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Resumen: Este art́ıculo aborda la falta de información oportuna sobre la po-

breza multidimensional en México. Tres algoritmos de aprendizaje

de máquinala regresión LASSO loǵıstica, el bosque aleatorio y las

máquinas de vectores de soporteson entrenados con la ENIGH para

encontrar patrones generalizables de pobreza multidimensional en los

datos. Los modelos se utilizan para clasificar a cada individuo en la

ENOE como pobre o no-pobre para obtener tasas de pobreza trimes-

trales. Estas estimaciones son más cercanas a los niveles de pobreza

multidimensional que la pobreza laboral y brindan una perspectivapre-

cisa sobre la pobreza con más de un año de antelación a la medición

oficial.

Abstract: This article addresses the lack of timely information about multidi-

mensional poverty in Mexico. Three machine learning algorithmsthe

LASSO logistic regression, random forest, and support vector machi-

nesare trained with the ENIGH to find generalizable patterns of mul-

tidimensional poverty in the raw data. The fitted models are used to

classify each individual in the ENOE as poor or non-poor to obtain

aggregated poverty rates on a quarterly basis. These estimates are

closer to the official levels of multidimensional poverty than the labor

poverty measurement and provide an accurate poverty outlook more

than a year ahead of the official measure.
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1. Introduction

Measuring poverty is crucial to developing countries and to interna-
tional organizations such as the World Bank, the OECD, and the IDB.
These organizations have emphasized that the proper measurement
of poverty is as important as fighting it, mainly because addressing
poverty is not only about designing public policy, but also about ac-
curately assessing its performance to examine its determinants, make
budgetary decisions, and study its behavior during economic crises.
Poverty measurement helps developing countries to gauge program
effectiveness and guide development strategy in a rapidly changing
economic environment (World Bank, 2015).

Mexico lacks high-frequency information about multidimensional
poverty because of the biennial periodicity of the official measure-
ment, which has been provided since 2008 by the National Council
for the Evaluation of Social Development Policy (Consejo Nacional
de Evaluacion de la Politica de Desarrollo Social, CONEVAL), based
on the National Survey of Household Income and Expenditure (En-
cuesta Nacional de Ingresos y Gastos de los Hogares, ENIGH) and its
Socioeconomic Conditions Module (Módulo de Condiciones Socioe-
conómicas, MCS).1 CONEVAL also publishes a quarterly rate of labor
poverty, estimated for the Index of Labor Poverty Trends (Índice de
la Tendencia Laboral de la Pobreza, ITLP), which is based on the Na-
tional Occupation and Employment Survey (Encuesta Nacional de
Ocupación y Empleo, ENOE). However, CONEVAL clarifies that this es-
timation is not an official measure of poverty, and it does not reliably
estimate multidimensional poverty on a quarterly basis. In particu-
lar, CONEVAL (2010) specifies that a person is poor according to the
ITLP if their monthly per capita labor income is below the quarterly
average of the minimum welfare line (mwl), whereas multidimensional
poverty is based on the welfare line (which is greater than the mwl)
and per capita total income (which is greater than or equal to per
capita labor income). The measures cannot be directly compared,
since a person identified as multidimensionally poor might have a la-
bor income just above the mwl, but a person in labor poverty may

1 Following enactment of Article 36 of the General Law of Social Development

(Cámara de Diputados, 2004), CONEVAL developed the official Methodology for

Multidimensional Poverty Measurement in Mexico (CONEVAL, 2014), which de-

fines a person as multidimensionally poor if their total income is below the welfare

line and they experience at least one of the following six social deficiencies: educa-

tional lag, lack of access to health care , lack of access to social security, inadequate

housing, lack of basic household services, or inadequate nutrition.
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not have a deficiency in other social dimensions or might have other
income sources that boost their total income above the welfare line.2

Figure 1 shows how labor poverty based on the ITLP has permanently
underestimated the multidimensional poverty rate since 2008.

Figure 1
National labor poverty and official multidimensional poverty

Source: CONEVAL poverty estimates from the first quarter of 2008 to the last

quarter of 2019 (CONEVAL, 2019, 2020).

This paper addresses the question of whether innovative, effi-
cient, and low-cost statistical models could be applied to develop a
high-frequency poverty measurement that correctly reflects the dy-
namics of the official multidimensional measurement in Mexico. It
takes advantage of recent advancements in machine learning (ML)
techniques to explore the performance and predictive power of three
different classification algorithms: the LASSO logistic regression (LASSO),
the random forest (RF) method, and support vector machines (SVM).3

2 The minimum welfare line is equivalent to the real total value of the basic

food basket per person per month, while the welfare line is equal to that amount

plus the basic non-food basket.
3 There is an extensive literature assessing predictive improvements in ML

techniques in various areas of research. For instance, in health care, Cruz and

Wishart (2006) find that ML algorithms increase accuracy in predicting suscepti-

bility to cancer from 15% to 25%, in addition to providing a better understanding
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The empirical strategy lies in identifying similar variables for multi-
dimensional poverty detection in the MCS-ENIGH and the ENOE, and
training LASSO, RF, and SVM to find generalizable poverty patterns
in the raw data. These fitted models are then used to classify each
individual in the ENOE as poor or non-poor to obtain an aggregated
national poverty rate on a quarterly basis.

ML models generated with the 2008 MCS-ENIGH (training data)
are used to estimate multidimensional poverty in the ENOE (prediction
data) from the first quarter of 2008 through the last quarter avail-
able before publication of the 2010 multidimensional poverty measure.
Similarly, models fitted with 2010 training data are used to predict
the poverty in ENOE observations from the first quarter of 2010 to the
last available quarter before publication of the 2012 multidimensional
poverty rate, and so on. With this approach, each algorithm trained
in year provides ex-post and ex-ante estimates depending on their
publication date. The former corresponds to quarterly estimates dur-
ing , i.e., those within the same biennial window as the training data.
The latter are those from through the next CONEVAL announcement,
which can be seen as predictions for the subsequent multidimensional
poverty measure. Finally, these ML estimates are compared with a
logistic regression (logit) model to assess their performance relative
to a traditional approach.

The main results with the ML algorithms show estimates of poverty
that are closer to the multidimensional poverty rate than labor poverty
based on the ITLP, and they reveal dynamics that would not be seen
using current measures. For instance, using ML ex-ante estimates to
explore poverty dynamics during the COVID-19 pandemic, there is an
increase from 3.8 to 6.4 pp in the third quarter of 2020, almost twice
as much as the estimated jump during the 2008-2009 world financial
crisis. However, in the fourth quarter, there is a decrease of 2.7 pp,
revealing a speedy partial recovery in late 2020. These ex-ante esti-
mates give an accurate poverty outlook more than a year ahead of
the CONEVAL biennial poverty measure. The RF ex-ante and ex-post
estimates are the most consistent overall, with an average gap of 0.5

of cancer development and progression. Guo et al. (2001) show that SVM had

lower error rates in two facial recognition experiments (3.0% and 8.8%, respec-

tively) than standard techniques. Kleinberg et al. (2018) describe large potential

advantages in the New York City criminal justice system through use of an ML

algorithmic rule, which could reduce crime up to 24.7% at the same rate of impris-

onment imposed by judges, or reduce imprisonment rates up to 41.9%, without

any increase in crime.
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pp. Comparing out-of-sample performance, the logit model has the
highest cross-validation error rate (an average of 14.6%), while RF

is the best of the algorithms, with a mean error rate of 5.2%. RF

outperforms logit, LASSO, and SVM in accuracy, recall, specificity, pre-
cision, negative predictive value, F1 score, and metrics throughout
the years analyzed, suggesting that this method can potentially con-
tribute to the development of a high-frequency poverty measure for
Mexico. The RF results show that the most important variables for
multidimensional poverty prediction are the indicator variable of per
capita real labor income below the minimum welfare line, household
real labor income, household size, state of residence, and the binary
variables for rural vs. urban localities and social security affiliation.

Previous studies employing similar methods analyze poverty solely
in its monetary dimension and are focused on out-of-sample per-
formance evaluation. Using data from Albania, Ethiopia, Malawi,
Rwanda, Tanzania, and Uganda, Sohnesen and Stender (2016) com-
pare RF out-of-sample performance against the usual poverty predic-
tion methods, and find the lowest average MSE at the national level
(1.71%) and at urban-rural levels (2.58%). However, they note that
none of the methods is consistently accurate enough to predict poverty
over time. Thoplan (2014) uses the 2000 census of Mauritius to train
RF for income poverty classification and finds an error rate between
15% and 20%. In contrast to the results for Mexico, he finds that
the number of hours worked, age, education, and gender are the most
important variables for predicting poverty in that country. McBride
and Nichols (2018) present evidence that ML ensemble methods can
improve out-of-sample poverty detection by 2.43% for East Timor
and 2.06% for Malawi over traditional proxy means tests (PMT).4

Data regarding such methods in Mexico is limited. Babenko et
al. (2017) develop an income poverty map for Mexico based on an ML
algorithm trained with Planet and DigitalGlobe imagery and the 2014
MCS-ENIGH. According to their estimates, most of the poverty rates
of central and southern municipalities range between 48% and 70%,
while in the northern region, there are more municipalities with rates
between 20% and 30%. Satellite images, however, do not present

4 One example of international interest in innovative approaches to machine

learning and poverty targeting was a global data science competition, hosted

by Driven Data and the World Bank at the beginning of 2018, called “Pover-T

Tests: Predicting Poverty”, to develop ML models for the prediction of household

poverty. See https://www.drivendata.org/competitions/50/worldbank-poverty-

prediction/page/99/.
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enough variation from one quarter to another to develop a high-
frequency measure. More recently, the EQUIDE Institute published
a report outlining the economic impact of the COVID-19 pandemic in
Mexico, based on its ENCOVID-19 survey. Their simulations suggest
that poverty increased to 52% in May 2020, 10 pp above the official
2018 CONEVAL level, and that it rose to 54% in March 2021 (EQUIDE,
2021). The present study differs from these approaches in three key
aspects: the source of information, the core methodology, and the
scope of the analysis. It contributes to the growing literature on ML

applications in economics by implementing novel algorithms in mul-
tidimensional poverty classification tasks in order to provide timely
estimates for anti-poverty policymaking.

The structure of the paper is as follows. Section 2 presents a brief
description of the ML algorithms. Section 3 describes the training
and prediction data and the selected variables. Section 4 presents the
optimal models, an overview of the impact of the pandemic, and a
comparative performance assessment of the algorithms. Concluding
remarks are offered in section 5. The appendix provides descriptive
statistics, metrics, and ML poverty estimates.

2. Machine learning classification algorithms

The challenge of developing a high-frequency poverty measurement
for Mexico can be addressed using the supervised ML subfield, and in
particular its classification algorithms. This approach seeks the rela-
tionship between the objective variable Y and its observable charac-
teristics X1, ..., XP in order to find generalizable patterns and accu-
rately predict future observations. Unlike standard methods that aim
to make a good estimate of some parameter β with certain properties
based on a functional form between Y and X1, ..., XP ML classification

algorithms focus on the exact estimation of the objective variable (Ŷ ).
In a word, supervised ML belongs in the part of the toolbox marked

as Ŷ rather than in the more familiar β̂ compartment (Mullainathan
and Spiess, 2017).

This section presents three popular algorithms in the ML litera-
ture: the LASSO logistic regression, the random forest method, and
support vector machines, and it briefly describes their details, inter-
pretability, and tuning parameters. This description follows James et
al. (2013), Hastie et al. (2009), and Lantz (2015).
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2.1 The LASSO logistic regression model

The least absolute shrinkage and selection operator, better known
by its acronym LASSO, was designed for linear regression models,
but its concept of shrinkage has been generalized to classification
tasks through a combined framework with logistic regression that
also performs variable selection. Formally speaking, consider a la-
beled dataset {(x1, y1), .., (xn, yn)}, where xT

i = (xi1, ..., xip) is the
vector of the ith individual’s features (also called predictors), and yi

is its corresponding label. We will assume that the objective (or re-
sponse) variable Y is categorical and can take only two possible values
(or classes), for instance, yi= 1 if the ith individual is poor and yi= 0
otherwise.5

The coefficients for the LASSO logistic regression are then ob-
tained by solving the following penalized log-likelihood problem:

Min
β,β0

−

{

1

n

n
∑

i=1

yi(x
T
i β + β0) − log(1 + exp(xT

i β + β0))

}

+ λ

p
∑

i=1

|βi|

(1)

where the non-negative tuning parameter λ is chosen via cross-
validation. The fitted probabilities P̂ (Y = 1|X = xi) are then com-
puted with the estimated coefficients and the logistic transformation
as in a logit model, and a simple classifier can be set according to the
maximum probability criterion, that is, by assigning an observation

xi to the kth class if P̂ (Y = k|X = xi) ≥ P̂ (Y = k′|X = xi) for
k 6= k′ ∈ {0, 1}.

Note that in expression (1), λ controls the penalty in the opti-
mization problem, and when it is equal to zero, the result gives the
usual logit fit. This model has also the advantage of shrinking some
coefficient estimates to zero, yielding a parsimonious model that is
easier to interpret. Unlike traditional LASSO, its predicted probabil-
ities do not fall outside the unit interval, which makes it a useful
method for classification.

5 See Friedman et al. (2010) for a more general version of the model consid-

ering K > 2 different classes.
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2.2 Random forest

The RF method is a well-known tree-based approach that aggregates
a collection of classification trees to provide an accurate prediction
for a new observation.6 Each tree T (x; θ) in the forest segments the
predictor space X1, ..., XP into J mutually disjoint regions (or nodes)
R1, ..., RJ and classifies new observations according to the most fre-
quent class kj into the region in which they belong.7 Importantly,
every region Rj depends on the minimum number of observations in
each terminal node nmin or leaf), which is usually determined via
cross-validation. Figure 2 depicts a classification tree with five termi-
nal nodes in a three-dimensional feature space, and a binary response.
Note that two advantages of classification trees are their graphic inter-
pretability, which makes them easy to explain and understand com-
pared to other black-box algorithms, and their good performance with
highly non-linear decision boundaries. However, the method is very
sensitive, since a small change in the training data can produce sig-
nificant changes in the final tree. In other words, classification trees
suffer from high variance.

Fortunately, this problem can be addressed by including a large
number of trees in a single model. The RF classifier takes this idea and
develops a powerful prediction algorithm with lower variance, in which
similar training data yields almost identical results. Intuitively speak-
ing, the RF iterative algorithm decorrelates its classification trees in
two main steps. First, it draws different bootstrap samples from the
training data to grow each tree, and second, it considers only a subset
of variables to optimally split the final nodes.

We thus obtain a collection of decorrelated classification trees
{T (x; θb)}

B
b=1, best known as a RF, which takes the majority vote of

its trees as the class prediction for a new observation x.8 There is
a trade-off between RF’s variance and its interpretability: a decrease
in variance is gained at the expense of an intuitive graphical repre-
sentation of classification trees. The method has three main tuning

6 For further details, see Breiman (2001), the seminal work on the random

forest method.
7 A classification tree can be expressed as T (x; θ) =

∑J

j=1 kjI(x ∈ Rj),

where θ = {Rj, kj}
J

j=1 is the parameter that gathers all the relevant informa-

tion of the process of building the tree.
8 A different threshold can be set instead of the majority vote, depending on

the type of misclassification to be minimized.
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parameters: the number of trees in the forest B, the number of vari-
ables considered at each split m, and the minimum node size on every
leaf nmin. In practice, we use a value of B sufficiently large such that
the error settles down (B ≥ 500 is generally sufficient), and the trees
are grown deep (generally with nmin = 1; James et al., 2013). The
tuning process is therefore centered around the parameter m, which
controls the similarity among trees and prevents them from being
highly correlated, resulting in a more reliable classifier.

Figure 2
Example of a classification tree T (x; θ) diagram

Note: In this case the tree has three predictors, X1, X2, X3, two possible

classes, k ∈ {1, 0}, and a partition of five regions {R1, ..., R5}.

The RF building process allows for simultaneous estimation of the
error rate without the need to perform an extra validation process.
Approximately one-third of the observations are left out in every boot-
strap iteration; for every observation xi it is thus possible to predict
a response ŷi using the majority vote of trees which did not include
that observation in their training data. Then, the estimated misclas-
sification rate, known as the out-of-bag error rate, would be given by
ER = 1

n

∑n

i=1 I(yi 6= ŷi). In addition, the RF method quantifies im-
portance of variable to the predictive power of the model using two
different measures: the mean decrease in accuracy (MDA), and the
mean decrease in Gini index (MDGI). The former results from averag-
ing, for all B trees, the total decrease in accuracy due to a random
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permutation of the values of a given feature on the omitted observa-
tions in the corresponding trees, while MDGI is the average, for all B
trees, of the total reduction in the Gini index over all splits of a given
predictor.

2.3 Support vector machines

Another supervised learning method is support vector machines (SVM),
whose main idea relies on establishing non-linear decision boundaries
in the original feature space X1, ..., XP through linear boundaries in
a transformed and augmented space.9 Like RF, SVM is considered a
“black-box” algorithm because of its complex internal process. The
SVM classifier exploits the idea of the natural separation produced
by a hyperplane H (β, β0) =

{

x ∈ p : xT β + β0 = 0
}

, where new
observations are classified according to the side on which they fall.

More specifically, a kernel function K : p× p → + is chosen
to characterize the transformation h = (h1, ..., hm) : p → m that
will expand the original p-feature space into a higher-dimensional one
(m ≥ p), where K and h are related by K (x, x′) = h(x)T h(x), ∀x, x′ ∈

p.10 After obtaining the basis functions hj , j = 1, ..., m, SVM finds
the optimal hyperplane using the transformed observations as train-
ing data: {(h(x1), y1), .., (h(xn), yn)}. An important characteristic
of this method is that it depends only on those observations that
are closest to the hyperplane and lie exactly on its margin; these are
known as support vectors. Figure 3 shows an example of linearly
separable training data in a transformed bidimensional feature space,
and its corresponding optimal hyperplane and support vectors.

Note that, depending on the kernel used, there might be differ-
ent support vector machines even with the same data. Table 1 shows
some kernels popular in the ML literature. As expected, the radial ba-
sis and dth-degree polynomial kernels result in more flexible decision
boundaries than the linear kernel. In addition, SVM has a cost param-
eter C, which controls the smoothness of the hyperplane boundary,
and together with the kernel’s parameters is selected through cross-
validation using a tuning grid.

9 Additional details about SVM can be found in the influential work of Cortes

and Vapnik (1995).
10 Kernel functions, rather than other transformations, are used to define the

basis function h owing to computational issues.

ℝ

ℝ ℝℝ
ℝ ℝ

ℝ
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Figure 3
Optimal hyperplane and support vectors

Note: Linearly separable training data, in a transformed bidimensional space.

Source: Lantz (2015).

Table 1
Kernel functions and tuning parameters

Kernel K (x, x′) Parameters

Linear xT x′
None

dth-degree polynomial
(

γxT x′ + r
)d

d ∈ +, r, γ > 0

Radial basis exp
(

−γ x − x′ 2
)

γ > 0

Source: Hastie et al. (2009).

Nonetheless, SVM suffers from a major drawback: it can be very
slow to train, particularly if the input dataset has a large number
of features or observations (Lantz, 2015). Steinwart and Thomann
(2017) suggest an alternative approach, in which the feature space
is split into spatial cells where local SVMs with the same kernel are
trained, thus considerably decreasing runtime with large samples.
Furthermore, cross-validation is performed on every cell, resulting
in the same number of optimal tuning parameters as cells. Then, to
classify a new observation x, the SVM of the cell to which x belongs
is used. According to the authors, the solution of the cell approach
is similar to that of SVM.

ℤ
|| ||
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3. Data

A natural choice for the labeled dataset, or training data, described
in the previous section is the MCS-ENIGH (Socioeconomic Conditions
Module of the National Survey of Household Income and Expen-
ditures), in which CONEVAL identifies and labels multidimensional
poverty at the individual level, according to its official methodology.
Biennial survey data from 2008 to 2018 is used to build six training
datasets, one for each MCS-ENIGH, resulting in six biennial windows
to classify new observations.11 It should be noted that since 2015,
there have been methodological changes in the MCS that do not al-
low historical comparison with its previous versions.12 For 2016 and
2018, data is therefore taken from the Statistical Model for the Con-
tinuity of Socioeconomic Conditions Module (MEC) of the MCS-ENIGH,
provided by the National Institute of Statistics and Geography (In-
stituto Nacional de Geograf́ıa y Estad́ıstica, INEGI).

In order to obtain a higher-frequency poverty measure, the fitted
models are applied to ENOE observations, the prediction data, corre-
sponding to all quarters from 2008 to 2019. The publication history
of the CONEVAL multidimensional poverty figures and the last quarter
of the ENOE available at that time are used to delimit the prediction
periods of each model depending on their training year, as shown in
table 2. Thus, for instance, models trained on the 2008 MCS-ENIGH

are used to predict the poverty status of all ENOE observations from
the first quarter of 2008 until the last quarter available before the
publication date of the 2010 multidimensional poverty measure, i.e.,
from ENOE 2008 QI to ENOE 2011 QI. In a similar way, models fitted
with the 2010 training data predict the poverty status of all ENOE ob-
servations from the first quarter of 2010 to the last available quarter
before the 2012 multidimensional poverty measurement is released,
i.e., from 2010 QI to 2013 QI, and so on. Note that in this approach,

11 The strategy of using biennial classification windows hinges on the assump-

tion that the economic environment does not vary substantially in the short to

medium term, so it is valid to predict the poverty status of an individual in all

quarters of years t and t + 1 with an algorithm trained in year t. A better ap-

proach would be to model and predict only within the same year, as suggested

by Sohnesen and Stender (2016). However, given the publication frequency of the

MCS-ENIGH, this approach is not feasible.
12 One of the main changes was in the interviewers’ method of collecting data

on family income. See INEGI Press Release No. 286/16 for more details of the

methodological changes in the 2015 MCS.



QUARTERLY MULTIDIMENSIONAL https://doi.org/10.24201/ee.v38i1.435 15

prediction periods are wider than biennial spans, which in turn yields
intersections between consecutive periods. For an algorithm trained
in year t, it is then convenient to define its ex-post estimates as its
poverty predictions over quarters inside the biennial window [t, t+1],
while ex-ante estimates are defined as those outside this window. The
latter are updated with their corresponding ex-post estimates, made
by the same algorithm but trained with data from year t + 2, when
CONEVAL releases its next multidimensional poverty measure.

Table 2
Publication dates of poverty measures and latest ENOE

2008 2010 2012 2014 2016 2018

Multidimensional Dec. 2009 Jul. 2011 Jul. 2013 Jul. 2015 Aug. 2017 Aug. 2019

poverty

Latest ENOE 2009 QIII 2011 QI 2013 QI 2015 QI 2017 QII 2019 QI

Note: “Latest ENOE” shows the last quarter of the survey that was available

at the time each multidimensional poverty measure was published.

Source: CONEVAL and INEGI.

Because these surveys are designed for different purposes, they
have many variables that are not compatible. The first step is thus
to find comparable questions and variables that will have the same
features in both the training and prediction datasets.

3.1 Selected variables

Comparable features of the MCS-ENIGH and the ENOE are divided into
four sets of variables. The first is the sociodemographic set, which
consists of state of residence, binary variables for rural/urban and
gender, and continuous variables for age and household size. The sec-
ond is the set of economic characteristics, which includes a categor-
ical variable for individual economic status, continuous variables for
household hours of work per week and real labor income per month,
and an indicator variable that equals one if household per capita real
labor income is below the minimum welfare line (mwl), and zero oth-
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erwise.13 The third set consists of educational variables, formed by
an indicator variable for not in school, a categorical variable for edu-
cational level, and an indicator variable for educational lag. Finally,
there is a set of binary variables for access to public health care (In-
stituto Mexicano del Seguro Social, IMSS; and Instituto de Seguridad
y Servicios Sociales de los Trabajadores del Estado, ISSSTE).

Table 3
Selected and input variables between training and prediction data

Description Name MCS-ENIGH ENOE

Sociodemographic features

State state ent ent

Dummy for rural localities rururb rururb rururb

Gender gender sexo sex

Age age edad eda

Household size hsize built built

Economic status

Economically active population eap pea clase1/clase2

Household hours worked per week hhwork htrab hrsocup

Household labor income per month lab inc ing lab p6b2/p6c

Households with per capita labor pob ing lab p6b2/p6c

income less than the mwl

Education

Not in school no school inas esc cs p17

Educational level ed lev niv ed cs p13 1

Educational lag ed back ic rezedu cs p17/cs p13 1

cs p13 2/cs p15

13 MCS-ENIGH income uses the CONEVAL deflation process in the computa-

tion of multidimensional poverty, whereas ENOE income uses the National Con-

sumer Price Index (INPC) for August of each year of the ENIGH. That is, the

ENOE income in the first prediction period [2008 QI, 2011 QI], which is linked to

the 2008 training data, is thus deflated by the INPC for August 2008. Income in

the second span [2010 QI, 2013 QI], which is linked to the 2010 training data, is

deflated by the INPC for August 2010, and so on.

_ _ _

_

_

_

_

_

_

_

_

_

_

_

_

_

_ _
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Table 3
(Continued)

Description Name MCS-ENIGH ENOE

Health care

IMSS affiliation imss serv sal imssissste

ISSSTE affiliation issste serv sal imssissste

No health insurance no hserv serv sal imssissste

Note: The third and fourth columns show the names of the input variables

as they appear in the original surveys.

Source: Author’s elaboration using documentation from MCS-ENIGH and

ENOE.

Table 3 summarizes these predictors and shows the input vari-
ables from MCS-ENIGH and ENOE that are used to create them. The
ENOE input variables are taken directly from INEGI releases, while the
MCS-ENIGH input variables, with the exception of household size and
hours worked per week, are constructed following the official CONEVAL

methodology for the multidimensional poverty measurement.14 Al-
though the number of predictors is relatively small, it is worth noting
that they not only describe the dimension of household income, but
also individual educational trajectory (especially educational lag) and
household access to health care. The collected predictors consider
three out of nine of the dimensions established in the General Law
of Social Development for multidimensional poverty to expand the
one-dimensional approach used to identify labor poverty. The objec-
tive variable for poverty is constructed in the same way as in CONEVAL

(2014) and included in the training data. This variable identifies poor
and non-poor individuals according to the multidimensional poverty
measurement methodology, and is the dependent variable in the pre-
diction data since it is not possible to obtain it deterministically from
the ENOE.

3.2 Training and prediction data

Some ML algorithms display high variance: their output may vary
widely with small changes in the training data. They may produce

14 CONEVAL’s computation programs are available at: https://www.coneval.o

rg.mx/Medicion/MP/Paginas/Programas BD 08 10 12 14 16 18.aspx.

_

_

_

_
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unexpected estimates if the distribution of characteristics differs sub-
stantially from one survey to the other. It is thus important to iden-
tify similarities and differences in the proportions and dynamics of
the series in both training and prediction data.

Figure 4
Average labor income of Mexican households

Note: 95% confidence intervals are depicted with dotted lines.

Source: Author’s calculations using deflated income data from MCS-ENIGH and

ENOE, from 2008 to 2019, without expansion factors.

Descriptive statistics for both data sources are shown in Ap-
pendix A.15 Tables A.1 and A.3 to A.8 show descriptive statistics
for the household-level variables from training and prediction data.
Mean household size and average hours worked per week have re-
mained relatively stable over time, but only household size is com-
parable between surveys; households in the prediction data work an
average of eleven hours less per week than those in the training data.
Mean labor income is also not comparable between datasets (and thus
the proportion of households with per capita labor income below the
minimum welfare line is also not comparable). Figure 4 shows the
contrast between average real labor income of Mexican households in
training and prediction data over time; the income in the training

15 Means and standard deviations are computed without using population ex-

pansion factors, in order to compare the raw data.
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data is always higher. The confidence intervals suggest the existence
of statistically significant differences between the biennial means, al-
though they exhibit similarly increasing behavior since 2010. Table
A.15 summarizes the t-test results for this variable, where the null
hypothesis of mean equal income between surveys within their cor-
responding biennial window (from 2008 to 2009, from 2010 to 2011,
etc.) is rejected at all significance levels, meaning that the predictions
with ML algorithms will be affected to some extent by the income pat-
terns of the training data. Additionally, the methodological changes
inherited by the 2016 MEC bring about a noteworthy increase in la-
bor income dispersion over previous years, mainly due to the attempt
by INEGI to improve its household income data by means of stricter
capture and verification field criteria; these changes affect the income
distribution in the 2016 training data. This pattern is not displayed
in the 2018 MEC.

Similarly, tables A.2 and A.9 to A.14 show individual-level de-
scriptive statistics from the training and prediction data. It can be
seen that most variables display steady behavior that does not differ
substantially over time or across datasets. However, the fraction of
individuals in rural localities in the training data is, on average, 12
pp greater, which in turn means a smaller number of people affiliated
with IMSS and a higher level of educational lag. There is a significant
decrease in the training data on the number of individuals who do not
have any access to health care services, from 34.8% in 2008 to 14%
in 2018; in the prediction data this variable hovers around 25%. Fi-
nally, the objective variable of multidimensional poverty is balanced
over time: neither poor nor non-poor individuals exceed 60% of the
total number of observations in the training datasets, and the num-
ber remains very close to 44%. These numbers are equivalent to the
official poverty estimates using the corresponding expansion factors.

4. Results

Besides the labor poverty rate benchmark, the traditional economet-
ric toolbox provides several other methods to tackle the poverty clas-
sification problem. In order to compare the ML algorithms with a
traditional approach, the following logistic regression specification is
used as the baseline model for each training dataset:

P (Yi = 1 |Xi ) =
eα+βT Xi

1 + eα+βT Xi

(2)
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where the dependent variable Yi is the multidimensional poverty
indicator variable that takes the value of 1 if the ith individual is poor
and 0 otherwise, and Xi is the ith vector of predictors with all the
selected features of section 3.1 (statei, rururbi, sexi, and so on).

Table 4 reports the logit output for every training dataset. Most
of the coefficients keep their sign over time and are statistically sig-
nificant at the 1% level. An advantage of this model is that it allows
for inferences about variations in the probability of being poor if a
predictor changes. For instance, it can be inferred from the sign of the
coefficients of the continuous variables that a ceteris paribus increase
in age or household labor income would decrease the probability of
being poor, whereas rising household size or hours of work would in-
crease that probability. In a slightly more elaborate way, one can
show that living in a rural locality, being female, having completed
at least junior high school, or having an IMSS or ISSSTE affiliation
lead to a lower probability of being poor with respect to the refer-
ence level, whereas living in Chiapas, being part of the unemployed
economically active population, not attending school, having an edu-
cational lag, or not having health insurance would increase it. Table
B.1 shows the logit average marginal effects (AME) on the probability
of being poor; interestingly, AMEs for the three poorest states in 2018
(Oaxaca, Guerrero, and Chiapas) have increased an average of almost
four times from 2008 to 2018, reflecting the low efficiency of policies
targeting poverty in those states.16

The logit is a probabilistic model that is not designed for classi-
fication tasks per se. Hence, it is necessary to build a classifier based
on its predicted probabilities. The simplest way to do this is to set
a 50% cutoff (c) and classify an observation as poor if its predicted
probability of belonging to this class exceeds this threshold. Also, c
can be seen as a tuning parameter, and its value can thus be deter-
mined with cross-validation. In this application, the optimal cutoff
ct for the logit model fitted with training data for year t is deter-
mined through the minimization of the mean square error between
the ex-post poverty estimates that are available at the time of the
publication of the multidimensional poverty rate for year t and the
corresponding official multidimensional poverty level. Table 4 reports
these optimal cutoffs, where there is a 58% threshold over almost all

16 The AME of non-independent predictors, such as the indicator variable of

per capita labor income below the mwl, should be taken with a grain of salt, given

that a shift on this level is the result of a change in labor income or household

size, invalidating the ceteris paribus assumption.



Table 4

Logistic regression results

Dependent variable: Probability of being poor

2008 2010 2012 2014 2016 2018

Nuevo León -0.301*** -0.181*** 0.096 0.036 0.180*** 0.219***

(0.061) (0.058) (0.059) (0.058) (0.049) (0.051)

Baja California Sur -0.090 0.008 0.092 0.445*** 0.258*** 0.389***

(0.061) (0.057) (0.058) (0.056) (0.052) (0.054)

Coahuila -0.118** -0.123** -0.139** 0.112** 0.234*** 0.205***

(0.056) (0.054) (0.054) (0.055) (0.045) (0.047)

Oaxaca 0.201*** 0.762*** 0.577*** 0.694*** 1.181*** 1.176***

(0.055) (0.054) (0.053) (0.053) (0.051) (0.050)

Guerrero 0.396*** 0.365*** 0.644*** 0.457*** 0.876*** 1.002***

(0.058) (0.055) (0.056) (0.053) (0.052) (0.053)

Chiapas 0.530*** 0.779*** 0.787*** 0.881*** 1.332*** 1.117***

(0.058) (0.051) (0.055) (0.055) (0.054) (0.055)

Rural localities -1.807*** -1.527*** -1.430*** -1.460*** -1.531*** -1.561***

(0.018) (0.017) (0.018) (0.018) (0.015) (0.015)

Women -0.067*** -0.017 -0.019 -0.051*** -0.029** -0.054***

(0.014) (0.014) (0.014) (0.014) (0.013) (0.013)

Age -0.014*** -0.013*** -0.013*** -0.013*** -0.013*** -0.013***

(0.001) (0.001) (0.001) (0.001) (0.0005) (0.0005)

Household size 0.906*** 0.858*** 0.794*** 0.784*** 0.830*** 0.892***

(0.006) (0.006) (0.006) (0.006) (0.006) (0.006)

Employed EAP 0.216*** 0.288*** 0.284*** 0.249*** 0.258*** 0.293***

(0.019) (0.019) (0.019) (0.019) (0.017) (0.017)

Unemployed EAP 0.249*** 0.399*** 0.389*** 0.460*** 0.395*** 0.394***

(0.047) (0.042) (0.045) (0.047) (0.053) (0.052)



Table 4

(Continued)

Dependent variable: Probability of being poor

2008 2010 2012 2014 2016 2018

EAP under 15 -0.300*** -0.316*** -0.309*** -0.273*** -0.238*** -0.293***

(0.034) (0.034) (0.036) (0.035) (0.033) (0.032)

Hours worked per week 0.005*** 0.004*** 0.002*** 0.004*** 0.005*** 0.005***

(0.0002) (0.0002) (0.0002) (0.0002) (0.0002) (0.0002)

Labor income per month -0.001*** -0.001*** -0.001*** -0.001*** -0.001*** -0.0005***

(5x10
−6

) (4x10
−6

) (4x10
−6

) (4x10
−6

) (4x10
−6

) (3x10
−6

)

Households with per capita labor -0.513*** -0.410*** -0.218*** -0.202*** -0.224*** -0.246***

income lower than the mwl (0.021) (0.021) (0.021) (0.021) (0.019) (0.019)

Not in school 0.208*** 0.126*** 0.136*** 0.120*** 0.110*** 0.100***

(0.021) (0.020) (0.021) (0.021) (0.019) (0.019)

Completed elementary school -0.456*** -0.233*** -0.263*** -0.195*** -0.180*** -0.185***

(0.022) (0.022) (0.023) (0.022) (0.020) (0.020)

Completed junior high school -0.765*** -0.454*** -0.458*** -0.309*** -0.278*** -0.265***

(0.028) (0.028) (0.029) (0.029) (0.026) (0.026)

Educational lag 0.455*** 0.720*** 0.693*** 0.833*** 0.795*** 0.787***

(0.025) (0.025) (0.026) (0.026) (0.023) (0.023)

IMSS affiliation -1.419*** -1.593*** -1.569*** -1.596*** -1.482*** -1.522***

(0.019) (0.018) (0.018) (0.018) (0.016) (0.016)

ISSSTE affiliation -2.088*** -2.309*** -2.463*** -2.431*** -2.503*** -2.542***

(0.040) (0.039) (0.044) (0.045) (0.045) (0.043)

No health insurance 0.163*** 0.124*** 0.124*** 0.173*** 0.165*** 0.035**

(0.017) (0.016) (0.018) (0.018) (0.018) (0.018)



Table 4

(Continued)

Dependent variable: Probability of being poor

2008 2010 2012 2014 2016 2018

Constant 0.894*** 0.594*** 0.648*** 0.338*** 0.046 0.027

(0.062) (0.061) (0.062) (0.061) (0.056) (0.057)

Optimal cutoff 0.58 0.58 0.58 0.58 0.56 0.58

Error rate 0.135 0.138 0.148 0.151 0.153 0.153

Note: *p<0.1; **p<0.05; ***p<0.01. Standard errors are shown in parentheses. 10-fold CV error rates are computed using their corresponding

optimal cutoff. The first three states are below the 10th percentile on the 2018 national poverty scale, while the last three are above the 90th percentile.

The remaining states coefficients are not displayed. The reference levels of categorical variables are Aguascalientes, economically inactive population, and

incomplete elementary school or less.

Source: Author’s calculations using the MCS-ENIGH from 2008 to 2018, and the stats package (version 3.5.0) in R.
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of the six training data years.17

Figure 5 shows the resulting series of the benchmark model. Note
that in panel (a), both ex-ante and ex-post logit poverty rates cor-
rectly reflect the downturns and upturns of the multidimensional rate
on a quarterly basis, and in general, they are also closer to it than
labor poverty. The ex-post logit estimates also follow the increasing
trend of labor poverty from 2008 to 2010, where the labor poverty
increase of 6.4% during the world financial crisis of 2008-2009 is more
than twice that of the logit rate of 2.7%. Unsurprisingly, from 2010 to
2015, the estimates of the baseline model are guided by the patterns
of the training data, and the ex-post estimates hover around 46%,
while labor poverty increases to 43%. Both series show a similar de-
cline from 2015. More importantly, the ex-ante logit estimates, which
can be considered as quarterly predictions for the next multidimen-
sional poverty level, show small differences over time (an average of
0.67 pp) with their respective ex-post updates.

Figure 5
Multidimensional, labor, and logit poverty rates

Source: Author’s calculations using the MCS-ENIGH and ENOE from the first

quarter of 2008 to the last quarter of 2019, and the stats package (version 3.5.0) in R.

Figure 5, panel (b), shows the comparison between the biennial
multidimensional poverty levels and the quarterly averages of the ex-
ante and ex-post logit estimates within their corresponding years.

17 By increasing the cutoff from 50% to 58%, the poverty condition becomes

more stringent and the number of people misclassified as poor (Type I error) is

reduced, while the opposite occurs with Type 2 error.
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The ex-ante predictions slightly underestimate the official poverty
rate, while the ex-post estimates slightly overestimate it, underlining
the consistent behavior of the baseline estimates. The advantage of
this approach of having ex-ante estimates is that a multidimensional
poverty estimate can be forecast almost six months before the official
biennial publication. For instance, it would have been known since
February 2019 that the 2018 multidimensional poverty rate, which
was announced in August 2019, would be close to 41.8%. Finally, the
error rate of the logit increases from 13.5% in 2008 to 15.3% in 2018,
with an average rate of 14.6%, as shown in table 4.

4.1 Poverty estimates of the LASSO logistic model

As described in section 2.1, the LASSO logistic model can handle sev-
eral regressors in a logistic regression framework and select only a
subset of them by shrinking the coefficients of some variables to zero.
In this analysis, quadratic terms for continuous variables and inter-
actions among categorical variables (except for the state of residence
variable) are added to the baseline specification in (2), and the algo-
rithm decides which variables to keep. The penalty term λ is deter-
mined using a tuning grid and 10-fold cross-validation.18

Table 5 presents a summary of the estimation results, where the
algorithm drops an average of one-tenth of the variables each year.
This amount is partially determined by the small value of the penalty
parameter λ: the larger it is, the small the number of non-zero coef-
ficients in the model. Although some coefficients are close to those in
table 4, there is an average 1.8 pp gain in accuracy over the logit out-
of-sample performance. Even if the interaction and quadratic terms
are not included, the LASSO logistic model outperforms the logit by
0.7 pp, as shown in table B.2. In other words, adding more variables
to the baseline specification in this algorithm to cover possible non-
linearities yields a small improvement in the misclassification rate.

However, the LASSO logistic ex-post and ex-ante estimates pro-
vide closer approximations to the multidimensional poverty rate than
labor poverty in the sample analyzed, as shown in figure 6, panel (a).
Both poverty measures show an increasing trend from 2008 to 2010,
where ex-post estimates increase by 2.3 pp during the world finan-
cial crisis. LASSO’s multidimensional poverty estimates then hovers
around 48%, while labor poverty continues to increase until 2015.

18 The tuning grid used for the penalty term is:

λ ∈ {0.0001, 0.001, 0.01, 0.1, 1, 10, 100, 1000, 10000}.



Table 5

LASSO logistic regression results

Dependent variable: Probability of being poor

2008 2010 2012 2014 2016 2018

Nuevo León -0.373 -0.268 0.000 -0.087 0.070 0.028

Baja California Sur -0.056 0.081 0.320 0.045 0.200

Coahuila -0.113 -0.175 -0.194 -0.048 0.085 0.005

Oaxaca 0.141 0.683 0.481 0.513 0.950 0.933

Guerrero 0.263 0.189 0.512 0.263 0.657 0.767

Chiapas 0.401 0.681 0.688 0.707 1.112 0.879

Rural localities -2.060 -2.056 -1.835 -1.918 -1.719 -1.802

Women 0.095 0.166 0.166 0.105 0.116 0.037

Age -0.006 0.001 0.004 0.004 0.003

Household size 0.986 0.942 0.893 0.912 0.933 0.973

Employed EAP 0.051

Unemployed EAP 0.144 0.547 0.504 0.080 0.559 0.434

EAP under 15 -0.021

Hours worked per week 0.012 0.010 0.007 0.008 0.011 0.011

Labor income per month -0.001 -0.001 -0.001 -0.001 -0.001 -0.001

Households with per capita labor income lower than the mwl -0.908 -0.923 -0.883 -0.853 -1.042 -1.129

Not in school 0.184 0.005 0.019 0.071 0.178 0.113

Completed elementary school -0.186 -0.042 -0.085

Completed junior high school -0.476 -0.292 -0.315 -0.147 -0.271 -0.212

Educational lag 0.528 0.735 0.727 0.856 0.717 0.893



Table 5

(Continued)

Dependent variable: Probability of being poor

2008 2010 2012 2014 2016 2018

IMSS affiliation -1.104 -1.712 -1.413 -1.257 -1.246 -1.232

ISSSTE affiliation -1.461 -2.146 -2.224 -1.836 -2.331 -1.925

No health insurance 0.496 0.373 0.512 0.624 0.522 0.449

Constant 0.215 0.131 0.23 -0.126 -0.395 -0.222

Interaction terms Yes Yes Yes Yes Yes Yes

Non-zero coefficients (Total=127) 105 115 114 111 114 110

Penalty λ 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

Error rate 0.117 0.121 0.129 0.133 0.137 0.134

Note: LASSO logistic models are estimated via penalized maximum likelihood. Empty spaces represent shrunk-to-zero coefficients. Independent

variables include those in table 3, quadratic terms for age, household size, hours worked, and labor income, and interactions among categorical variables

(except for state of residence variable). 10-fold CV error rates are computed according to the maximum probability criterion. The first three states are below

the 10th percentile on the 2018 national poverty scale, while the last three are above the 90th percentile. The remaining coefficients are not displayed.

Source: Author’s estimates using the MCS-ENIGH from 2008 to 2018, and the glmnet package (version 4.1-1) in R.
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For the rest of the time window, the two rates show similar decreases,
with the LASSO logistic estimates less volatile than those for labor
poverty. The ex-ante and ex-post estimates are further apart dur-
ing 2018, revealing some degree of sensitivity to the methodological
changes in the 2016 and 2018 training data. Finally, according to the
quarterly averages in figure 6, panel (b), ex-ante and ex-post mea-
sures overestimate the biennial multidimensional rate by an average
of 1.2 pp and 2 pp, respectively.19

Figure 6
Multidimensional, labor, and LASSO logistic poverty rates

Note: Solid and dashed gray lines in panel (a) represent ex-post and ex-ante

LASSO logistic estimates, respectively, while gray areas indicate where ex-ante esti-

mates are seen before their updated ex-post version. Ex-ante and ex-post poverty rates

in panel (b) are the averages of their respective quarterly estimates that fall within each

publication year of multidimensional poverty. LASSO logistic estimates are computed

using the maximum probability criterion.

Source: Author’s calculations using the MCS-ENIGH and ENOE from the first

quarter of 2008 to the last quarter of 2019, and the glmnet package (version 4.1-1) in

R.

4.2 Poverty estimates of random forest

Similar to the baseline analysis, the random forest (RF) method uses
all of the variables in table 3 to train the ML algorithm, and it uses the

19 One of the reasons behind this gap is the 50% threshold used in the LASSO

logistic classifier.
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optimal cutoffs in table 4. As described in section 2.2, the RF method
has three main tuning parameters: the number of trees in the forest
(B), the number of possible predictors at each split (m), and the min-
imum size on every terminal node (nmin). For this application, the
parameters B and nmin are fixed at 500 and 1, respectively. RF cali-
bration is thus focused on parameter m, for which a grid of possible
values is built and tested using out-of-sample performance in order
to choose the best model.20 Optimal values of the tuning parameter
m and out-of-bag error rates of their corresponding fitted models are
shown in table 6. The optimal parameters are very close to the total
number of predictors, and there is a significant improvement in RF

of out-of-sample performance, exceeding the LASSO logistic and logit
models by an average of 7.7 pp and 9.4 pp, respectively. This re-
sult suggests that decision boundaries are highly non-linear, and that
the RF structure helps to assimilate them better than a traditional
regression approach.

Table 6
Optimal parameters for the random forest analysis

2008 2010 2012 2014 2016 2018

m 13 13 13 13 13 13

Error rate 0.048 0.049 0.052 0.055 0.052 0.056

Note: Number m of optimal predictors for each split in the RF classification

trees. Out-of-bag error rates are computed using the optimal cutoffs for the

benchmark model.

Source: Author’s estimates using the MCS-ENIGH for 2008 to 2018, and

the randomForest package (version 4.6-14) in R.

The RF quarterly poverty rate is depicted in figure 7, panel (a),
which shows ex-post levels that are close to the official poverty rate.
The increasing trend during the world financial crisis shows a jump
of 2.8 pp, a magnitude similar to that of the benchmark model. From
2010 to 2015, it hovers around 46%, decreasing toward the end of the
period. The RF ex-ante quarterly predictions are close to their corre-
sponding ex-post updates, with an average absolute deviation of 0.5
pp. The quarterly averages in panel (b) show an interesting result:

20 The best model is chosen according to the minimum out-of-bag error rate.

The tuning grid used is m ∈ {2, 3, 4, 6, 9, 13, 15} .



30 ESTUDIOS ECONÓMICOS https://doi.org/10.24201/ee.v38i1.435

the RF ex-post estimates generally improve their ex-ante poverty pre-
dictions, in contrast to the LASSO logistic estimates. Even in 2016 and
2018, RF adjusts better to the methodological changes in the training
data than the logit model.

Figure 7
Multidimensional, labor, and RF poverty rates

Note: Solid and dashed gray lines in panel (a) represent ex-post and ex-ante RF

estimates, respectively, while gray areas are spans where ex-ante estimates are seen

before their updated ex-post version. Ex-ante and ex-post poverty rates in panel (b)

are the averages of their respective quarterly estimates that fall within each publication

year of multidimensional poverty. RF estimates are computed using the optimal cutoffs

for the benchmark model, in table 4.

Source: Author’s calculations using the MCS-ENIGH and ENOE from the first

quarter of 2008 to the last quarter of 2019, and the randomForest package (version

4.6-14) in R.

In spite of being a black-box algorithm, RF offers a picture of what
is happening inside through the mean decrease in accuracy (MDA) and
the mean decrease in Gini index (MDGI) as measures of variable im-
portance. These measures are shown in relative terms in figure 8.
According to the MDGI metric, per capita real labor income below the
mwl (pob) and labor income (lab inc) are the most important vari-
ables over the six years. For MDA, the four most important variables
are household size (hsize), state of residence (state), the indicator
variable of rural localities (rururb), and IMSS affiliation (imss). Gen-
der, educational level (ed lev), not in school (no school), no health
insurance (no hserv), and economic status (eap) are the variables
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with least importance over the six years. Surprisingly, access to so-
cial security has greater importance for the predictive power of the
algorithm than educational level or school attendance, highlighting
the critical role of formal employment in predicting poverty.

Figure 8
Variable importance for the random forest method

Note: Both mean decrease in accuracy (MDA) and mean decrease in Gini index

(MDGI) are expressed relative to their corresponding largest measure and sorted by

MDA, for each year of training data.

Source: Author’s calculations using the MCS-ENIGH for 2008 to 2018, and the

randomForest package (version 4.6-14) in R.
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4.3 Poverty estimates of support vector machines

Like the RF method, SVM analysis uses all the features of table 3. As
described in section 2.3, the training times of local SVMs are consid-
erably less expensive with large samples than training a single SVM,
so this exercise, with approximately 230 000 training observations
per year, uses the alternative SVM cell approach of Steinwart and
Thomann (2017). The radial basis transformation is employed as the
default kernel function, leading to two tuning parameters, C and λ, for
which a tuning grid is built and tested, using 10-fold cross-validation
to pick the best model for every cell.21

Table 7
Optimal parameters for the support vector machine cell approach

2008 2010 2012 2014 2016 2018

No. of cells 186 170 174 173 211 215

Mean size 1,264 1,385 1,222 1,250 1,221 1,251

γmode 0.25 0.04 0.001 0.25 0.001 0.04

Cmode 100,000 100,000 100,000 100,000 100,000 100,000

Average support vectors 503 565 595 567 626 545

Mean error rate 0.119 0.115 0.121 0.134 0.15 0.123

Note: Number of cells used and their average size, along with their radial

kernel optimal parameters (C and γ), modes, and average support vectors. The

mean error rate corresponds to the average of the 10-fold CV error rates over all

cells.

Source: Author’s estimates using the MCS-ENIGH for 2008 to 2018, and

the liquidSVM package (version 1.2.1) in R.

Table 7 shows summary results of the SVM cell calibration. There
are more cells in 2016 and 2018 than in other years, mainly due to the
greater number of observations and, to some extent, to the difference
in the distribution of training data. The data in 2010 yields only an
increase in average cell size, without affecting the number of cells. For
every year most cells pick a small optimal value for λ, which is related
to classifiers with high variance given that their kernels would be

21 The tuning grid used is (γ, C) ∈ {0.001, 0.01, 0.04, 0.25, 1, 4, 16, 100}×
{0.001, 0.01, 1, 10, 100, 1000, 10000, 100000} .
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large, and it would thus have a greater impact on the decision function

h(x)T
β̂ + β̂0; higher values of λ are related to more non-linear fits

and more bias classifiers. The mode of the cost parameter C remains
constant over time, with a value of 100 000. According to Hastie et
al. (2009), a large value of C encourages a large value of ‖β‖, which
brings about a narrower margin and fewer support vectors, so the
model tends to overfit the data. Roughly two-fifths of the observations
are support vectors on every cell, where the results for 2016 suggest
that the greater the dispersion in the training data, the more support
vectors are needed. Finally, the mean error rate of the SVM cells
is taken as the estimate for the model’s out-of-sample performance,
which is similar to the LASSO logistic performance, slightly better than
the benchmark model, but not as good as RF.

Figure 9
Multidimensional, labor, and SVM poverty rates

Note: Solid and dashed gray lines in panel (a) represent ex-post and ex-ante

SVM estimates, respectively, while gray areas indicate the spans of ex-ante estimates

before their updated ex-post version. Ex-ante and ex-post poverty rates in panel (b)

are the average of their respective quarterly estimates that fall within each publication

year of multidimensional poverty.

Source: Author’s calculations using the MCS-ENIGH and ENOE from the first

quarter of 2008 to the last quarter of 2019, and the liquidSVM package (version 1.2.1)

in R.

Figure 9 shows the poverty rates using the optimal models of SVM

cells. At first glance, the ex-post curve of SVM in panel (a) overesti-
mates the multidimensional poverty rate during the first seven years
of analysis, showing a decreasing trend from 2010, but even so, it is
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closer to the official rate than the labor poverty rate. The alternative
SVM approach estimates the greatest increase of all four algorithms
in the world financial crisis, 3.8 pp, which is still far from the la-
bor poverty increase of 6.4 pp. The SVM ex-ante poverty predictions
are the most distant of all the algorithms from their corresponding
ex-post updates, with an average absolute distance of 1.36 pp. Quar-
terly averages of SVM estimates in panel (b) reaffirm that although
the ex-post estimates generally improve the ex-ante predictions, they
are behind the benchmark model and RF.

4.4 Poverty dynamics in the COVID-19 pandemic

As the COVID-19 pandemic evolves, the alleviation of poverty has been
threatened by disruptions in living standards and the economy.22

This crisis is an excellent example of a situation where timely infor-
mation about multidimensional poverty is fundamental to targeting
policy. In order to estimate the dynamics of the pandemic, ex-ante
poverty rates are provided for 2020 using the fitted models with the
2018 training data. Unfortunately, INEGI canceled the ENOE during
the second quarter of 2020, but implemented a hybrid version, ENOEN,
in the third quarter, 72% of whose sample is compiled from face-to-
face interviews and 28% from telephone interviews.

Figure 10 shows LASSO logistic, RF, and SVM quarterly ex-ante
estimates during 2020 and their corresponding ex-post poverty rates
along with the labor poverty series. The pandemic seems to affect
Mexican poverty after the first quarter of 2020, in line with the first
national lockdown campaign in late March. Although the impact
cannot be fully estimated since there is no information for the second
quarter, the increase from 2020 QI to 2020 QIII is likely a lower bound
of the true effect, considering that other macroeconomic variables,
such as the unemployment rate and Mexican GDP, were at their worst
levels in 2020 QII.23

22 A recent report by the Pew Research Center estimates that there was a

19.5% increase in the number of poor people worldwide in 2020 over pre-pandemic

projections (Pew Research Center, 2021). In addition, the World Bank has warned

that its goal of reducing global extreme poverty to less than 3 percent by 2030

will be more difficult to reach given current challenges (World Bank, 2020).
23 The terms “effect” and “impact” are used here as synonyms of change, not

necessarily strict causality.
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Figure 10
Ex-post poverty series of machine learning and

2020 ex-ante estimates

Note: Because of the COVID-19 pandemic, the ENOE was canceled in the second

quarter of 2020, and replaced with a hybrid version (ENOEN) in subsequent quarters.

Source: Author’s calculations using the MCS-ENIGH, ENOE, and ENOEN from

the first quarter of 2008 to the last quarter of 2020.

Ex-ante numbers are presented in table 8. Labor poverty shows
the highest increase from 2020 QI to 2020 QIII, approximately 8.9
pp, while the other increases range from 3.8 pp to 6.4 pp. These in-
creases are an average of 2.5 pp larger than the corresponding impacts
of the world financial crisis, though in 2020 the increasing trend is of
shorter duration. The preferred projections for the 2020 multidimen-
sional poverty rate are the average of the third and fourth quarters
of 2020, with which RF predicts the lowest poverty rate (40.92%) and
the LASSO logistic model the highest (44.32%). Either way, it is highly
likely that the multidimensional poverty rate for 2020 will be greater
than in 2018. This would also depend on further methodological
changes in CONEVAL’s poverty identification strategy.
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Table 8
Labor poverty and ex-ante poverty estimates for 2020

2020 Quarter Logit LASSO RF SVM Labor Poverty

I 38.02 39.60 38.02 39.81 35.61

III 44.43 45.49 41.79 45.12 44.46

IV 41.48 43.14 40.05 42.64 40.73

Difference QIII-QI 6.41 5.89 3.77 5.31 8.85

Mean QIII and QIV 42.96 44.32 40.92 43.88 42.60

Note: Ex-ante predictions are made with models trained with 2018 data.

Because of the COVID-19 pandemic, the ENOE was canceled in the second quar-

ter of 2020 and replaced with a hybrid survey (ENOEN) in the quarters that

followed.

Source: Author’s calculations using the 2018 MCS-ENIGH, ENOE, and

ENOEN from the first to the last quarter of 2020.

4.5 Model assessments

All quarterly ex-post poverty rates seen in figure 10 are closer to
the official biennial levels than the ITLP labor poverty rate, and they
display similar behaviors over the period analyzed. It seems, how-
ever, that none of the ML algorithms greatly exceeds the baseline
logit model in approximating the multidimensional poverty rate, so
what is the real advantage of having more complex classification mod-
els? To answer this question, it would be helpful to keep in mind an
observation made by Olivier Dupriez, Lead Statistician at the Devel-
opment Data Group, at the 2018 Machine Learning and the Future
of Poverty Prediction conference hosted by the World Bank in Wash-
ington, D.C. Dupriez presented an empirical comparison of several
ML classification algorithms using data from Indonesia and Malawi,
and highlighted the importance of assessing ML algorithms with mul-
tiple performance metrics.24 Despite making good predictions of the
official poverty rate, he noted, there is no guarantee that the model
correctly classifies poor individuals: “The people identified as poor
might be in the right numbers but they are not the right people”.

24 The conference is available at: https://www.worldbank.org/en/news/video/

2018/02/27/machine-learning-future-of-poverty-prediction.
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In this sense, the four models are fitted with default settings for
their tuning parameters and assessed via 10-fold CV using the accu-
racy metric (basically 1-Error rate), and six complementary metrics:
recall, specificity, precision, negative predictive value (NPV), F1 score,
and kappa (κ). None of these metrics is better than the others; they
simply evaluate different things and provide different, but equally im-
portant information.25 Local rankings are then made for every metric
and year to establish the reliability and robustness of the algorithms,
and finally they are all summarized by their mean rank.

Table 9 shows these results, where RF shows the highest scores
over the period analyzed, followed by SVM, the LASSO logistic model,
and logit, reinforcing the findings already presented. For 2016 in
particular, RF leads the rest, but the logit and LASSO overtake SVM in
five metrics, possibly because of the dispersion in the 2016 training
data. Interestingly, if a given model is assessed with the same metric
over time, 2016 and 2018 turn out to be the years with the lowest
scores, while all of them show their best performance in 2008 and
2010. The effect, however, of the 2016 methodological changes on the
performance of the algorithm is more perceptible in SVM, where for
instance the recall score falls from 86.7% in 2014 to 72.6% in 2016.
That is, the proportion of the truly poor who are correctly classified
by SVM decreases by approximately 14 pp from 2014 to 2016.

The SVM, the LASSO logistic regression, and the logit model show
similar performance in the multidimensional poverty classification
task in Mexico, while RF outperforms all of them. Although the logit
performs well in targeting the official biennial poverty rate, the real
advantage of using RF lies in its ability to correctly identify poverty
patterns that are imperceptible with other algorithms, as well as
its flexibility and robustness to different training data distributions
and methodological changes in the poverty detection mechanisms. A
state-level analysis rather than a national one, as well as considera-
tion of the correlations between predictors, could be additional ways
to explore the strengths of RF.

25 See Appendix D for a detailed description of the performance metrics.



Table 9

Poverty classification performance

Out-of-sample assessment metrics

Accuracy Recall Specificity Precision NPV F1 score κ Mean Rank

2008

RF 0.944 0.943 0.943 0.927 0.957 0.935 0.886 1

SVM 0.890 0.884 0.884 0.860 0.913 0.872 0.775 2

LASSO 0.883 0.870 0.870 0.856 0.903 0.863 0.761 3

Logit 0.871 0.863 0.863 0.839 0.896 0.850 0.737 4

2010

RF 0.941 0.947 0.936 0.928 0.953 0.938 0.882 1

SVM 0.889 0.898 0.880 0.868 0.908 0.883 0.777 2

LASSO 0.880 0.882 0.877 0.863 0.895 0.873 0.758 3

Logit 0.867 0.878 0.857 0.844 0.889 0.861 0.734 4

2012

RF 0.938 0.948 0.929 0.922 0.952 0.935 0.875 1

SVM 0.879 0.889 0.870 0.859 0.898 0.874 0.757 2

LASSO 0.871 0.874 0.869 0.856 0.886 0.865 0.742 3

Logit 0.860 0.873 0.848 0.836 0.882 0.854 0.719 4

2014

RF 0.934 0.939 0.930 0.919 0.948 0.929 0.868 1

SVM 0.872 0.867 0.876 0.855 0.886 0.861 0.742 2

LASSO 0.868 0.863 0.871 0.850 0.883 0.857 0.734 3

Logit 0.856 0.863 0.850 0.829 0.880 0.846 0.711 4



Table 9

(Continued)

Out-of-sample assessment metrics

Accuracy Recall Specificity Precision NPV F1 score κ Mean Rank

2016

RF 0.939 0.935 0.941 0.917 0.954 0.926 0.874 1

LASSO 0.863 0.834 0.883 0.833 0.884 0.833 0.717 2.3

Logit 0.853 0.830 0.868 0.814 0.880 0.822 0.696 3.3

SVM 0.837 0.726 0.914 0.854 0.827 0.785 0.655 3.4

2018

RF 0.935 0.928 0.940 0.911 0.952 0.920 0.865 1

SVM 0.873 0.841 0.894 0.841 0.894 0.841 0.735 2

LASSO 0.866 0.830 0.890 0.833 0.887 0.832 0.720 3

Logit 0.854 0.823 0.875 0.814 0.881 0.819 0.697 4

Note: Scores and rankings of LASSO logistic regression, logit, RF, and SVM (radial basis kernel) correspond to fitted models using 50% cutoffs. Neither

customized tuning grids, optimal cutoffs, nor alternative approaches for SVM are used in this comparison, and all algorithms are fitted with their default

settings. The LASSO logistic specification includes interactions and quadratic terms, as in section 4.1. Training times for a single-year 10-fold CV were:

SVM, 395 min.; RF, 148 min.; LASSO logistic model, 6 min.; and logit, 2 min.

Source: Author’s estimates using the ENIGH-MCS from 2008 to 2018, and the caret package (version 6.0-78) in R.
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5. Concluding remarks

It is currently difficult to evaluate and monitor in a timely way the
progress of policies targeting poverty in Mexico using the official bi-
ennial poverty measurement reported by CONEVAL. This study shows
that logistic regression and machine learning methods such as LASSO,
random forest, and support vectors machine provide an innovative,
efficient, and low-cost set of tools for estimating and predicting multi-
dimensional poverty on a quarterly basis. One of the main contribu-
tions of this paper is that it shows how ex-ante estimates, which can
be thought of as quarterly predictions of the subsequent level of the
multidimensional poverty rate, can provide a very good estimate of
poverty more than a year ahead of the official estimate. The ex-post
estimates update and, in most cases, improve upon their correspond-
ing ex-ante estimations.

Looking at out-of-sample performance, the benchmark logit model
has the highest average error rate (14.6%) of the four algorithms, but
its poverty estimates are closer to the multidimensional poverty rate
than the rest. RF has the lowest error rate, with an average probabil-
ity of misclassification equal to 0.05, surpassing the logit model by an
average of 9 percentage points. In addition to their proximity to the
official poverty rate, RF ex-ante and ex-post poverty estimates are also
the most consistent of the four models, with an average gap of 0.5 pp.
The SVM cell approach with radial basis kernel and the LASSO logis-
tic regression present similar performance, with mean error rates of
approximately 13%, and generally overestimate the multidimensional
poverty levels. All of the ex-post estimates show increasing trends
from the beginning of 2008 through the end of 2009, estimating an
increase in Mexico of 2.3 pp to 3.8 pp in multidimensional poverty
during the global financial crisis. From 2010 to 2015, most of these
estimates are steady, and then they continue with downward trends
until the first quarter of 2020. For the third quarter of 2020, by which
time the COVID-19 pandemic had fully hit the Mexican economy, ML

ex-ante poverty rates estimate an impact of 3.8 pp to 6.4 pp, while
their aggregate measures forecast the 2020 multidimensional poverty
rate to fall within the range of 40.9% to 44.3%.

The overall assessment of the performance of the algorithms
shows that RF is the machine learning algorithm with the best mea-
sures of accuracy, recall, specificity, precision, negative predictive
value, F1 score, and , followed by SVM with radial basis kernel, the
LASSO logistic model, and logit, underlining the robustness of RF as a
prediction method. In short, although the benchmark model does a
good job of estimating the official biennial poverty rate, it is likely that
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its observations labeled as poor are misclassified. It is thus preferable
to use a more reliable algorithm, such as RF, if a deeper analysis of
poverty profiles is required. In RF estimates, the indicator variable of
per capita real labor income below the minimum welfare line, labor
income, household size, state of residence, the indicator variable of
rural localities, and IMSS affiliation are the most important variables
for multidimensional poverty prediction, while gender, educational
level, not in school, no health insurance, and economic status are the
least important variables.

Future research should be directed at imputing ENOE labor in-
come to analyze the change in results, given the growing income misre-
porting trend in this survey (Campos-Vázquez, 2013). The inclusion
of additional models, such as conditional trees and neural networks, as
well as an analysis of transition probabilities and a state-level analysis
could also provide valuable information.
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tendencia de la pobreza laboral en México, Ensayos Revista de Economı́a,

32(2): 23-54.
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