) 
corresponden a la función de distribución y de densidad de los retornos, 
respectivamente. 

para el caso de un modelo de Valores Extremos (Bhattacharyya y Rito-
lia, 2008), se obtiene que el ES puede estimarse como: 

�ˆ +�V�a�R �ˆ�u (38) �E�S = �ˆ +�1 �1 �ˆ

Donde ξ ∈ R b = s +ξ (u – m). Aquí ξ es el parámetro de forma y b el de es-
cala de la distribución generalizada de pareto.2 

II.5.Ajuste del modelo 

II.5.1.Comparación histórica o Backtest 
Esta prueba se utiliza para probar el ajuste del modelo, así como para 
comparar entre distintos modelos. El Backtest asume que el número de 
fallas o número de datos históricos que caen fuera de los límites del var 

tiene una distribución binomial con p = 1 – a. La prueba se basa en el esta-
dístico de Kupiec (Finkenstadt-Rootzen, 2001): 

�k = �2 �l�n
�p�Y �1 �p( )�N �Y

�Y
�N

�Y

�1 �Y
�N

�N �Y (39)

Donde Y es el número de fallas, N el número total de datos y p = 1 – a (a es 
el utilizado para calcular vara). 

2 Recuérdese que los máximos obtenidos por el método de picos sobre umbral a los residua-
les estandarizados del modelo arma-garch ajustado a los retornos, tienen una distribución ge-
neralizada de pareto. 



�l�n �t
�2 = �0�.�9�0�8�6�7 �t �1

�2 + �0�.�8�4�4�0�6�g �t �2( ) + �g �t �1( )
�g �t �1( ) = �0�.�0�3�6�5�5 �t �1 + �0�.�2�0�2�1�1 �t �1 �0�.�9�3�0�1�6�6�8

�z�t�~�t �s�t�u�d�e�n�t�(�5�.�4�0�8�0�7�)
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El estadístico k es una prueba de razón de verosimilitudes que tiene 
una distribución asintóticamente χ 2

1. 
Alternativamente se puede obtener la estimación directa a partir de la 

distribución binomial; se calcula el intervalo de confianza para Y como 
(y1, y2), tal que P (Y < y1) = P (Y > y2) = 1– a’ /2 = 0.025 y Y ̃ BIN (N, p).Aquí 
Y es el número de fallas, N el número total de datos y p = 1– a. Si el núme-
ro de fallas Y observado cae dentro del intervalo anterior, entonces se 
acepta que la hipótesis �p= �N

�Y =�1 y el modelo son adecuados. 

III. Resultados y discusión 

Es normal que existan correlaciones en las series financieras que pueden 
ser modeladas con series temporales. para el caso del índice de precios y 
cotizaciones de la Bolsa Mexicana de Valores esta situación se verificó al 
realizar las pruebas de Ljung-box. De igual manera, al examinar las fun-
ciones de autocorrelacion muestral y autocorrelacion parcial muestral se 
observó que es posible ajustar un modelo arma a la serie de los retornos 
para modelar las correlaciones existentes. 

Al realizar el ajuste de varios modelos arma a los retornos financieros y 
revisar sus correspondientes criterios de información de Akaike, se encon-
tró que el modelo arma (3,2) fue el que obtuvo el mínimo valor. En este senti-
do, se ajustaron modelos autorregresivos de orden menor o igual a 3 con-
juntamente con modelos de medias móviles de orden menor o igual a 2 
para revisar el número de fallas en las que dichos modelos incurren. 

Al aplicar la prueba de Jarque-Bera a los residuales (Tsay, 2002), para 
el caso del modelo arma (3,2) se encontró un valor para el estadístico de 
30.74, que al ser comparado con una χ 2

2 se obtiene un P-value igual a 2e-7, 
por lo que evidentemente se rechaza la hipótesis nula de que los residua-
les siguen una distribución normal. 

Debido a lo anterior, para modelar los residuales se utilizaron los mo-
delos arch (1), garch (1,1), egarch(1,1) y gjr-garch (1,1) con distribución t-
student. En cada caso se realizó un estudio de los valores extremos a los 
residuales estudentizados para encontrar las medidas de valor en riesgo 
utilizando la metodología del cálculo del var mediante modelos garch con 
teoría de valores extremos. 

para el caso de los modelos egarch, el modelo ajustado fue: 

�r�t = �0�.�0�0�1�7�3+ �0�1�3�6�5�2�r�t �1 + �0�.�6�3�2�9�0�r�t �2 �0�.�0�4�7�2�0�r�t �3 +
+ �0�.�0�4�7�2�0 �t �1 + �0�.�6�8�8�8�1 �t �2+ �t �t = �z�t �t



�r�t = �0�.�0�0�1�7�3+ �0�1�3�6�5�2�r�t �1 + �0�.�6�3�2�9�0�r�t �2 �0�.�0�4�7�2�0�r�t �3
+ �0�.�0�4�7�2�0 �t �1 + �0�.�6�8�8�8�1 �t �2+

+

�t �t = �z�t �t
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Cuadro 1. parámetros ajustados al modelo arma(3,2)-garch(1,1) 
de la serie del ipc 2009-2010 

Parámetro Coeficiente Error estándar Valor de t t-prob 

Media(M) -0.00201 0.0007 -2.5224 0.0123 

AR(1) 0.49506 0.2003 2.4708 0.0142 

AR(2) -0.37671 0.3137 -1.2005 0.2311 

AR(3) -0.01 0.0625 -0.2166 0.8287 

MA(1) -0.41193 0.2035 -2.0240 0.0441 

MA(2) 0.32608 0.3404 0.95774 0.3392 

Media(Alpha 0) 0.0000021412 0.0480 0.00004 0.6561 

ARCH(Alpha1) 0.041881 0.0400 1.0453 0.2969 

GARCH(Beta1) 0.946210 0.0537 17.6150 0.0000 

Student(Grados) 5.26480 1.9815 2.6570 0.0084 

Fuente: Elaboración propia con datos de la Bolsa Mexicana de Valores (bmv). 

�l�n �2 = �0�.�9�0�8�6�7 �2 + �0�.�8�4�4�0�6�g( ) + �g(�t �t �1 �t �2 �t �1)
�g( ) = �0�.�0�3�6�5�5 �t �1 + �0�.�2�0�2�1�1 �0�.�9�3�0�1�6�6�8�t �1 �t �1

�z�t�~�t �s�t�u�d�e�n�t�(�5�.�4�0�8�0�7�)

Mientras que el modelo gjr-garch 

�r�t = �0�.�0�0�2�0�1+ �0�.�5�1�0�9�0�r�t �1 �0�.�3�5�6�9�9�r�t �2 �0�.�0�1�5�7�6�r�t �3+
+ �0�.�4�2�2�5�6 �t �1 �0�.�3�1�0�3�2 �t �2 + �t

�t = �z�t �t
�2 �2 �2�l�n �t = �0�.�0�1�3�1�5 + �0�.�0�2�7�8�9�S�t �1 �t �1 + �0�.�9�7�6�0�5 �t �1

�z�t�~�t �s�t�u�d�e�n�t�(�5�.�5�3�5�5�9�)

El var calculado con el modelo egarch presentó 12 fallas (recuérdese que 
se produce una falla si el valor real del retorno sobrepasa el valor en riesgo 
estimado) correspondientes a un p-value de 1 en la prueba de Kupiec, dos 
fallas menos que el calculado con los modelos gjr-garch y garch, en los 
cuales el p-value es de 0.5129234. (Recuérdese que la hipótesis nula –el 
promedio de fallas es igual a 5 por ciento– en este caso no se rechaza.) 
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La medida de comparación para evaluar cada modelo fue el número de 
fallas que se obtuvieron, así como el grado de ajuste de los parámetros a 
través de sus correspondientes pruebas de t. 

El modelo RiskMetrics obtenido y ajustado para los retornos fue el 
siguiente: 

�r�t = �0�.�0�0�1�8�0�1+ �t

�t = �z �t
�2

�t
�2 = �0�.�9�4 �t

�2 + �0�.�0�6 �t �1

Los resultados se muestran en la gráfica 2,donde se comparan los tres mode-
los arch,el modelo RiskMetrics y dos modelos no dinámicos (Bootstrap y evt). 

Gráfica 2. Comparación de las bandas de valor en riesgo de los modelos 
arma (3,2)-garch (1,1)-evt, arma (3,2)-egarch (1,1)-evt, arma (3,2)-gjr-
garch (1,1)-evt, Riskmetrics, evt y Bootstrap 
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Fuente: Elaboración propia con datos de la Bolsa Mexicana de Valores (bmv). 
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Gráfica 3. Comparación de la pérdida Esperada (es) de los modelos 
arma (3,2)-garch (1,1)-evt, arma (3,2)-egarch (1,1)-evt, arma (3,2)-gjr-
garch (1,1)-evt, Riskmetrics, evt y Bootstrap 
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Comparamos los modelos garch, gjr-garch y egarch (con un total de 14 
fallas como máximo en el cálculo del var) con el modelo de RiskMetrics 
(que si bien obtuvo un número de fallas inferior, sus estimaciones del valor 
en riesgo son más grandes). Al realizar la prueba de ajuste de Kupiec se 
encontró que todos los modelos tienen un promedio de fallas de 5 por cien-
to con una confiabilidad de 95 por ciento, lo que indica que el modelo está 
dentro de los límites fijados para la estimación del valor en riesgo, que en 
este caso fue de 5 por ciento. Se encontró también que el var calculado con 
valores extremos (0.02253312) fue más pequeño que el encontrado por el 
método de Bootstrap de simulaciones históricas (0.02623782). La misma 
situación se verificó con el cálculo de la pérdida esperada. 
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Respecto al análisis de la pérdida esperada, observamos resultados si-
milares a los obtenidos por el var; en este caso el ES0.95 sigue siendo menor 
para el caso del arma (3,2)-garch (1,1)-evt que el obtenido con el modelo 
RiskMetrics. La gráfica 3 nos muestra la pérdida esperada para la serie 
completa del ipc. 

para el modelado de la volatilidad se probaron los modelos arch (1) y 
los modelos garch (1,1), y se encontró que el valor en riesgo utilizando los 
modelos arch presenta estimaciones demasiado elevadas y poco conserva-
doras que sobreestiman el valor de la máxima pérdida posible. por otra 
parte, el número de fallas en las que incurren es similar al de los modelos 
garch. Lo anterior puede observarse en la gráfica 4, en la que se muestra 
el valor del var calculado con diferentes modelos arma para la media y con 
el modelo arch (1) para la volatilidad. Finalmente, debido a lo anterior se 
hace evidente la eficiencia de las estimaciones en un modelo garch, com-
paradas con las de los modelos arch. 

De manera similar, en la gráfica 5 se muestra el valor en riesgo calculado 
con diferentes modelos arma para la media y con el modelo garch (1,1) para 
la volatilidad. Se observa que el número de fallas no disminuye signi-
ficativamente al variar el modelo para la media; sin embargo, al utilizar el 
modelo garch para la volatilidad disminuye considerablemente la magnitud 
de la estimación del valor en riesgo, aunque el número promedio de fallas 
se incrementa ligeramente (14 en comparación con las ocho del modelo arch). 

por otra parte, se realizó el cálculo del valor en riesgo por el método de 
RiskMetrics, con el objetivo de poder tener un punto de referencia y com-
paración para nuestro modelo arma-garch-evt. 

Los resultados se muestran en la gráfica 2, donde se observa que el 
modelo RiskMetrics presenta un total de siete fallas en el cálculo del var, 
valor muy por debajo del número de fallas máximo para considerar ade-
cuado el modelo. 

Durante la revisión de los coeficientes del modelo ajustado RiskMe-
trics se observó que, a excepción de las medias, el resto de los coeficientes 
fueron significativamente diferentes de cero, derivado de que la metodolo-
gía recomienda un valor para el coeficiente λ de 0.94 para datos diarios. 

Se ajustó también el valor en riesgo y la pérdida esperada por el méto-
do de valores extremos y por el método de bootstrap de simulaciones histó-
ricas, con el fin de obtener un comparativo de los métodos dinámicos con-
tra los métodos estáticos. En este caso se observa que tanto el var como el 
es son más pequeños si se calculan por el método de valores extremos que 
si se calculan por el de bootstrap. 
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Gráfica 4. Estimación del valor en riesgo para diferentes modelos 
arma en la media y modelos arch en la varianza. La línea gris muestra la 
estimación del var y la línea negra el retorno del índice 

Gráfica del var – Modelo - Número de fallas 
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Gráfica 5. Estimación del valor en riesgo para diferentes modelos 
arma en la media y modelos garch en la varianza. La línea gris muestra la 
estimación del VaR y la línea negra el retorno del índice 
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Cuadro 2. parámetros ajustados al modelo arma(1,1)-garch(1,1) 
de la serie del ipc 2000-2010 

Parámetro Coeficiente Error estándar Valor de t t-prob 

Media(M) -0.00122 0.00024 -5.043 0.0000 

AR(1) -0.33491 0.12740 -2.629 0.0086 

MA(1) -0.43004 0.12155 3.538 0.0004 

Media(Alpha 0) 0.03741 0.01138 3.286 0.0010 

arch(Alpha1) 0.08558 0.01345 6.362 0.0000 

garch(Beta1) 0.89876 0.01521 59.06 0.0000 

Student(Grados) 6.80494 0.89477 7.605 0.0000 

Fuente: Elaboración propia con datos de la Bolsa Mexicana de Valores (bmv). 

Finalmente, se ajustó un modelo para la serie diaria del ipc correspondien-
te al periodo del 1 de enero de 2000 al 26 de febrero de 2010, con un total 
de 2245 observaciones. Se encontró que el mejor modelo ajustado fue un 
arma(1,1)-garch(1,1)-evt; los parámetros ajustados se muestran en el cua-
dro 2. Debido a la cantidad de datos empleados se encontraron problemas 
en la estimación de los modelos asimétricos; sin embargo, dada la simili-
tud en los resultados anteriores entre los modelos arch empleados, es sufi-
ciente con ajustar el modelo garch y realizar las comparaciones con el 
RiskMetrics bajo distintas condiciones de mercado. 

Al analizar el estadístico de Kupiec para probar el ajuste de los modelos 
se encontró que ambos ajustaron correctamente un valor en riesgo al 95 por 
ciento, con 145 fallas para el modelo RiskMetrics (p-value 0.1118) contra 
137 fallas del modelo arma(1,1)-garch(1,1)-evt (p-value 0.3758). En la gráfi-
ca 6 también se puede observar el periodo de la crisis mundial de 2008, 
donde se nota un incremento de la volatilidad del índice; además se observa 
un buen desempeño en el ajuste del var, debido principalmente a que am-
bos modelos incluyen en sus ecuaciones las volatilidades pasadas. Esta pro-
piedad de los modelos garch se adapta particularmente bien a las condi-
ciones reales del mercado, donde a periodos de inestabilidad le siguen 
periodos de inestabilidad, y a periodos de calma le siguen periodos de calma. 

En las gráficas 6 y 7 se puede observar claramente la superioridad de 
los métodos dinámicos en el cálculo de las medidas de riesgo con respecto 



200 Aguirre,Vaquera, Ramírez,Valdez y Aguirre: Estimación del valor en riesgo en la bmv 

Gráfica 6. Comparación de las bandas de valor en riesgo del ipc 

2000-2010 de un modelo arma (1,1)-garch (1,1)-evt, Riskmetrics, 
evt y Bootstrap 
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Fuente: Elaboración propia con datos de la Bolsa Mexicana de Valores (bmv). 



201 economía mexicana nueva época, vol. xxII, núm. 1, primer semestre de 2013 

Gráfica 7. Comparación de las bandas de la pérdida Esperada del ipc 

2000-2010 de un modelo arma (1,1)-garch (1,1)-evt, Riskmetrics, evt y 
Bootstrap 
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a los métodos estáticos. Y dentro de los métodos dinámicos se muestra la 
ventaja del modelo propuesto, donde las estimaciones son más pequeñas 
que en el RiskMetrics (con el mismo nivel de confiabilidad en la prueba 
del ajuste de fallas de Kupiec, a =0.05). 

De manera similar se calculó la pérdida esperada para la serie del ipc 

2000-2010; los resultados se muestran en la gráfica 7. Se puede observar 
que los resultados son similares en ambos casos, con ciertas regiones 
donde la pérdida esperada del modelo arma-garch se encuentra por debajo 
del modelo RiskMetrics. En la misma gráfica se puede observar, al igual 
que en el caso del var, un adecuado desempeño del ES durante el periodo 
de la crisis económica de 2008, propiciado en gran parte por la propiedad 
de los modelos garch de actualizar la varianza presente con base en las 
anteriores. 

Iv. Conclusiones 

El número de fallas obtenidas con la metodología RiskMetrics fue menor 
en comparación con los modelos garch, gjr-garch y egarch; sin embargo, 
se observó que sus estimaciones en general son más grandes que las de 
este último. Del análisis de los datos se observó que ambos métodos son 
muy similares, ya que la diferencia en el número de fallas de ambos mode-
los no fue significativa, es decir, de las 250 observaciones probadas se en-
contró un promedio de 12 fallas, lo cual es un valor aceptable. 

por otra parte, ya que el modelo RiskMetrics es un caso particular de 
los modelos garch, presentó ciertas limitaciones en su uso, en particular si 
la serie de los retornos estaba correlacionada. 

El uso de los modelos arma mejoró el pronóstico del var con respecto al 
RiskMetrics debido principalmente a que el pronóstico de la media se in-
cluye en el cálculo del var. por otra parte se eliminan las correlaciones de 
los residuales, generando así las condiciones necesarias para el análisis de 
los valores extremos. 

Como se observó en el presente artículo, al variar el tamaño de la serie 
de datos generalmente se cambia el modelo arma de la serie, por lo que se 
recomienda usar una cantidad de datos que represente de forma conser-
vadora la tendencia de la serie. Conforme se emplean series con datos más 
antiguos, el modelo podría sesgarse y no representar la tendencia actual 
de la serie. 

Al comparar los modelos asimétricos garch y arch se observó que garch 

tuvo las estimaciones más precisas respecto a arch. garch indica que la 
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máxima pérdida del índice de precios y cotizaciones es ligeramente supe-
rior a 5 por ciento, en contraste con el modelo arch que presenta una pér-
dida máxima del índice de precios y cotizaciones de cerca de 10 por ciento. 
Se encontró también, con base en la prueba de Kupiec, que ambos modelos 
no violaron el var ajustado en más de 5 por ciento del total de las observa-
ciones (P-value de 0.51). 

por otra parte, se observó que a inicios del periodo estudiado se presen-
tó una considerable volatilidad, la cual coincide con la parte final de la 
crisis de octubre de 2008. para el caso de los modelos, en este periodo de 
tiempo se encontró que RiskMetrics presentó más fallas en comparación 
con garch, gjr-garch y egarch. por otra parte, en los periodos de poca vola-
tilidad se observó que estos modelos presentaron estimaciones más preci-
sas que RiskMetrics, como se observa en el periodo de julio 2009 a febrero 
2010. 

Finalmente, se concluye que la metodología del cálculo del valor en 
riesgo mediante modelos de heteroscedasticidad condicional con teoría de 
valores extremos presentó mejor desempeño comparada con la metodolo-
gía RiskMetrics. 

Con respecto a las medidas de riesgo obtenidas por evt y Bootstrap, se 
observa que se obtuvieron mejores resultados con el primer método (evt), 
y, al ser estos métodos estáticos, se encontró un desempeño relativamente 
pobre en comparación con los métodos dinámicos, sobre todo en periodos 
de inestabilidad económica. 

Se propone que el modelo arma-(garch-egarch-gjr-garch)-evt para esti-
mar el valor en riesgo se implemente para (1) informar a los analistas fi-
nancieros y a las empresas sobre el riesgo presente en las operaciones fi-
nancieras que realizan, y (2) fijar posiciones límite para corredores y casas 
de bolsa, ya que el valor en riesgo funciona como punto de referencia de 
diversos instrumentos financieros. 
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