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Resumen: Se propone una metodologia para la estimacion del valor en riesgo (vaRr)
del indice de precios y cotizaciones (1pc) de 1a Bolsa Mexicana de Valores mediante
el uso combinado de modelos autorregresivos y medias méviles (ARMA); tres dife-
rentes modelos de la familia ArcH, de los cuales uno es simétrico (GARCH) y dos asi-
métricos (GJR-GARCH y EGARCH); y la teoria de valores extremos. Los modelos ARMA se
usaron para obtener residuales no correlacionados que sirvieron de base para el
analisis de valores extremos. Los modelos GARCH, GJR-GARCH y EGARCH, al incluir en
el modelo las volatilidades pasadas, son particularmente utiles tanto en periodos
de inestabilidad como de calma. Mas aun, los modelos asimétricos GJR-GARCH y
EGARCH modelan de manera distinta el impacto de los shocks positivos y negativos
del mercado. Todo esto surge de la necesidad de calcular la pérdida méaxima que
puede tener el 1Pc en un cierto nivel de confiabilidad y en un periodo de tiempo
dado, mediante modelos mas eficientes que estimen la volatilidad de manera di-
namica. En forma paralela se usé el método RiskMetrics a manera de compara-
cién para la metodologia propuesta. Se concluye que la metodologia de los modelos
de heteroscedasticidad condicional con teoria de valores extremos para la estima-
cion del valor en riesgo present6 un desempefio mejor que el método RiskMetrics;
particularmente el modelo EGARCH present6 menos violaciones del vag, pero en
general los tres modelos de 1a familia ArcH funcionaron de manera adecuada y
generaron estimaciones mas pequeias comparadas con las de RiskMetrics, eva-
luadas en el mismo nivel de error y de confiabilidad mediante la prueba de propor-
cion de fallas de Kupiec.
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Abstract: This work proposes an approach for estimating value at risk (var) of the
Mexican stock exchange index (1Pc) by using a combination of the autoregressive
moving average models (ARMA); three different models of the ARcH family, one sym-
metric (GARCH) and two asymmetric (GJR-GARCH and EGARCH); and the extreme value
theory (Evt). The ARMA models were initially used to obtain uncorrelated residuals,
which were later used for the analysis of extreme values. The GARCH, EGARCH and
GJR-GARCH models, by including past volatility, are particularly useful both in in-
stability and calm periods. Moreover, the asymmetric models GJR-GARCH and
EGARCH handle differently the impact of positive and negative shocks in the mar-
ket. The importance of the 1pc in the Mexican economy raises the need to study its
variations, particularly its downward movement; so, we propose to use var to cal-
culate the maximum loss that 1pc may have, at a certain level of reliability, in a
given period of time, using more efficient models to dynamically quantify volatili-
ty. The RiskMetrics approach was parallelly used as a way to compare the meth-
odology proposed. The results indicate that the ARMA-GARCH-EVT methodology
showed a better performance than RiskMetrics, because of the simultaneous ad-
justment of ARMA-GARCH models for returns and variances respectively. Although
estimates of the EcARcH models had fewer violations of var, the estimates of the
three models used for volatility were more accurate than the others, evaluated at
the same error and reliability levels through the Kupiec Likelihood Ratio test.
Keywords: ARMA, VaR, GARCH, EVT, financial risk.
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Introduccion

1 valor en riesgo (Var por sus siglas en inglés-value at risk) se define

como la pérdida maxima que puede sufrir un activo (y en su caso mas
general un portafolio, el cual esta formado por un conjunto de activos) en
un cierto nivel de confiabilidad «. En términos estadisticos se define como
el 1 — a-ésimo cuantil de la distribucion de las pérdidas de un activo
(Bhattacharyya y Ritolia, 2008).

El var surge como un método para estimar el riesgo con técnicas esta-
disticas tradicionales ya empleadas en otros campos de la investigacion,
por ejemplo el uso de la teoria de valores extremos en la toma de decisio-
nes en ingenieria (Chryssolouris et al., 1994); para estimar la corrosion
marina del acero en el largo plazo (Melchers, 2008); en la estimacion del
ozono urbano (Reyes et al., 2009), entre otros. Formalmente, el var estima
la pérdida maxima sobre un horizonte de tiempo dado, en condiciones nor-
males del mercado, en un nivel de confiabilidad dado (Fernandez, 2003).
Por ejemplo, un banco puede decir que el var diario para su portafolio es
de 15 millones de délares al 99 por ciento de confiabilidad. Esto significa
que en uno de cien casos, en condiciones normales de mercado, sus pérdi-
das seran superiores a los 15 millones (Christoffersen, 2003).
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El manejo del riesgo y el desarrollo del var tiene sus origenes en los
famosos desastres financieros ocurridos a comienzos de los afios noventa
que provocaron enormes pérdidas, como el caso del Orange County en Es-
tados Unidos, con una pérdida de 1.81 billones de délares, el Barings en
Inglaterra, con 1.33 billones de délares, el Metallgesellschaft en Alemania,
con 1.34 billones de délares, y el Daiwa en Japon, que perdié 1.1 billones
de délares, entre otros mas. Estos desastres demuestran que sin la debida
supervision y manejo del riesgo se pueden perder billones de délares en un
periodo de tiempo relativamente corto (Crouhy et al., 2000).

Durante los tltimos afios se han multiplicado las pérdidas ocasionadas
por los derivados, que son instrumentos financieros empleados para reali-
zar coberturas en operaciones de compra y venta de acciones. De 1987 a
1998 estas pérdidas han sumado cerca de 28 billones de ddlares; compara-
dos con los 90 trillones de délares del mercado representan 0.03 por ciento
del total (Jorion, 2000).

Para el caso de México, la crisis financiera de 1995, provocada por el abu-
so de la politica cambiaria, sirvié para bajar y estabilizar la inflacién de 160
por ciento en 1987 a 7 por ciento en 1994. Sin embargo, el déficit de 1a cuenta
corriente comenzé a crecer a medida que la inflacion bajaba. Su financia-
miento reposoé en los flujos de capitales externos, que sirvieron para financiar
la inversion y el consumo, y por medio de esto generar el auge crediticio, que
sirvié como antecedente de la crisis bancaria (Millan-Valenzuela, 1999).

Generalmente, las series financieras presentan distribuciones de colas
pesadas (Gencay y Selcuk, 2004). Para el modelado de estas colas se han
propuesto la distribucion log-normal, la distribucion generalizada del
error, y mezclas de la distribucién normal (Boothe y Glassman, 1987).

Sin embargo, para la asignacién de probabilidades a los cuantiles en el
calculo del valor en riesgo es més conveniente el modelado paramétrico de
las colas de la distribucion de los retornos, en lugar de ajustar una distri-
bucién a la muestra entera (Gencay y Selcuk, 2004). Una buena aproxima-
cion a estos modelos lo constituye la teoria del valor extremo.

Existen numerosas metodologias para el calculo del var, entre las que
sugieren usar las colas de una distribucion a los valores extremos (Embre-
chts, 2000). McNeil (1999) propone el uso del analisis de valores extremos
(EVT, por sus siglas en inglés-extreme value theory) en el calculo del var, y
la pérdida esperada (&s) para el manejo de riesgos de mercado, operacional
y de crédito, entre otros. Glasserman et al. (2000) analizan el uso de la si-
mulacién Montecarlo. El uso del var mediante modelos GARCH con EVT es
empleado por Gencay y Selcuk en 2004 en nueve economias emergentes,
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mientras que Bhattacharyya y Ritolia lo emplean en 2008 para el caso del
principal indice de la India.

A la fecha se han desarrollado numerosas metodologias para medir el
var en mercados emergentes (Dimitrakopoulos et al., 2010), entre las cua-
les se ha propuesto utilizar modelos de heteroscedasticidad condicional,
valores extremos, o la combinacién de ambas (Gencay y Selcuk, 2004); sin
embargo, se ha desestimado el hecho de que la metodologia de valores ex-
tremos requiere de observaciones no correlacionadas (Bhattacharyya y
Ritolia, 2008). Es por ello que se propone utilizar adicionalmente modelos
ARMA para eliminar dichas correlaciones.

Para evaluar la eficiencia y la validez del método propuesto en este
trabajo, el mismo se comparé con la metodologia RiskMetrics (desarrolla-
da por la compaiiia J. P. Morgan en octubre de 1994), también conocida
como el método de suavizamiento exponencial. Dicha metodologia consis-
te en un promedio de las volatilidades a lo largo del tiempo, y actualmente
es la metodologia estandar para la medicién del riesgo financiero.

I. Modelos de volatilidad y teoria de valores extremos

1.1. Modelos de volatilidad

La volatilidad se define como la varianza condicional de los retornos de los
activos, y es un factor importante en la valoracién de opciones y el merca-
do financiero (Tsay, 2002). Aunque las correlaciones de los retornos de los
activos son pequenas, los cuadrados correspondientes son altos, siendo lo
mas apropiado para su estimacién el empleo de modelos de series de tiem-
po (Bhattacharyya y Ritolia, 2008).

Los modelos més usados para explicar estos casos son los de volatilidad
dindmica, de la forma:
=u +0,Z, oy

"

donde r, es el retorno en el tiempo £, u, es la media esperada para el retorno
en el tiempo ¢, 0, es 1a volatilidad en el tiempo ¢, y Z, es la parte estocastica
del modelo y depende de los residuales (Bhattacharyya y Ritolia, 2008).

I.1.1. Modelos de heteroscedasticidad condicional

Engle (1982) introdujo los primeros modelos sistematicos para la volatili-
dad. El modelo propuesto fue conocido como ARCH(q), el cual se describe a
continuacién:
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r=u, t+E, (2)
£ =10, 3)
q
012 =a,+ Zaigtz—i (4)

Donde r,es el retorno, u, es la media esperada de los retornos, ¢ es el error
de prediccidn, o7 es la varianza condicional en el tiempo ¢, 2, es una va-
riable aleatoria con media cero y varianza unitaria, y finalmente las a’s
son los coeficientes del modelo ARcH(g).

Posteriormente, Bollerslev (1986) amplié estos modelos al afiadir a la
ecuacion de la varianza las estimaciones de la misma en periodos anterio-
res; estos modelos fueron conocidos como modelos autorregresivos genera-
lizados de heteroscedasticidad condicional, el GARCH(p, q):

q p
2 2 2
Gt =a0 + E aiet_l. + E bjat_j (5)
i=1 =1

Donde a,> O,qai = Q, parai=1,..,q,y bj =0paraj=1,..,p. Ademads, se debe
cumplir que Y« + Y b, <1 para que la varianza incondicional de ¢, sea finita.

Si observamos’el modelo carcH(1,1) se puede apreciar que la volatili-
dad en el tiempo t depende de la volatilidad en el tiempo ¢-1, por lo que se
deduce que estos modelos son apropiados para agrupaciones de periodos,
con altas o bajas varianzas.

1.1.1.1. Modelos EGARCH. Los modelos EGARCH fueron introducidos por
Nelson (1991). Bollerslev y Mikkelsen (1996) propusieron la siguiente re-
formulacién:

Ino! =+ |:1—[3(L):|7l [1+a(L)]g(e)
g(gt)= NE+Y, (|8t| —E|€,|)

E| ¢, | depende de las suposiciones hechas sobre la distribucién de ¢,. Para

la distribucién normal
2
E |8r| Y
V b

Para la distribucién #-student tenemos que

2lv=2r((v+1)/2)
Ele| - (v=1)r(v/2)V7
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[.1.1.2. Modelos GJr-GARCH. Estos modelos fueron propuestos por Glosten,
Jagannathan y Runkle (1993). Su version generalizada es la siguiente:

»
lop —a)+2(0¢8 +yl”r) Z o

i=1

Donde S, es una variable dummy que toma el valor de 1si <0y 0si ¢=0.

En estos modelos el impacto de los errores &2 sobre la varianza condi-
cional ¢/ es diferente cuando ¢, es positivo o negativo. Los modelos TARCH
de Zakoian (1994) son muy similares a los modelos GJR-GARCH; la tinica di-
ferencia es que utilizan la desviacion estandar condicional en lugar de la
varianza condicional.

[.1.2. Estimacién en modelos de heteroscedasticidad condicional

La estimacién mas comun se hace por el método de maxima verosimilitud
(Tsay, 2002). En este caso, la funcion de méaxima verosimilitud para un
modelo ARCH(m ) es como sigue:

flemerla)= (& |FL) fer]F) S (800l E)) f e e, ]a) — (6)

T 1 2
[T |55 potenel) v

Dondea = (ay,a,,...,a,,)’ yf (&, ..., &, | @) son la densidad conjunta de &,,..., &,.
Generalmente esta tltima expresién es muy complicada y simplemente se
utiliza la funcion de verosimilitud condicional:

&’ ]
' (8)
t=m+1 \/ 2 O- ( O-tz
El logaritmo de la verosimilitud es:

A8 nE,)= Y, —%ln(2n)—%ln(of)—%(8—’2] 9)

t=m+1 O-t

f(gm+l ""’ST

l(s

ISR

Y finalmente, como 277 no contiene parametros, se tiene que:

&)= —%m(of)—%[%J (10)

t=m+1 t

l(e

mel 20

&r

En algunos casos sucede que z, tiene una distribucion de colas pesadas, tal
como la distribucion ¢ de student o la distribucién de errores generalizada
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(GED por sus siglas en inglés). Para el caso de la distribucién ¢ de student
con v grados de libertad la varianza sera v/ v—2, y para v>2 se tiene que
“s VJV/V——z (Recuérdese que z, tiene distribucién con media cero y varian-
za unitaria.) Por lo tanto, la funcién de densidad de ¢, es:

r((v+1)/2) 2 )2 N
F(V/z)\/(v—2)7£(l v—zj »v>2 (11)

Donde I'(x) es la funcién gamma evaluada en x:

= [ yeray (12)

Si recordamos que ¢, =z, o, se tiene que la funcién de verosimilitud condi-
cional es:

-(v+1)/2
T 1 2 2
Hewmtrl oty TT L2 L{“( 3 } (13)

P F(V/Z)\/(V—Z)n' o, v=-2)o;

Donde v>2, por lo que el logaritmo de la verosimilitud es:

A 1 : 1 5
..,gm)=_2|:";r ln[1+(v—gé)gfj+aln(al )} (14)

l(e

&r

melseees
t=m+l

La ecuacién anterior se aplica cuando los grados de libertad son especifi-
cados, y generalmente se utilizan valores para vde entre 3 y 6 grados (An-
gelidis et al., 2004).
Si se desea estimar conjuntamente los grados con los parametros de los
modelos se utiliza la siguiente log-verosimilitud:
[ (e

£)]a,7.8,, )

males (15)
= (7 =m)[in(r(s-+1)/2)=In(r(2)) =0 5in(r(v=2)r)] -

A )

Adicionalmente se puede utilizar una distribucién mas general de colas
pesadas conocida como la distribucion de errores generalizada (Nelson,
1991), cuya funcién de densidad es:
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) vexp(—0.5|z,//1‘v)

D(z;v)= , v>0 (16)

A" r(v')2

y A es el parametro de qué tan pesada o delgada es la cola; asi:
1

1 2
N F(;) (17)

Noétese que cuando v=2 z, se distribuye normal estandar. Para v<2 esta
distribucion tiene colas mas pesadas que la distribucién normal; por ejem-
plo, si v=1 entonces z, sigue una distribucién doble exponencial, y para
v>2 esta distribucion tiene colas mas delgadas.

La funcion de log-verosimilitud para este caso es:

< v) llg/o,|
l(6m+1,...,£T a,gl,...,em)= ,EI{IH(ZJ_E ui
N1 (18)
—(1+vl)ln(2)—lnr(—j——ln6f}
v) 2

En general, se tiene que la funcién de log-verosimilitud puede escribirse
en términos de la funcién de densidad de z, en la siguiente forma (Angeli-
diset al.,2004):

l(s

48, nE,, ) = i [ln[D(zt;v)]—%an',z} (19)

t=m+1

&r

m+12°°°>
donde D(z;; v) es la funcién de densidad de z,.
1.2. Teoria de valores extremos (EVT)

Una alternativa al uso de los cuantiles de la distribucién de los retornos
para calcular el var, es el uso de la distribucion de los valores extremos de
los retornos para modelar exclusivamente los valores extremos y usar los
cuantiles de esta distribucion para obtener una mejor estimacion del valor
en riesgo. En este contexto, la teoria de los valores extremos juega un rol
importante para encontrar la distribucién de los valores maximos de una
serie de datos (Finkenstadt y Rootzen, 2001).
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1.2.1. Metodologias para encontrar los valores extremos de una serie

El primero es el llamado maximo por bloques, donde se dividen las series
de tiempo en secciones de igual tamario y se escoge el valor mas grande
dentro de cada bloque. La ventaja de este método es que se escogen valo-
res sobre todo el conjunto de datos; sin embargo, se pueden omitir los si-
guientes valores extremos dentro del mismo bloque que posiblemente
sean mayores que el maximo dentro de otro bloque.

1.2.1.1. Mdaximos por bloques. Fisher y Tippet (1928) y méas tarde Gne-
denko (1943) demostraron que las unicas distribuciones limite para mode-
lar los valores extremos son las siguientes:

I) Gumbel: A(x)=exp (—e’x) xXeR (20)
0, x<0
II) Fréchet: @(x)=
) Fréchet (x) exp{—x‘”}, ©>0. >0 (21)

exp(—(—x‘“ )) x<0, a<0
1, x>0

1) Weibull :  w,(x)= { (22)

Donde a> 0 se denomina el parametro de forma para las familias Fréchet
y Weibull. Este grupo de funciones se conoce como las distribuciones del
valor extremo.

En términos précticos, para la estimacion de los méximos en bloques el
método es como sigue: (1) se seleccionan los maximos dentro de cada blo-
que, (2) se elige una distribucién a priori del tipo G (x) anterior, y final-
mente (3) se estiman los parametros por maxima verosimilitud.

Para evitar la seleccién de una funcién a priori se utiliza la expresién
dada por Von Mises (1936) y Jenkinson (1955), conocida como la distribu-
cién generalizada de los valores extremos, GEv (del inglés Generalized Ex-
treme Value distribution):

exp{(—(l + ij)_% )} siE#0

H,(x)=
exp {—e"‘} sié=0

(23)

donde 1 + ex > 0. El parametro & se conoce como el indice de cola y esta
relacionado con la forma de la distribucion. La distribucién Fréchet puede
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obtenerse a partir de la Gev al fijar & = ¢ ~!; para la distribucién Weibull se
tiene que § =— a ! y para la Gumbell & =0.

De lo anterior se observa que es posible realizar la estimacion en la
metodologia de maximos por bloques si se aplica el método de maxima
verosimilitud a la distribucién Gev.

1.2.1.2. El método de picos sobre umbral (pot). E1 método de picos sobre
umbral (POT, por sus siglas en inglés) selecciona los valores mas grandes
que sobrepasan un umbral; asi, la mayor parte de los resultados de este
método se basa en la distribucion de los excesos sobre dicho umbral.

Supéngase que se tiene una variable R con funcién de distribucién F;
la funcién condicional de R, dado que es mayor que un umbral u, se conoce
como la distribucién de los excesos de R, FR’u, y esta dada por:

FR’u(y)=P{R—uSy|R>u} (24)

donde 0 <y = R, -u,y R, corresponde al extremo superior de la variable
aleatoria.

En la bisqueda de la distribucion de los excesos existe el siguiente teo-
rema (Balkema y De Hann, 1974; Pickands, 1975).

Para una gran clase de funciones de distribucién, la distribucién de
los excesos de R, F'y, para valores grandes de u, es aproximadamente
igual a:

1-(1+ S E#0

Fo,(¥)=G(y) ={ (1+65/6) '5 (25)
l—exp(—y/ﬁ) sié=0

donde £eR f=0+ &(u - w). £y fse conocen como los pardmetros de for-

ma y escala,y G ; se conoce como la distribucién generalizada de Pareto

(oDP por sus siglas en inglés) (Pickands, 1975).

Segun el valor del pardmetro £ de la GpD se obtienen tres tipos de fun-
ciones de distribucién. Si £> 0, la GPD es una distribucién de Pareto con
parametros a= 1/ k = /€ para valores y = 0. Para & = 0 la GPD corres-
ponde a una distribucion exponencial con parametro 1/ 8 y y = 0. Final-
mente, si £<0, las GPD toman la forma de una distribucion tipo Pareto II,
la cual esta definida en el rango 0 <y < B/&.

1.2.1.2.1. Métodos para la seleccién del umbral “u”. Un método para estimar el
valor de u consiste en utilizar el valor esperado de los excesos, definido como:
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1 Ni
(@)=, ~7) 26

N, S (26)
Donde 7, 75, 7'z, SOn las N; observaciones mayores que &; U<tq; ¥ 'max
corresponden a la observacion mas grande de la muestra. A partir de ese
estimador de la media de los excesos se analiza la tendencia de la grafica
de las parejas ordenadas (i, é (1)). Si G¢ 4 es una aproximacién valida de
Fy, para un umbral dado u*, el grafico de la media de los excesos debe ser
aproximadamente lineal alrededor de u*, lo cual permite seleccionar in-
tervalos a partir de los cuales seleccionar el umbral u.

1.3. Cdlculo del valor en riesgo mediante el uso de valores extremos

Sea R, una serie de tiempo estrictamente estacionaria que representa las
t
pérdidas de un activo; nétese que la funcién de excesos de pérdida de R, es:

P(R-u<y,R
FR,u(y)=P{R—uSy|R>u}= ( PZtR>yu)>u)= (27)

P(uSRSyHA) FR(y+u)—FR(u)

P(R>u)  1-F,(u)

Sea x =y + u si la distribucién de los maximos de R converge a la distribu-
cion generalizada de los extremos H, (x); entonces, la distribucion de los

[

excesos “y” converge a una distribucién generalizada de Pareto G 4(y) y se
tiene que:

FR,u(x—u)= Géﬂ(x—u).
Al reemplazar este resultado en la ecuacion anterior tenemos:
FR(y"'”)_FR(”) FR(y+u)_FR(M)

1= Fy(u) 1=Fe(u)  (28)
- FR(x) = (I—FR(u))Gw (x—u) +F, (u)

FR,u('x_u)=

—>Gw(x—u)=

Si se conoce la funcién de distribucién Fy, el calculo del var sélo requiere
el calculo de los pardmetros de su distribucién y encontrar el cuantil 1-«
de dicha distribucién. Sin embargo, esta funcion generalmente se desco-
noce, por lo que se utiliza el resultado anterior, donde F, depende de Fy (u)
yde Gg g(x-u).
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Si usamos como estimador de F (z) su funcién de distribucién empiri-
ca, se llega al siguiente resultado (Bystrom-Hans, 2004):

-1/

) Ay 29

FR(x)=1—5[1+§xA”j (29)
n B
Entonces, dada la definicion de valor en riesgo se tiene:
-1/¢

- - 30

FR(VaRa)=a=1—5(1+§M] (30
n

y al despejar para el valor en riesgo tenemos finalmente la expresion si-
guiente:

. ¥
VaRa=u+§ (;“j ~1, 8D
n

donde EER B=0+&(u - M). Aqui Ses el pardmetro de forma y Bel de esca-
la, y se calculan por maxima verosimilitud.!

II. Datos y metodologia
I1.1. Obtencién y preparacién de los datos de estudio

Se obtuvo la serie del indice de precios y cotizaciones de la Bolsa Mexicana
de Valores del periodo comprendido entre el 27 de febrero de 2009 y el 26
de febrero de 2010. Dicho periodo coincidié con la etapa final de la crisis
financiera global de octubre de 2008, durante la cual se vivieron periodos
con mucha volatilidad, y en el que el manejo del riesgo se convirti6 en una
de las principales herramientas para evitar las enormes pérdidas caracte-
risticas de esos periodos.

Para cada uno de los valores de la serie se calcul6 el retorno logaritmico

en la siguiente forma:
P
.

1Recuérdese que los maximos obtenidos por el método de picos sobre umbral a los residua-
les estandarizados del modelo ARMA-GARCH ajustado a los retornos, tienen una distribucion ge-
neralizada de Pareto.
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Donde P, representa el valor del indice en el tiempo £. Conviene aclarar
que la serie de los retornos logaritmicos es aproximadamente igual a la
serie de las ganancias (retorno simple). Finalmente, como debemos obte-
ner la serie de las pérdidas, simplemente cambiamos de signo la serie an-
terior. En la grafica 1 se puede observar el histograma de los retornos lo-
garitmicos de la serie.

Grafica 1. Histograma de los retornos logaritmicos del indice

de precios y cotizaciones (Ipc)
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Fuente: Elaboracién propia con datos de la Bolsa Mexicana de Valores (Bmv).

I1.2. Modelado de la media y la varianza de los residuales

Para modelar la media de los retornos se utilizé un modelo de series tem-
porales, se ajustaron modelos de medias méviles y autorregresivos, y se
escogi6 el modelo que minimizo el criterio de informacién de Akaike y que
cumpli6 con las pruebas de Ljung-Box sobre la no correlacién de los resi-
duales (Tsay, 2002). Simultdneamente se ajusté el modelo GarcH(p,q) con
el menor nimero de parametros y que model6 correctamente las varian-
zas condicionales de los retornos.

Para lo anterior Francq y Zakoian (2004) sugieren minimizar la si-
guiente funcion de Quasi-verosimilitud con respecto a los parametros de
la serie ARMA y GARCH simultaneamente.
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S 1€
l(£m+1,...,£T a,sl,...,em)= D —Eln(o't )_E “ -

t=m+1 o-t

donde {Et 1< < n} y {6‘, 1< < n} son procesos definidos recursivamen-
te por:

P Q
E=8(0)=X-c-Yo(X_ —c)+D 0 (33)
i=1 Jj=l
)4 q
62=62(¢)=a,+Y,ai, +>b67, (34)
i=i Jj=1

Para el caso de este trabajo se utilizé el programa Oxmetrics, el cual calcula
los parametros del modelo ARMA para la media y GARCH para la varianza de
manera simultanea (véase An Introduction to OxMetrics 6 de Doornik, 2009).

II. 3.var mediante modelos GARCH y teoria de valores extremos

Al utilizar inicamente los modelos GArcH para las colas pesadas, tipicas en
los retornos financieros, se pueden subestimar los valores extremos de es-
tas series. Por otro lado, para poder utilizar la teoria de los valores extre-
mos para modelar los méaximos de la serie de los retornos financieros, se
requiere que dicha serie no esté correlacionada, lo cual en la practica gene-
ralmente no sucede.

Los resultados obtenidos en teoria de valores extremos asumen que las
series son independientes e idénticamente distribuidas. Sin embargo, nor-
malmente las distribuciones de los retornos presentan autocorrelaciones;
ante esta situacion, Bhattacharyya y Ritolia (2008) propusieron realizar un
analisis de valores extremos a los residuales estandarizados de una serie
ARIMA-GARCH, y con este resultado calcular el var de los retornos como sigue:

t+lvasz (Z) (35)

Donde var, (2) es el var calculado a los residuales estandarizados del mo-
delo ajustado a los retornos.

VaRa (r;+l) = Mt+l +0

I1.4. Pérdida esperada (Expected Shortfall-ES)

El Expected Shortfall indica cudl es el valor esperado de la pérdida, dado
que esta es superior al var; es una medida desarrollada por Artzner et al.
(1998) definida como:
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ES, = E<r|r > VaRa) (36)
El calculo del £s para una distribucién continua se define como:
1 U
ESa =E(V‘V>VORa)=mv(;[e?%(l")dr (37)

Donde U representa el extremo superior de los retornos,y Fr (¢) y fz ()
corresponden a la funcién de distribucién y de densidad de los retornos,
respectivamente.

Para el caso de un modelo de Valores Extremos (Bhattacharyya y Rito-
lia, 2008), se obtiene que el ES puede estimarse como:

ES, = VaR, . ﬁ+giu
1-¢ 1-¢

Donde E€R B=0+E&u - u). Aqui & es el parametro de forma y Bel de es-
cala de la distribucién generalizada de Pareto.?

(38)

11.5. Ajuste del modelo

I1.5.1.Comparacién histérica o Backtest

Esta prueba se utiliza para probar el ajuste del modelo, asi como para
comparar entre distintos modelos. E1 Backtest asume que el nimero de
fallas o ntimero de datos histéricos que caen fuera de los limites del var
tiene una distribucién binomial con p = 1 — . La prueba se basa en el esta-
distico de Kupiec (Finkenstadt-Rootzen, 2001):

N-Y

p:(l—p) _ (39)
(%) (%)

Donde Y es el niimero de fallas, N el ntimero total de datosyp =1-a(aes
el utilizado para calcular var,).

k=-2In

2Recuérdese que los maximos obtenidos por el método de picos sobre umbral a los residua-
les estandarizados del modelo ARMA-GARCH ajustado a los retornos, tienen una distribucién ge-
neralizada de Pareto.
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El estadistico & es una prueba de razon de verosimilitudes que tiene
una distribucién asintéticamente X3.

Alternativamente se puede obtener la estimacion directa a partir de la
distribucién binomial; se calcula el intervalo de confianza para Y como
(y1,y2), tal que P (Y <y) =P (Y >y,) =1-o’/2=0.025y Y ~BIN (N, p). Aqui
Y es el numero de fallas, N el niimero total de datos y p = 1-«. Si el nime-
ro de fallas Y observado c?e dentro del intervalo anterior, entonces se

acepta que la hipétesis p=1-=1-a y el modelo son adecuados.

III. Resultados y discusion

Es normal que existan correlaciones en las series financieras que pueden
ser modeladas con series temporales. Para el caso del indice de precios y
cotizaciones de la Bolsa Mexicana de Valores esta situacién se verificé al
realizar las pruebas de Ljung-box. De igual manera, al examinar las fun-
ciones de autocorrelacion muestral y autocorrelacion parcial muestral se
observé que es posible ajustar un modelo ARMA a la serie de los retornos
para modelar las correlaciones existentes.

Al realizar el ajuste de varios modelos ARMA a los retornos financieros y
revisar sus correspondientes criterios de informacién de Akaike, se encon-
tré que el modelo ArRMA (3,2) fue el que obtuvo el minimo valor. En este senti-
do, se ajustaron modelos autorregresivos de orden menor o igual a 3 con-
juntamente con modelos de medias méviles de orden menor o igual a 2
para revisar el nimero de fallas en las que dichos modelos incurren.

Al aplicar la prueba de Jarque-Bera a los residuales (Tsay, 2002), para
el caso del modelo ARMA (3,2) se encontré un valor para el estadistico de
30.74, que al ser comparado con una X 2 se obtiene un P-value igual a 2e-7,
por lo que evidentemente se rechaza la hipétesis nula de que los residua-
les siguen una distribucién normal.

Debido a lo anterior, para modelar los residuales se utilizaron los mo-
delos ARrcH (1), GarcH (1,1), EGARCH(1,1) y GJR-GARCH (1,1) con distribucién t-
student. En cada caso se realiz6 un estudio de los valores extremos a los
residuales estudentizados para encontrar las medidas de valor en riesgo
utilizando la metodologia del calculo del var mediante modelos GARCH con
teoria de valores extremos.

Para el caso de los modelos EGaRcH, el modelo ajustado fue:

r. =—=0.00173+013652r,_, +0.632907_, —0.04720r,_, +
+0.04720¢, , +0.68881¢, ,+¢, € =z,0,
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Cuadro 1. Parametros ajustados al modelo ARMA(3,2)-GARcH(1,1)
de la serie del 1rc 2009-2010

Pardmetro Coeficiente Errorestindar  Valordet t-prob
Media(M) -0.00201 0.0007 -2.5224 0.0123
AR(1) 0.49506 0.2003 2.4708 0.0142
AR(2) -0.37671 0.3137 -1.2005 0.2311
AR(@3) -0.01 0.0625 -0.2166 0.8287
MA(1) -0.41193 0.2035 -2.0240 0.0441
MA(2) 0.32608 0.3404 0.95774 0.3392
Media(Alpha 0) 0.0000021412  0.0480 0.00004 0.6561
ARCH(Alphal) 0.041881 0.0400 1.0453 0.2969
GARCH(Betal) 0.946210 0.0537 17.6150 0.0000
Student(Grados)  5.26480 1.9815 2.6570 0.0084

Fuente: Elaboracién propia con datos de la Bolsa Mexicana de Valores (Bmv).

Ino? = 09086707, +0.84406¢ (¢, , )+ g(e,.,)
g(e,.,)=0.03655¢,_, +0.20211[|¢,_|-0.9301668 |
Z,~t — student(5.40807)

Mientras que el modelo GJR-GARCH

r, =—0.00201+0.510907,_, —0.35699r, , —0.01576r, .+
+0.42256¢, ,—031032¢, , + &,

& =20,

Ino’? =0.01315+0.02789S; &, +0.9760507

z,~t — student(5.53559)

Elvar calculado con el modelo EGARCH presenté 12 fallas (recuérdese que
se produce una falla si el valor real del retorno sobrepasa el valor en riesgo
estimado) correspondientes a un p-value de 1 en la prueba de Kupiec, dos
fallas menos que el calculado con los modelos GJR-GARCH y GARCH, en los
cuales el p-value es de 0.5129234. (Recuérdese que la hipotesis nula —el
promedio de fallas es igual a 5 por ciento— en este caso no se rechaza.)
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La medida de comparacion para evaluar cada modelo fue el nimero de
fallas que se obtuvieron, asi como el grado de ajuste de los parametros a
través de sus correspondientes pruebas de ¢.

El modelo RiskMetrics obtenido y ajustado para los retornos fue el
siguiente:

r,=-0.001801+¢,
gt
o’ = 0 948 +0.060;

Los resultados se muestran en la grafica 2, donde se comparan los tres mode-
los ArcH, el modelo RiskMetrics y dos modelos no dindmicos (Bootstrap y Evr).

Grafica 2. Comparacion de las bandas de valor en riesgo de los modelos
ARMA (3,2)-GARCH (1,1)-EVT, ARMA (3,2)-EGARCH (1,1)-EVT, ARMA (3,2)-GJR-
GaRcH (1,1)-EvT, Riskmetrics, Evr y Bootstrap
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Fuente: Elaboracién propia con datos de la Bolsa Mexicana de Valores (8Bmv).
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Grafica 3. Comparacion de la Pérdida Esperada (gs) de los modelos
ARMA (3,2)-GARCH (1,1)-EVT, ARMA (3,2)-EGARCH (1,1)-EVT, ARMA (3,2)-GJR-
GARcH (1,1)-Evt, Riskmetrics, EvT y Bootstrap
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Fuente: Elaboracién propia con datos de la Bolsa Mexicana de Valores (8BMv).

Comparamos los modelos GARCH, GJR-GARCH y EGARCH (con un total de 14
fallas como maximo en el cdlculo del var) con el modelo de RiskMetrics
(que si bien obtuvo un nimero de fallas inferior, sus estimaciones del valor
en riesgo son mas grandes). Al realizar la prueba de ajuste de Kupiec se
encontro que todos los modelos tienen un promedio de fallas de 5 por cien-
to con una confiabilidad de 95 por ciento, lo que indica que el modelo esta
dentro de los limites fijados para la estimacion del valor en riesgo, que en
este caso fue de 5 por ciento. Se encontré también que el var calculado con
valores extremos (0.02253312) fue mas pequefio que el encontrado por el
método de Bootstrap de simulaciones histoéricas (0.02623782). La misma
situacion se verifico con el calculo de la pérdida esperada.
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Respecto al andlisis de la pérdida esperada, observamos resultados si-
milares a los obtenidos por el vag; en este caso el ES 4 sigue siendo menor
para el caso del ARMA (3,2)-GARCH (1,1)-EVT que el obtenido con el modelo
RiskMetrics. La grafica 3 nos muestra la pérdida esperada para la serie
completa del 1pc.

Para el modelado de la volatilidad se probaron los modelos ArcH (1) y
los modelos GarcH (1,1), y se encontré que el valor en riesgo utilizando los
modelos ARCH presenta estimaciones demasiado elevadas y poco conserva-
doras que sobreestiman el valor de la méxima pérdida posible. Por otra
parte, el nimero de fallas en las que incurren es similar al de los modelos
GARCH. Lo anterior puede observarse en la grafica 4, en la que se muestra
el valor del var calculado con diferentes modelos ARMA para la media y con
el modelo ARcH (1) para la volatilidad. Finalmente, debido a lo anterior se
hace evidente la eficiencia de las estimaciones en un modelo GaRrcH, com-
paradas con las de los modelos ARCH.

De manera similar, en la grafica 5 se muestra el valor en riesgo calculado
con diferentes modelos ARMA para la media y con el modelo carcH (1,1) para
la volatilidad. Se observa que el nimero de fallas no disminuye signi-
ficativamente al variar el modelo para la media; sin embargo, al utilizar el
modelo GARCH para la volatilidad disminuye considerablemente la magnitud
de la estimacion del valor en riesgo, aunque el niimero promedio de fallas
se incrementa ligeramente (14 en comparacion con las ocho del modelo ARCH).

Por otra parte, se realizé el calculo del valor en riesgo por el método de
RiskMetrics, con el objetivo de poder tener un punto de referencia y com-
paracion para nuestro modelo ARMA-GARCH-EVT.

Los resultados se muestran en la grafica 2, donde se observa que el
modelo RiskMetrics presenta un total de siete fallas en el cdlculo del vag,
valor muy por debajo del niimero de fallas maximo para considerar ade-
cuado el modelo.

Durante la revisién de los coeficientes del modelo ajustado RiskMe-
trics se observo que, a excepcion de las medias, el resto de los coeficientes
fueron significativamente diferentes de cero, derivado de que la metodolo-
gia recomienda un valor para el coeficiente A de 0.94 para datos diarios.

Se ajusté también el valor en riesgo y la pérdida esperada por el méto-
do de valores extremos y por el método de bootstrap de simulaciones histé-
ricas, con el fin de obtener un comparativo de los métodos dindmicos con-
tra los métodos estaticos. En este caso se observa que tanto el var como el
ES son més pequenos si se calculan por el método de valores extremos que
si se calculan por el de bootstrap.
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Grafica 4. Estimacion del valor en riesgo para diferentes modelos
ARMA en la media y modelos ARCH en la varianza. La linea gris muestra la
estimacion del var y la linea negra el retorno del indice
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Grafica 5. Estimacion del valor en riesgo para diferentes modelos
ARMA en la media y modelos GARCH en la varianza. La linea gris muestra la
estimacion del VaR y la linea negra el retorno del indice
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Cuadro 2. Parametros ajustados al modelo ARMA(1,1)-GARCH(1,1)
de la serie del 1pc 2000-2010

Pardmetro Coeficiente Errorestindar  Valordet t-prob
Media(M) -0.00122 0.00024 -5.043 0.0000
AR(1) -0.33491 0.12740 -2.629 0.0086
MA(1) -0.43004 0.12155 3.538 0.0004
Media(Alpha 0) 0.03741 0.01138 3.286 0.0010
ArcH(Alphal) 0.08558 0.01345 6.362 0.0000
GARCH(Betal) 0.89876 0.01521 59.06 0.0000
Student(Grados) 6.80494 0.89477 7.605 0.0000

Fuente: Elaboracién propia con datos de la Bolsa Mexicana de Valores (Bmv).

Finalmente, se ajusté un modelo para la serie diaria del 1pc correspondien-
te al periodo del 1 de enero de 2000 al 26 de febrero de 2010, con un total
de 2245 observaciones. Se encontré que el mejor modelo ajustado fue un
ARMA(1,1)-GARcH(1,1)-EVT; los parametros ajustados se muestran en el cua-
dro 2. Debido a la cantidad de datos empleados se encontraron problemas
en la estimacién de los modelos asimétricos; sin embargo, dada la simili-
tud en los resultados anteriores entre los modelos ARcH empleados, es sufi-
ciente con ajustar el modelo GARCH y realizar las comparaciones con el
RiskMetrics bajo distintas condiciones de mercado.

Al analizar el estadistico de Kupiec para probar el ajuste de los modelos
se encontré que ambos ajustaron correctamente un valor en riesgo al 95 por
ciento, con 145 fallas para el modelo RiskMetrics (p-value 0.1118) contra
137 fallas del modelo ARMA(1,1)-GARCH(1,1)-EVT (p-value 0.3758). En la grafi-
ca 6 también se puede observar el periodo de la crisis mundial de 2008,
donde se nota un incremento de la volatilidad del indice; ademaés se observa
un buen desempeno en el ajuste del var, debido principalmente a que am-
bos modelos incluyen en sus ecuaciones las volatilidades pasadas. Esta pro-
piedad de los modelos GARCH se adapta particularmente bien a las condi-
ciones reales del mercado, donde a periodos de inestabilidad le siguen
periodos de inestabilidad, y a periodos de calma le siguen periodos de calma.

En las gréficas 6 y 7 se puede observar claramente la superioridad de
los métodos dinamicos en el cdlculo de las medidas de riesgo con respecto
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Grafica 6. Comparacién de las bandas de valor en riesgo del 1pc
2000-2010 de un modelo ArRMA (1,1)-GARcH (1,1)-EvT, Riskmetrics,
EVT y Bootstrap
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Grafica 7. Comparacion de las bandas de 1a Pérdida Esperada del 1pc
2000-2010 de un modelo ARMA (1,1)-GARcH (1,1)-EvT, Riskmetrics, EvT y
Bootstrap
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a los métodos estaticos. Y dentro de los métodos dinamicos se muestra la
ventaja del modelo propuesto, donde las estimaciones son mas pequerias
que en el RiskMetrics (con el mismo nivel de confiabilidad en la prueba
del ajuste de fallas de Kupiec, « =0.05).

De manera similar se calculé la pérdida esperada para la serie del 1pc
2000-2010; los resultados se muestran en la grafica 7. Se puede observar
que los resultados son similares en ambos casos, con ciertas regiones
donde la pérdida esperada del modelo ARMA-GARCH se encuentra por debajo
del modelo RiskMetrics. En la misma grafica se puede observar, al igual
que en el caso del var, un adecuado desemperio del ES durante el periodo
de la crisis econémica de 2008, propiciado en gran parte por la propiedad
de los modelos GarcH de actualizar la varianza presente con base en las
anteriores.

IV. Conclusiones

El nimero de fallas obtenidas con la metodologia RiskMetrics fue menor
en comparacién con los modelos GARCH, GJR-GARCH y EGARCH; sin embargo,
se observo que sus estimaciones en general son mas grandes que las de
este ultimo. Del analisis de los datos se observé que ambos métodos son
muy similares, ya que la diferencia en el nimero de fallas de ambos mode-
los no fue significativa, es decir, de las 250 observaciones probadas se en-
contré un promedio de 12 fallas, lo cual es un valor aceptable.

Por otra parte, ya que el modelo RiskMetrics es un caso particular de
los modelos GARCH, presento ciertas limitaciones en su uso, en particular si
la serie de los retornos estaba correlacionada.

El uso de los modelos ARMA mejord el pronéstico del var con respecto al
RiskMetrics debido principalmente a que el prondstico de la media se in-
cluye en el cdlculo del var. Por otra parte se eliminan las correlaciones de
los residuales, generando asi las condiciones necesarias para el andlisis de
los valores extremos.

Como se observo en el presente articulo, al variar el tamano de la serie
de datos generalmente se cambia el modelo ARMA de la serie, por lo que se
recomienda usar una cantidad de datos que represente de forma conser-
vadora la tendencia de la serie. Conforme se emplean series con datos mas
antiguos, el modelo podria sesgarse y no representar la tendencia actual
de la serie.

Al comparar los modelos asimétricos GARCH y ARCH se observo que GARCH
tuvo las estimaciones méds precisas respecto a ARCH. GARCH indica que la



economia mexicana NUEVA EP0CA, vol. XXII, ndm. 1, primer semestre de 2013 203

maxima pérdida del indice de precios y cotizaciones es ligeramente supe-
rior a 5 por ciento, en contraste con el modelo ARCH que presenta una pér-
dida maxima del indice de precios y cotizaciones de cerca de 10 por ciento.
Se encontré también, con base en la prueba de Kupiec, que ambos modelos
no violaron el var ajustado en mas de 5 por ciento del total de las observa-
ciones (P-value de 0.51).

Por otra parte, se observo que a inicios del periodo estudiado se presen-
t6 una considerable volatilidad, la cual coincide con la parte final de la
crisis de octubre de 2008. Para el caso de los modelos, en este periodo de
tiempo se encontré que RiskMetrics presenté mas fallas en comparacién
con GARCH, GJR-GARCH Y EGARCH. Por otra parte, en los periodos de poca vola-
tilidad se observé que estos modelos presentaron estimaciones mas preci-
sas que RiskMetrics, como se observa en el periodo de julio 2009 a febrero
2010.

Finalmente, se concluye que la metodologia del calculo del valor en
riesgo mediante modelos de heteroscedasticidad condicional con teoria de
valores extremos presenté mejor desempefio comparada con la metodolo-
gia RiskMetrics.

Con respecto a las medidas de riesgo obtenidas por EvT y Bootstrap, se
observa que se obtuvieron mejores resultados con el primer método (EvT),
y, al ser estos métodos estaticos, se encontré un desempefio relativamente
pobre en comparacién con los métodos dindmicos, sobre todo en periodos
de inestabilidad econémica.

Se propone que el modelo ARMA-(GARCH-EGARCH-GJR-GARCH)-EVT para esti-
mar el valor en riesgo se implemente para (1) informar a los analistas fi-
nancieros y a las empresas sobre el riesgo presente en las operaciones fi-
nancieras que realizan, y (2) fijar posiciones limite para corredores y casas
de bolsa, ya que el valor en riesgo funciona como punto de referencia de
diversos instrumentos financieros.
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