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Los indivisibles en el cálculo contemporáneo

Vrunda Prabhu y Bronislaw Czarnocha

Resumen: La obra Arithmetica Infinitorum de John Wallis es la expresión arit-
mética de la obra Geometria Indivisibilibus de Bonaventura Cavalieri, autores 
que abordaron lo indivisible. En El método de los teoremas mecánicos, descu-
bierto apenas en 1910, Arquímedes también abordó lo indivisible. Esas obras 
son anteriores al actual uso generalizado del concepto de límite. Las fórmulas que 
presentamos en este artículo constituyen una reformulación de la obra de Wallis 
y Cavalieri para proporcionar fundamentos matemáticos rigurosos contemporá-
neos; a saber: el concepto de límite. Basados en la intuición de un estudiante y en 
lo indivisible de Arquímedes, Cavalieri y Wallis se formulan dos integrales: la integral 
de Cavalieri-Wallis y la integral de Porter-Wallis. Esas integrales ofrecen una 
nueva perspectiva de los conceptos clásicos de medida, área e integral definida. 
La elaboración de la integral de Cavalieri-Wallis aclara las ambigüedades del 
principio de Cavalieri, reemplazando “todas las líneas” en la obra de Arquímedes 
y Cavalieri, mientras que la elaboración de la integral de Porter-Wallis, visual-
mente atractiva, ancla el concepto del área en un marco estadístico, el cual 
inspira la enseñanza tradicionalmente difícil de la integral de Riemann en los 
experimentos de enseñanza de Cálculo de primer año llevados a cabo en varios 
lugares de Estados Unidos y México.

Palabras clave: indivisible, integral definitiva, integral de Riemann, integral de 
Porter-Wallis, integral de Cavalieri-Wallis.

Abstract: Arithmetica Infinitorium of John Wallis is the arithmetization of the work 
Geometria Indivisibilibus of Bonaventura Cavalieri, both of which utilised the indi-
visible. The Method of Archimedes found only in 1910 also utilised the indivisible. 
These works predate the current ubiquitious use of the concept of the limit. The 
formulations presented in this article reformulate the work of Wallis and Cavalieri 
providing contemporary rigorous mathematical foundations, viz., the limit concept. 
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Two integrals, Cavalieri-Wallis and Porter-Wallis integrals, are formulated on 
the basis of student intuition, and the Indivisible of Archimedes, Cavalieri and 
Wallis. These integrals provide a new viewpoint on classical concepts of measure, 
area and the definite integral. Cavalieri-Wallis construction clarifies ambiguities 
of Cavalieri Principle, replacing “all the lines” in the work of Archimedes and 
Cavalieri. The visually appealing Porter-Wallis construction anchors the concept of 
area in a statistical framework, which informs the traditionally difficult pedagogy 
of the Riemann integral in freshman Calculus teaching experiments conducted 
at various sites in the United States and Mexico.

Keywords: indivisible, definite integral, Riemann integral, Porter-Wallis inte-
gral, Cavalieri-Wallis integral.

Introducción

El objeto de nuestro estudio es lo indivisible tal como aparece en las obras de 
Arquímedes, Cavalieri y Wallis. En cada una de esas obras, lo indivisible no tiene 
anchura, en oposición a una cantidad que ya no es divisible. En este artículo, 
por tanto, nuestra atención se centra en los indivisibles que no tienen anchura, 
a diferencia de la paradoja de Zenón, Aquiles y la tortuga, donde encontramos 
lo indivisible con un ancho finito distinto de cero (Bergson, 1911). En particular, 
nos centramos en lo indivisible desde el punto de vista de Cavalieri y Wallis.

Considérense los pasajes de Arquímedes, Cavalieri y Wallis:
En la Arithmetica Infinitorum (Wallis, 1656; Stedall, 2004), las fórmulas con 

que Wallis “investiga la cuadratura de las curvas” se presentan como:

	 (1)

El principio de Cavalieri establece: dadas dos figuras planas l y k entre dos 
líneas paralelas, si toda sección paralela sl de la figura l corresponde a una sección
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paralela sk de la figura k y el cociente de sus longitudes 
s
s rl

k
 es constante para

cada par, entonces el cociente de sus áreas 
A

A
l

k

 es el mismo.

La idea de Arquímedes en El método y en La cuadratura de la parábola, 
en el sentido de que la figura está formada por todas las líneas paralelas que la 
forman, le permitió calcular el área, estableciendo una correspondencia de uno a 
uno de cada línea delimitada por la parábola con la línea correspondiente en un 
triángulo elegido adecuadamente cuya área pudiese calcularse con precisión.

En el meollo de la obra de Cavalieri, la principal herramienta matemática es 
el cociente. Para Wallis, en su expresión aritmética de la obra de Cavalieri, la 
naturaleza geométrica del cociente empleado por este último se traduce en una 
operación con los cocientes, esto es, la suma finita de cocientes. En el caso de 
Arquímedes, sigue siendo el cociente el que se emplea, pero, en su caso, como 
condición de equilibrio en el principio de la palanca a través del cual el área 
delimitada por la parábola se transforma en el área de un triángulo situado 
adecuadamente.

Presentamos los resultados y reflexiones del experimento de enseñanza 
Introducción de los Indivisibles en la Enseñanza del Cálculo, financiado por la 
subvención nsf/ROLE #0126141 de 2002 a 2006. El experimento de enseñan-
za fue motivado por el reciente redescubrimiento que hicieron Czarnocha et al. 
(2001) de la intuición de los indivisibles en el pensamiento de los estudiantes de 
cálculo en relación con el límite de las sumas de Riemann. Puesto que la intui-
ción de los estudiantes respecto al área resultó ser similar a la de Arquímedes, 
Cavalieri y Wallis, en cuyas manos el método había dado pruebas de ser una 
importante proeza de cálculo, el equipo de investigación y enseñanza empezó a 
verificar si dicha intuición podía llegar a desarrollarse en el aparato matemático 
de los estudiantes como una herramienta igualmente sólida y claramente defini-
da para la medición de áreas. Las cuestiones de investigación planteadas en el 
experimento de enseñanza fueron:

1)	 ¿Cómo tiene lugar el proceso de transformación y desarrollo de la intui-
ción de las líneas (los indivisibles) en un concepto matemático preciso?

2)	 La introducción de la construcción de Cavalieri-Wallis basada en los indi-
visibles, la interacción de esa construcción con la construcción normal de 
Riemann y la enseñanza en la que se integran una y otra, ¿permiten fortale-
cer la comprensión de los estudiantes del concepto de la integral definida?
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Nuestras consideraciones sobre el enfoque posteriores al experimento sugie-
ren que el concepto adecuado para el análisis del desarrollo del aprendizaje que 
se plantea en la segunda pregunta de investigación es el marco recientemente 
formulado de la trayectoria hipotética de la enseñanza (Simon, 1995; Clements, 
2000), que en nuestro caso parte de la intuición de que las líneas pertenecen 
al concepto del área y termina en el concepto “científico” del cálculo. La infor-
mación respecto a la manera en la que los estudiantes comprenden y desarro-
llan los nuevos conceptos se recolectó en el contexto de los experimentos de 
enseñanza, en los que colaboraron varias instituciones diferentes de enseñanza 
superior ampliamente representativas de los antecedentes y las poblaciones de 
estudiantes. Las instituciones fueron: un instituto de humanidades predominan-
temente femenil de Missouri, tres institutos comunitarios urbanos, dos de ellos 
del Bronx, la Universidad Estatal de Kansas, un instituto politécnico de Texas y 
un instituto comunitario de Pensilvania. El proyecto piloto se llevó a cabo en un 
instituto politécnico de la Ciudad de México. Todos los experimentos de ense-
ñanza incluyeron a estudiantes de los primeros dos semestres de Cálculo de 
primer año en las diferentes instituciones. William Mahavier, de la Universidad 
de Emory, especialista en el Método de Descubrimiento Texano de Moore, Jack 
Porter, topólogo de la Universidad de Kansas, y Victor Katz, historiador de ma-
temáticas de la Universidad del Distrito de Columbia, fungieron en diferentes 
periodos como consultores del proyecto. La integral Porter-Wallis se presentó a 
los estudiantes como un paso para llegar al método de las sumas de Riemann, 
que había sido diagnosticado como difícil para los estudiantes. La información se 
recolectó en el salón de clases en forma de tareas, cuestionarios y exámenes; y al 
final del semestre se llevaron a cabo entrevistas clínicas con los participantes.

Descripción del estudio

El marco teórico

Las preguntas de investigación hicieron necesario que se integrara la intuición 
de los indivisibles que se había descubierto con el concepto de la integral defi-
nida. Con ese propósito, la construcción que Cavalieri elaboró en el siglo xvii 
(véase adelante) se empleó como puente entre la intuición de los indivisibles/las 
líneas y la integral definida formal. El énfasis en el papel de la intuición natural 
de los estudiantes llevó a que la esperanza de que éstos adquirieran un mayor 
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dominio de las matemáticas se depositara en la integración de su intuición con 
el contenido académico. Nuestra enseñanza concordaba con y respondía a la 
afirmación de Griffin (Griffin et al., 1995), en el sentido de que una de las razo-
nes principales del reducido grado de éxito en las matemáticas parece ser la 
separación cada vez más amplia que tiene lugar entre la comprensión informal 
intuitiva de las matemáticas por parte de los niños y los algoritmos que necesitan 
para aprender en su educación formal; sin embargo, en lugar de achacar la res-
ponsabilidad de dicha separación a la naturaleza abstracta de las matemáticas, 
como sugieren Núñez y Lakoff (1998), nosotros creemos que el enfoque adecuado 
es la inclusión tanto del aspecto abstracto de las matemáticas como de sus raíces 
intuitivas en el programa de matemáticas y mediante la integración cuidadosa de 
uno y otras a todo lo largo y ancho de la zona de desarrollo próximo (zpd, por 
sus siglas en inglés), diseñada y controlada pedagógicamente, para que los estu-
diantes profundicen en la comprensión de ambos aspectos. La zona de desarro-
llo próximo (Vygotsky, 1986) entre la intuición “espontánea” de los indivisibles y 
el “concepto científico” de la integral es un marco teórico natural para investigar 
ese proceso de aprendizaje, porque postula que el desarrollo conceptual es pro-
ducto de la integración adecuada de los conceptos espontáneos y científicos en 
el estudiante. Según Vygotsky,

la fuerza de los conceptos científicos reside en su carácter consciente y 
deliberado, mientras que, por el contrario, la fuerza de los conceptos espon-
táneos reside en lo relacionado con lo situacional, lo empírico y lo práctico. 
Esos dos sistemas conceptuales, que se desarrollan “desde arriba” y “desde 
abajo”, revelan su naturaleza verdadera en la interrelación del desarrollo real 
con la zona de desarrollo próximo.

Este punto de vista sugiere el enfoque del andamiaje de la enseñanza, en el 
que la intuición del concepto se desarrolla “desde abajo” y los conceptos mate-
máticos se desarrollan “desde arriba”, hasta que la distancia conceptual entre los 
dos planos de desarrollo concuerda con la extensión de la zona de desarrollo 
próximo de los estudiantes. La obra de Czarnocha y Prabhu (2006) contiene un 
análisis más detallado de ese proceso en el contexto de la enseñanza del límite 
de una secuencia. La sutileza de las construcciones mentales que quisiéramos 
que los estudiantes llevaran a cabo sugiere el concepto de un plan (Skemp, 
1987) como la herramienta de análisis adecuada para la construcción. Por con-
siguiente, nuestro marco teórico consiste en la mezcla de teorías y metodologías 
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que abordan tanto los aspectos sociales como los individuales del desarrollo 
cognitivo.

La metodología

Los experimentos de enseñanza del proyecto se llevaron a cabo con la ayuda de 
la metodología cíclica de la Investigación de la Enseñanza, un perfeccionamiento 
del experimento de enseñanza de la Research in Undergraduate Mathematics 
Education Community (Comunidad de Investigación de la Educación Universitaria 
de las Matemáticas; rumec, por sus siglas en inglés), fundada en 1996 en Estados 
Unidos. El experimento de enseñanza puesto en práctica por rumec (Asiala et al., 
1996) se basó en el hecho de que todos los investigadores del grupo eran pro-
fesores de matemáticas en alguno de los institutos o universidades de Estados 
Unidos y tenían la posibilidad de enseñar la misma materia cada año académico, 
empleando y evaluando estrategias de enseñanza refinadas, circunstancia que 
permitió la introducción de la metodología cíclica:

Enseñanza Æ recolección de datos Æ análisis y refinamiento teórico de las 
estrategias de enseñanza Æ siguiente ciclo del experimento.

Además de que reduce prácticamente a cero el desfase temporal entre la 
investigación y la enseñanza, la metodología cíclica posee una riqueza que tras-
ciende la contradicción que describe Elliot (1991), quien afirma:

En la investigación activa, la teoría se deriva de la práctica y está constituida 
por un conjunto de abstracciones y generalizaciones sobre ella. Lo anterior 
contradice marcadamente el punto de vista racionalista técnico que conside-
ra la práctica como la aplicación de teorías y principios que son comprendi-
dos previamente a su puesta en práctica.

La metodología cíclica es particularmente útil para la determinación expe-
rimental de la zona de desarrollo próximo del estudiante a través del proceso 
antes descrito. Son necesarios varios de esos ciclos para determinar la extensión 
de la zona de desarrollo próximo del estudiante relativa al concepto en cuestión y 
para diseñar estrategias de enseñanza que ayuden a los estudiantes a atravesar 
su zona de desarrollo próximo.

En nuestra metodología, el maestro-investigador puede iniciar la recolección 
de la información concerniente a un problema en particular en su salón de 



Educación Matemática, vol. 20, núm. 1, abril de 2008	   59

Vrunda Prabhu y Bronislaw Czarnocha

clases, buscar la relación entre las observaciones y el conocimiento teórico del 
aprendizaje existente en el campo y, sobre esa base, formular hipótesis nuevas, 
más generales (o más detalladas), que deberán ser verificadas en la siguiente oca-
sión en la que el maestro enseñe el mismo tema de matemáticas; o, guiado por 
la base de conocimiento teórico, el maestro-investigador puede introducir nuevas 
estrategias de enseñanza (o la organización del programa de estudios basada en 
una teoría del aprendizaje en particular) para evaluar y corregir su efectividad y 
modificar la teoría original, si es necesario. De esa manera, correlacionando la 
experiencia del profesional con el conocimiento teórico en el campo (en cual-
quiera de las dos direcciones y en ambas), el maestro-investigador puede unir, de 
una manera intelectualmente creativa, la teoría derivada de la práctica individual 
con las teorías compartidas en la profesión. La repetición cíclica de la enseñanza 
del mismo tema, inherente a la profesión de la enseñanza de las matemáticas, 
permite organizar la enseñanza, ya sea como la aplicación de una teoría a la 
práctica, ya sea como la derivación de una teoría de la práctica. La correlación 
de la experiencia individual sobre la enseñanza con el marco teórico otorga a la 
versión del experimento de enseñanza que se propone su calidad objetiva.

La secuencia de la enseñanza ha evolucionado a lo largo de tres ciclos de 
enseñanza-investigación y sirve, al mismo tiempo, como un instrumento de inves-
tigación con cuya ayuda se evalúan los grados de comprensión del estudiante. 
Posteriormente, los resultados de la evaluación se introducen en el ciclo siguien-
te, lo cual lleva al refinamiento de la secuencia de la enseñanza.

El desarrollo intuitivo del concepto

Considérese el problema de cálculo típico de determinar el área de la región 
delimitada por la gráfica de la función y = f (x), el eje x y las líneas verticales x = a 
y x = b. En lugar de proceder de la manera típica para obtener el límite de las 
sumas parciales mediante el empleo del enfoque de Riemann, considérese lo 
siguiente: divídase el intervalo de integración [a, b] en n subintervalos de ancho

igual, lo que arroja la partición x0, x1, … xn, donde x
b a i

ni
( )

. En la partición

hay n + 1 puntos. Considérense los cocientes del tipo 
f x

f b
i( )

( )
. En este caso, se

supone que f es una función monotónica creciente y que su valor máximo en el 
intervalo que se considera es f (b).
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El cociente 
f x

f b
i( )

( )
 denota el cociente de los “indivisibles” o el cociente de las

longitudes de dos intervalos de la línea del número real. Considérese la suma 
finita de estos cocientes:

f x

f b
i

i

n
( )

( )
0

Ahora, empléese el método bien conocido pero muy poco utilizado de la 
suma de cocientes; a saber: la suma finita de cocientes es el cociente de sus 
sumas. De ahí:
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f b
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n f b
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i

i n
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( )

( ) ( )
0

0

1
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Compárense las fórmulas (2) con el pasaje antes mencionado (1) de la obra 
de Wallis. Sea la función f (x) = x2 y el intervalo [a, b] = [0, 1]. Entonces, las tres 
líneas de (1) denotan el cociente en (2), utilizando el valor de n = 1, n = 2 y 
n = 3, respectivamente.

Llamemos a esos cocientes los cocientes de Cavalieri-Wallis (CWn):
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Figura 1

La figura 1 representa la gráfica de f (x) = x2 en [0, 1], lo cual permite interpretar 
la ecuación (3) como el cociente de la suma de n + 1 ordenadas equidistantes 
de la función f (x) dividida por la suma de n + 1 correspondiente a las ordenadas 
de la función fmax = f (1) = 1, que son las alturas indivisibles del rectángulo de 
referencia que las delimita (Czarnocha y Prabhu, 2002).1

Consecuentemente, la ecuación (3) se puede reformular de la siguiente 
manera:

CW

f
i

n

nn
i

i n

0

1 1( )

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0

10.90.80.70.60.50.40.30.20.1

1 El rectángulo de referencia es el rectángulo con una base igual al dominio de la función 
y cuyas alturas están en correspondencia con las ordenadas de la función tomadas en ciertos 
puntos especificados. Si se considera que la altura del rectángulo es fmax, tenemos un rectán-
gulo delimitante y, si la altura es 1, tenemos un rectángulo de referencia normalizado.
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Naturalmente, los “cocientes parciales” CWn se relacionan con las sumas de 
Riemann correspondientes. La correspondencia se puede establecer entre:

1)	 CWn y Rn una suma de Riemann construida en la misma partición equi-
distante del dominio del intervalo y con los mismos puntos muestra para 
los valores de la función,

y entre:

2)	 CWn y Rn + 1 construida en una partición del dominio de malla tamaño
1

1n
, con una selección especial de puntos muestra para los valores de

la función.

Nota: El límite de los cocientes CWn en el intervalo [0, 1] es la altura pro-
medio de la función f (x) en el intervalo y se define en la siguiente sección. Por 
consiguiente, el límite del cociente de la suma de un número finito de muchos 
indivisibles espaciados equidistantemente es la altura promedio de la función en 
el mismo intervalo.

Nota: Recuérdese el teorema del valor promedio del cálculo:

f
b a

f x dx

a

b

prom
1

( )

En la siguiente sección, se establece la conexión del valor promedio con un 
concepto recientemente definido, llamado la integral de Porter-Wallis.

Las matemáticas del enfoque

Definición 1. La integral de Cavalieri-Wallis
Sea f: [a, b] Æ R una función acotada:
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lim 0
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donde x0 = a, x1 = a + b a
n , … xn = a + n(b a)

n  = b y M es el supremo (la

menor de las cotas superiores) de la función. CW f x dx
a

b

( )  se denomina la in-

tegral de Cavalieri-Wallis o integral CW de la función f definida en el intervalo 
[a, b].

Obsérvese que, puesto que f está acotada, M = fmax es el valor máximo de 
la función en el intervalo [a, b]. En el caso de una función polinómica positiva 
arbitraria f(x) en [a, b], la integral CW es igual a:

( )
lim

max
n

i

i n

f a
b a

n
i

n

( )

0

1f

fnlim lim
max max i

n
f a n

n b a f
f a

b a

n
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n

( )

1( ) ( )( )
1

n n 1

	 r
n
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r

n

n A
R

A

A( )1fnlim lim
max

f a( )

( )n 1n 	 (5)

Ar = (b - a) ¥ fmax es el área del rectángulo con la base (b - a) y la altura 
fmax (figura 1).

El primer término de la ecuación (5) es proporcional al cociente de dos 
indivisibles simples correspondientes, uno de cada región, que desaparece en 
el paso al límite. En Prabhu (Prabhu et al., 2004), se muestra que la diferencia 
entre la integral de Cavalieri-Wallis y la integral de Riemann es la diferencia de 
un indivisible.

Obsérvese que el factor constante fmax  no influye en el paso al límite. 
Geométricamente, refleja el hecho de que la integral CW, establecida por (5), es 
el cociente del área de la región dividida por el área del rectángulo de referencia 
con una base igual al dominio de la función y con la altura M. En ocasiones 
resulta útil normalizar ese factor en la definición, definiéndolo como igual a 1; 
geométricamente, ello significa que el rectángulo de referencia tiene una altura 
de 1. En ese caso, la integral CW adquiere una nueva interpretación de la altu-
ra promedio de la función, un importante componente de la integral de Porter-
Wallis, que se define a continuación.
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Definición 2. La integral de Porter-Wallis
Sea f: [a, b] Æ R una función acotada y, para cada n, defínase la suma 

aproximada de la altura promedio:

	 altura promedio n f

f x

n
PW f

i

i

n

n( )

( )

( )
( )0

1
	 (6)

donde x0 = a, x1 = a + b a
n

, … xn = a + n(b a)
n

 = b.

	

PW f x dx b a PW f b a f xn n i

i

n

a

b

( ) ( ) ( ) ( ) ( )lim lim
0

n 	 (7)

PW f x dx

a

b

( )  se denomina integral de Porter-Wallis o integral PW de la función

f en el intervalo [a, b].
Obsérvese la distinción entre las dos integrales antes definidas. La integral PW 

calcula el área de la región en consideración y el límite real utilizado en el cálculo, 
esto es, la altura promedio de la región. Por otra parte, la integral CW calcula el 
cociente del área de la región dividida por el área del rectángulo delimitante.

Obsérvese otra distinción importante entre las dos integrales. En el primer 
caso, se utiliza la suma de los cocientes, mientras que, en el segundo caso, se 
utiliza el concepto estadístico del promedio.

Obsérvese que, desde el punto de vista de las matemáticas modernas, la 
claridad conceptual y de cálculo de la integral PW hace de ella una herramienta 
útil y que ha sido utilizada en esta serie en lugar de la integral CW. De ahí, 
tenemos que:

PW f x dx b a PW f b a f CW fn

a

b

( ) ( ) ( ) ( ) ( )lim limmax nn

	

A W f x dxr

a

b

( )C 	 (8)
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En la siguiente sección se muestra que la integral PW es el producto del valor 
promedio de los valores equidistantes específicamente seleccionados de la función y 
de la longitud del intervalo. De esa manera, se obtiene una nueva definición del 
área de una región irregular, definición que es intuitiva, simple y satisfecha por 
regiones geométricas regulares (véase la sección 5).

Altura promedio y área

El concepto que surge de la altura promedio es el fundamento tanto de la 
integral PW como de la integral CW. Cuando se multiplica por la longitud del 
intervalo, su resultado es el área en la forma de la integral PW; cuando se divide 
por M, el supremo (la menor de las cotas superiores) de la función, su resultado es 
el cociente del área en la forma de la integral CW. Dado que es la constante [in-
variante] de la transformación de dilatación no homogénea, es necesario que, de acuer- 
do con el programa Erlangen de Klein, se convierta en el centro de la atención de 
los estudios futuros. En seguida demostramos lo razonable del concepto.

Definición 3
Sea f: [a, b] Æ R una función acotada:

	 altura promedio limn i

i

n

n

f x

1
0

( ) 	 (9)

donde x0 = a, x1 = a + b a
n

, … xn = a + n(b a)
n

 = b.

Definición 4
Sea f: [a, b] Æ R una función acotada:

	 área (b - a) Æ limn i

i

n

n

f x

1
0

( ) 	 (10)

donde x0 = a, x1 = a + b a
n

, … xn = a + n(b a)
n

 = b,

que es, desde luego, la integral de Porter-Wallis.
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A continuación se presenta el cálculo de las áreas de las figuras geométricas 
comunes, utilizando la nueva definición y demostrando lo razonable del enfoque.

1) Rectángulo
Considérese un rectángulo con dos lados a lo largo de ejes positivos, con vérti-
ces en el origen, (a, 0), (a, b) y (0, b). La altura del rectángulo es de b unidades 
y se representa la función de esa altura como f(x) = b, 0 £ x £ a. De acuerdo 
con nuestra nueva definición, la altura promedio es:

0

limn i

i

n

i

n

n
f x

n
b

n b

n
b

1

1

1

1

1

1
( )

( )
limn limn

0

Área = ancho ¥ altura promedio = a ¥ b

Obsérvese que xi = 0 + ai

n
 = ai

n
 en el cálculo anterior.

2) Triángulo
Considérese un triángulo que conecta los puntos (0, 0), (a, 0) y (a, b). La función

de la altura es f(x) = 
b

a
x, 0 £ x £ a y para 0 £ i £ n:

xi = 0 + ai

n
 = ai

n

y f(x)i = b

a
 

¥ ai

n
 = bi

n
. La altura promedio es

	

lim lim

lim

n i

i

n

n

i

n

n

i

n

n
f x

n

bi

n

b

n n
i

1

1

1

1
0

0

( )

( )

0

1

	 limn
b

n n

n n b

( )

( )

1

1

2 2
	 (11)

Área = ancho ¥ altura promedio = 
b
2

a
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3) Trapecio
Considérese un trapecio con las alturas a y b y la base e, como se muestra en 
la siguiente figura.

Figura 2

La altura promedio de este trapecio es:

limn i

i

n

n

f x

1
0

( )

donde xi = 
ei

n

f x f
ei

ni( )

Ahora:

f x
b a

e
x a( )

b

a

0 e
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f x
b a

n
i ai( )

Entonces, la altura promedio del trapecio es:

lim lim limn n

i

n

PW
b a i a

n

b a

n

n n
a n

n1

1

2
1

1
0

( )
( )

( )

n n

	 = b a
a

2

Por consiguiente, el área del trapecio es:

área e
b a

a

b a

2

( )

2
e

Cuando a = 0, se obtiene un triángulo ortogonal cuya fórmula para el área 
implica el promedio entre las alturas 0 y b.

4) Función potencia
Considérese la función f (x) = xp, 0 £ x £ 1. Encuéntrese el área delimitada por 
la curva y sobre el eje de las x. La altura promedio es:

lim limn i

i

n

n

p

i

n

n
f x

n

i

n

1

1

1

1

1

1
0

( )
0

p

Nota: Se trata de la fórmula de Wallis, interpolada en el último paso del cál-
culo anterior, la cual permite calcular las sumas de las potencias de los enteros 
en el caso de cualquier entero positivo p.

Por ende, área = (ancho) ¥ (altura promedio) = ( )1 0
1

1

1

1p p
.
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Las implicaciones matemáticas

Obsérvese que, en el caso de una función acotada f (x) con un dominio [0, 1], la 
integral PW emplea fundamentalmente sólo el subconjunto de números racio-
nales en [0, 1] (o, más bien, un subconjunto conmensurable de [0, 1]), que tiene 
una medida de Lebesgue de 0. Es intrigante que ese conjunto de medida de 
Lebesgue 0 posea información sobre el área de la región en [0, 1] limitada por la 
función y = f (x) y las líneas y = f (0) e y = f (1), puesto que, de acuerdo con las 
matemáticas clásicas, el área/medida de tal región es sustentada por la parte no 
conmensurable del intervalo unidad y no por el conjunto conmensurable de 
números racionales. Si trasladamos el intervalo de integración de tal manera que 
los puntos finales sean números irracionales, surge un problema interesante.

Volvamos nuestra atención ahora a la integrabilidad de CW y PW.

Teorema
La clase de funciones integrables CW y PW incluye la clase de funciones 
Riemann integrables.

Prueba
Sea f una función Riemann integrable en un intervalo compacto, digamos [0, 
1]. Sea M la mínima cota superior de f en [0, 1]. Entonces, podemos demostrar 
que limnÆ�• (M ¥ CWn(f )) = limnÆ•Rn + 1(f ).

Dado que limnÆ•Rn + 1(f ) existe y es igual a f x dx( )

0

1

, entonces el limnÆ•

CWn(f ) también existe y es igual a:

f x dx

M

( )

0

1

Resta demostrar cómo se establece la correspondencia entre CWn y Rn+1.
Considérese la partición para las dos integrales como sigue. La partición

utilizada para calcular la integral CW es la malla de tamaño 
1
n

 y, en esa par-

tición, las alturas n + 1 se calculan en los puntos mostrados a continuación en 
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el primer renglón. En el siguiente renglón, considérese una partición de malla ta-

maño 
1

1n
 y, para cada uno de esos subintervalos, calcúlense las alturas para

la suma de Riemann como sigue: para el primer intervalo, 0
1

1
,
n

, utilizaremos

la altura en 0, para el segundo intervalo, 1

1

2

1n n
, , utilizaremos la altura cal-

calculada en 1
n

, etc.; y para el último intervalo, 1

1

1

1n

n

n
, , calcularemos la

altura en n
n

.

CWn : 0, 1
n

, 2
n

, … n
n

Rn+1: 0, 
1

1n
, 2

1n
,���  … n

n

1

1

Esta selección de puntos para evaluar la función f (x) para la suma de 
Riemann nos proporciona la correspondencia requerida M ¥ CWn = Rn+1, de tal 
manera que limnÆ•Rn+1 = M limnÆ•CWn. Por consiguiente, cada función Riemann 
integrable es CW y PW integrable [lqqd].

Obsérvese que no se cuenta con una condición necesaria y suficiente. Si 
una función es Riemann integrable, entonces todo límite de sumas de Riemann 
adecuadas dará la integral CW; sin embargo, si una función es CW integrable, 
entonces sólo se está utilizando un límite en ciertos subconjuntos racionales de 
intervalos limitados y ello no es lo suficientemente general para demostrar que 
una función es Riemann integrable, es decir, surge una interrogante natural: 
¿existe alguna función CW y PW integrable que no sea Riemann integrable? La 
respuesta es afirmativa.

Ejemplo
Considérese la función de Dirichlet, la función característica de los números 
racionales.

f (x) = 1 si p
q

 para los enteros p, q, con q π 0,

de lo contrario, f (x) = 0.
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Se sabe que esta función no es Riemann integrable; sin embargo, ¡es PW 
integrable con el valor 1! En realidad, dado que f (x) = 1 para cada número racio-
nal y puesto que, para cada n, PWn se define en [0, 1] sólo sobre los números 
racionales, PWn (f  ) = 1, de tal manera que limnÆ•PWn = 1.

El teorema fundamental del cálculo aplicado a la integral PW
Si f 9 es continua en [a, b], donde a y b son números reales, entonces:

	

PW f x dx f b f a

a

b

( ) ( ) ( ) 	 (8)

Demostración
f es continua (ya que es diferenciable) en el intervalo cerrado [a, b] y, por ende, 
es uniformemente continua.

Sea {xi : 0 £ i £ n} una partición equidistante de [a, b]. Para n grande, dado que 
f 9 es uniformemente continua, para ti Œ [xi - 1, xi], se cumple que f 9(xi) ª f 9(ti) 
para 0 £ i £ n. Por tanto:

PW f x dx b a PW f b a f x

n
a

b

n i

i

n

( ) ( ) ( ) ( ) ( )lim lim

1

0

n n

( )

	
( )

(
b a

(n

f
n

iilim
1)

0

n

)t

	

( )
( ) ( )

b a
n

f x f x
n

i i

i

lim
1

1
1

0

i n

xi x i 1

	

( )
( ) ( )

b a
n

f x f x
n

i i

i

lim
1

1
1

0

i n

n
b  a

	

( ( ) ( ))

( ) ( )

n
f b f a

f b f a

nlim
n

1

[lqqd].
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Obsérvese que el teorema mencionado también se puede demostrar con 
la ayuda de la integral de Riemann, utilizando la ecuación (7). Para la función f 9 
en el intervalo [a, b], si PW(f 9) denota la integral PW, R(f 9) denota la integral de 
Riemann y CW(f 9) denota la integral CW, entonces, por (7), tenemos:

PW(f 9) = ArCW(f 9)

de donde:

PW(f 9) = ArCW(f 9) = 
f

Ar
r ( )
Ar

 = R(f 9) = f (b) - f (a).

Para deshacer el nudo gordiano 
del principio de Cavalieri

Hasta aquí, nuestra exposición se ha basado en la reinterpretación de las fórmulas 
de Wallis (1). Volvemos ahora la atención al principio de Cavalieri y, en particular, a 
la paradoja de Cavalieri-Torricelli, cuyo análisis revelará una vez más el concepto de 
la altura promedio de la región irregular, que es fundamental en ambas integrales.

El principio de Cavalieri establece: dadas dos figuras planas l y k entre dos 
líneas paralelas, si cada sección paralela sl de la figura l corresponde a una sección

paralela sk de la figura k y el cociente de sus longitudes 
s
s rl

k
 es constante pa-

ra cada par, entonces el cociente de sus áreas 
A

A
l

k

 es el mismo.

Según Struik,

[Cavalieri] consideraba las áreas como la suma de indivisibles, los segmentos 
de línea de que está compuesta, y los volúmenes como la suma de áreas 
planas. Demostró cómo medir áreas planas y volúmenes sólidos mediante 
la comparación de los indivisibles de las primeras con los indivisibles de los 
segundos. Tomando los indivisibles paralelos unos a otros, Cavalieri llegó al 
principio que todavía se conoce con su nombre.

Sin embargo, el marco conceptual del principio de Cavalieri no establece 
explícitamente cómo seleccionar las líneas correspondientes, ambigüedad que 
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se expresa adecuadamente mediante la paradoja de Cavalieri-Torricelli (Struik, 
1969). Con la ayuda de la figura 3, ilustramos las correspondencias para las que 
es válido el principio de Cavalieri y para las que no lo es.

En particular, supóngase que la correspondencia se define como: “la línea PT 
en el triángulo ABD corresponde a la línea TQ en el triángulo ACD”. Entonces, 
por el teorema de Tales, su cociente es constante e igual a BD:DC. Por lo demás, 
se puede demostrar fácilmente que las áreas también conservan el mismo 
cociente, lo cual confirma la validez del principio de Cavalieri.

Por otra parte, si definimos la correspondencia entre las líneas como: “la 
línea PR corresponde a la línea QS”, entonces su cociente es claramente 1:1; sin 
embargo, las áreas de los triángulos pertinentes no tienen el cociente 1:1. Tal es el 
contenido de la paradoja de Cavalieri-Torricelli. Cavalieri era muy consciente de 
la dificultad y, según Struik (1969), “resolvió la paradoja considerando las líneas 
PR y QS como hilos de una trama. Si, por ejemplo, AC = 2AB y si AB contiene 
100 puntos, entonces AC contiene 200 y, por tanto, hay 100 hilos en ABD 
contra 200 hilos en ADC”. Según Baron (1968), este razonamiento presupone 

A

P T Q

B R D S C

h

Figura 3
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que el ancho de cada hilo es el mismo; Struik hace notar que Cavalieri utiliza en ese 
caso la noción de los números infinitesimales, antes bien que la de los números 
indivisibles. Aparentemente, Cavalieri era muy consciente de la profundidad de las 
dificultades conceptuales con que había topado, pero esperaba que “el deshacer 
ese nudo gordiano podía dejarse a un Alejandro posterior, según lo expresó” 
(Struik, 1969, p. 218).2

Una segunda solución contemporánea

Nosotros proponemos una segunda solución a la misma ecuación AC = 2AB, que 
no fue considerada por Cavalieri. En esa solución, tanto AC como AB contienen 
el mismo número de 100 puntos; sin embargo, el intervalo entre cualesquiera 
dos líneas consecutivas en AC equivale a dos veces el intervalo entre los indivisi-
bles correspondientes en AB. Esta solución introduce de manera muy natural la 
noción de la dilatación; los intervalos entre dos puntos correspondientes conse-
cutivos en AC y AB están relacionados por una transformación de dilatación no 
homogénea en el plano (x, y) Æ (ax, y). Una constante [invariante] de la transfor-
mación de dilatación es la media aritmética de los indivisibles distribuidos equi- 
distantemente. Por consiguiente, la información oculta en la correspondencia PT, 
a diferencia de la información contenida en la correspondencia PT ´ TQ, es 
que la media aritmética de los indivisibles distribuidos equidistantemente en cada

triángulo tiene el mismo valor, esto es, h
2

.

La segunda solución revela que, para un tipo de correspondencias de líneas, 
el aspecto esencial del argumento no es la comparación de las áreas, sino la 
comparación de las alturas promedio de las figuras pertinentes. El principio de 
Cavalieri deriva el área de la suma de una cantidad ilimitada de líneas o indivisi-
bles, lo cual lleva a problemas como la paradoja de Cavalieri-Torricelli. Dado que 
la integral PW utiliza las alturas promedio de la función, introduce el paso faltan-
te en la transición de los indivisibles al área. La paradoja se resuelve mediante el 
promedio, en oposición a la “suma”. “Todas las líneas” son representadas como 

2 La historia del nudo gordiano tiene su origen en el periodo del siglo iv antes de nuestra 
era, en la época de Alejandro Magno, rey de Grecia y conquistador de Persia. De acuerdo con 
la leyenda, quien deshiciera el nudo donado al templo de Zeus por Gordio I llegaría a ser el 
rey de Asia Menor. Alejandro Magno cortó el nudo gordiano con su espada en el año 333 
antes de nuestra era.
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el límite del promedio de los indivisibles muestra tomados en un número finito 
de muchos puntos equidistantes.

Nos basaremos en estas ideas para demostrar directamente que la integral 
CW es constante [invariante] en dilatación y, por tanto, que su valor es constan-
te en los dos triángulos de la paradoja de Cavalieri-Torricelli.

Lema
La integral de Cavalieri-Wallis es invariante con respecto a las dilataciones, 
(x, y) Æ (ax, y), a π 0.

CW f x dx CW f ax dx

ab

ac

b

c

( ) ( )

(Prabhu et al., 2004).
Obsérvese la diferencia con el hecho de que la integral de Riemann no es

invariante en esta situación f x dx a f ax dx

ab

ac

b

c

( ) ( )  (Wildberger, 2002).

f x( )

f ax( )

ac c
ab
b

Figura 4
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Prueba

CW f x dx

f x

n f ac

f
ac ab i

n

n f acn

i
i

n

n
i

n

ab

ac

( )

( )

( ) ( )

( )

( ) ( )
lim lim0 0

1 1

donde 
( )

x
ac ab i

ni

También:

CW f ax dx

f ax

n f c

f a
c b i

n

n f cn
b

c i

i

n

n
i

n

( )

( )

( ) ( )

( )

( ) ( )
lim lim0 0

1 1

donde x
c b i

ni
( )

Obsérvese que las dos sumas son iguales debido a que, por dilatación (x, y) 
Æ (ax, y), f (c) = f (ac). lqqd.

Volviendo a la discusión de la paradoja de Cavalieri-Torricelli, compárense los 
triángulos ABD y ACD de la figura 3 con los triángulos POR y QOS de la figura 5, 
respectivamente. Los dos lados AB y AC del triángulo ABC se reconsideran como 
la función f (x) y su dilatación, f (ax), en la figura 5, estableciendo una corresponden-
cia entre dichos triángulos en las dos figuras; a saber: el triángulo POR corresponde 
al triángulo ABD y el triángulo QOS corresponde al triángulo ACD. Obsérvese que 
el lado AC del triángulo se traslada primero para que pase a través del origen y 
luego se refleja en el eje vertical para obtener la nueva figura que sigue (figura 5).

En particular, considérese que el lado del triángulo que pasa a través del 
origen sea:

f (x) = mx

y el otro lado inclinado del triángulo sea:

g(x) = m1x + b

En el primer paso trasladamos g(x), de tal manera que pase por el origen, 
traslación denotada por:

g1(x) = m1x
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Figura 5

En el siguiente paso, reflejamos g1(x) sobre el eje vertical para obtener:

g2(x) = -m1x

Afirmación: g2(x) es una dilatación de f (x)

g x m x
m

m
mx

m

m
f x f ax2 1

1 1( ) ( ) ( )

con una dilatación constante a
m

m
1

De donde, de acuerdo con el lema mencionado, tenemos:

CW f x dx CW f ax dx
R S

( ) ( )
0 0

1

2

por (11), sección 6.

P Q

O R S

h

h

f ax( )

f x( )
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Análisis de la información y contribución 
al campo de la educación de las matemáticas

La teoría de Vygostky sugiere que el lenguaje es un medio de evaluación; conse-
cuentemente, nos valemos extensamente de la “senda” que siguen los estudiantes 
en sus ensayos, senda cuya función, desde el punto de vista de la evaluación, es pro-
porcionar indicios de la dinámica del pensamiento del estudiante, la coherencia de 
los conceptos y la profundidad y coordinación de su plan. Además de los ensayos 
matemáticos, la información incluye transcripciones de las entrevistas clínicas lle-
vadas a cabo al final del periodo escolar, así como el método del grupo de control 
para evaluar el impacto de la nueva enseñanza en la comprensión que logre el 
estudiante del concepto normal de la integral definida y en lo cómodo que se sien-
ta con dicho concepto. En el método del grupo control, la solución de problemas 
pertinentes en el examen final se emplea como la pauta de la efectividad.

Los resultados

Los resultados del proyecto poseen muchas dimensiones.
1)	 Se ofrecen pruebas afirmativas que responden a la interrogante de la 

investigación: ¿se fortalece en los estudiantes la comprensión del concepto 
de la integral definida con la introducción de la integral de Cavalieri-Wallis 
basada en los indivisibles, la interacción de dicha construcción con la in- 
tegral normal de Riemann y la enseñanza que integra una y otra cons-
trucciones?

	 i)	 La colección de 11 ensayos del segundo semestre de Cálculo de primer 
año en un instituto técnico superior en la primavera de 2003 indica 
que todos y cada uno de los 11 estudiantes de la clase comprendie-
ron cabalmente la construcción de Cavalieri-Wallis y su relación con 
el método de Riemann. Se entregó a los estudiantes una tarea de 
ensayo para describir su razonamiento y sus métodos de cálculo del 
volumen de la región obtenida rotando la región delimitada por y = x2, 
y = 1 y x = 0 en torno al eje de las y. Todos los estudiantes fueron 
claros en la diferencia entre los dos métodos y observaron la similitud 
de cálculo entre los dos, aun cuando cada uno tiene un significado 
operativo significativamente diferente. La simplicidad del empleo del 
valor promedio de la altura, que en el caso bidimensional reduce el pro-
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blema al rectángulo trazado sobre la base, multiplicada por la altura 
promedio obtenida a partir del proceso de aproximación/limitación, o, 
en el caso tridimensional, al cilindro con el radio promedio obtenido 
a partir del proceso similar, está expresada inequívocamente en todos 
los ensayos (y en muchas entrevistas clínicas). En su ensayo, uno de los 
estudiantes afirma: “Después utilicé el radio promedio para trazar una 
figura conocida, un cilindro en este caso, y recurrí a la geometría básica 
para calcular el volumen aproximado del sólido”.

	 ii)	 A los estudiantes de un grupo experimental y de uno de control se les 
planteó el siguiente problema: Sea

( )x dx2

0

3

1

		  Muestre todo el trabajo desarrollado para lo siguiente y haga un dibujo 
para ilustrar su representación geométrica.

	 a)	 ¿Qué representa geométricamente la integral definida mencionada?
	 b)	 Utilice la definición para evaluar la integral definida mencionada.
	 c)	 Aplique el teorema fundamental del cálculo para evaluar la integral 

definida.

	 El problema fue uno de 15 de un examen final de tres horas para el curso. 
Había 14 estudiantes en el grupo experimental y 21 en el grupo control 
en un instituto comunitario urbano. El grupo control recibió clases de los 
miembros experimentados del cuerpo docente de la facultad de matemá-
ticas, que introdujeron el límite de una secuencia como requisito para la 
integral definida, pero no introdujeron la construcción de Porter-Wallis. Los 
estudiantes del grupo experimental recibieron instrucciones de elegir cual-
quiera de las dos construcciones con la que se sintieran cómodos.

% que aplicó 
la geometría

% obtenido 
de resultados 

geométricos correctos

% que aplicó 
correctamente el 

teorema fundamental 
del cálculo 

N = 14 
grupo experimental

100 43 57

N = 21 
grupo tradicional

52 10 38
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	 Los resultados tabulados muestran que la inclusión de la construcción PW 
como paso para llegar a la construcción de Riemann realmente fue útil 
para los estudiantes en lo que respecta a la manera de abordar la integral 
definida, así como en lo que se refiere al modo de abordarla exitosamente, 
en comparación con la efectividad de la enseñanza normal limitada a la 
integral de Riemann. La comparación de los resultados de ii) con los de i) 
sugiere que la nueva construcción podría ser más efectiva en su función 
de apoyo para los estudiantes de los institutos comunitarios urbanos que 
para los de los institutos técnicos con una carrera de cuatro años.

2)	 Hemos desarrollado las dos nuevas secuencias de enseñanza como la 
base de la Reforma del Cálculo de Segunda Generación (Prabhu et al., 2004; 
Czarnocha y Prabhu, 2006), abordando los límites de las secuencias y los 
elementos lógicos requeridos para ello y la integral definida en Cálculo de 
primer año (Czarnocha y Prabhu, nsf Final Report, 2006).

3)	 La transformación de la metodología del Experimento de Enseñanza de 
rumec en el enfoque bidireccional de la práctica para la investigación y 
la investigación para la práctica se expandió y formalizó como el Modelo 
nyc de Enseñanza-Investigación (Prabhu y Czarnocha, 2006). La metodo-
logía, que es particularmente efectiva para el proceso del mejoramiento 
cíclico de la enseñanza en el salón de clases, se ha utilizado exitosa-
mente en experimentos de enseñanza en Estados Unidos, Polonia y la 
India.

4)	 Hemos proporcionado tres componentes diferentes de la respuesta a la pre-
gunta de investigación: ¿Cuál es el proceso de transformación y desarrollo 
de la intuición de las líneas (los indivisibles) en un concepto matemático 
preciso?

En otras palabras, la pregunta de investigación se refiere a la trayectoria hi-
potética de la enseñanza (Simón, 1995), que parte de la intuición de las líneas 
como pertenecientes al concepto del área y desemboca en el concepto “científi-
co” del cálculo. Podemos proporcionar tres fases de su desarrollo: el primer paso 
temprano del desarrollo fue notado por Oughthred y Mitchelmore (Oughthred y 
Mitchelmore 2000), quienes observaron que

…algunos niños persistían en atribuir a la longitud la cualidad de llenar espa-
cios: medían el área de un cuadrado mediante el cálculo de la longitud de 
uno de los lados, movían la regla y sumaban la longitud del lado a la medida 
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previa, y así sucesivamente, hasta terminar ese proceso repetitivo en algún 
momento arbitrario.

Mientras que Oughthred y Mitchelmore interpretan esos resultados como la 
confusión del área con el lado medido varias veces, nosotros sugerimos que esos 
actos de los niños podrían ser motivados por la intuición de los indivisibles/las 
líneas como los componentes básicos del área.

Un estudiante de Cálculo de primer año de una importante universidad esta-
dunidense del oeste medio hace explícito el segundo paso del desarrollo de la 
trayectoria hipotética de la enseñanza y el aprendizaje cuando está tratando de 
entender la suma de Riemann (Czarnocha et al., 2001). Obsérvese la similitud 
de la actividad mental de la medición y la suma de la longitud de las líneas que 
componen el área delimitada por la figura con la actividad física de los niños 
antes descrita. En lugar de medir un número finito de líneas, el estudiante de 
cálculo imagina la medición de un número infinito de ellas, seguida por la suma 
de un conjunto infinito de números: sus longitudes.

Citamos un fragmento de la entrevista clínica, acompañado del análisis de la 
zona de desarrollo próximo del estudiante que indica las conexiones faltantes 
del plan:

[1] E5: Pues, ah, bueno, la suma de Riemann lo descompone en n, un número infinito

[2] de rectángulos. Y es difícil aplicar la teoría que lo sustenta. Es difícil para mí.

[3] Ah… básicamente, la suma de Riemann era sólo el total del área de un número de

[4] rectángulos donde siempre se tenía un número con cierto error, porque no

[5] concordaban directamente con cada punto.

[6] Entrevistador: ¿Cómo obtendría el área…

[7] E5: Ah…

[8] Entrevistador: …más aproximada posible?

[9] E5: El área más aproximada posible sería tomando la longitud de un segmento de línea

[10] del eje de las x a la función misma. Y eso le daría un número infinitamente

[11] grande de… muchas áreas que sumar. Y eso es lo que le da la integral definida.

[12] Sólo le permite, ¿sabe?, poder trabajar básicamente con un rectángulo

[13] sin ancho, sólo altura. Así que, se calcula, ¿sabe?, la longitud de un

[14] segmento de línea. Así que se suma la longitud de todos y cada uno de los segmentos de línea

[15] y, ah, se obtiene un área. [Pausa] Se puede, estoy tratando de recordar la teoría

[16] que sustenta la manera en que la integral definida le da la suma de los rectángulos. No

[17] recuerdo eso. Ah…
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Las líneas 1 y 2 revelan una fractura en la zona de desarrollo próximo del 
estudiante entre los términos finitos de la secuencia de las sumas parciales 
de Riemann y su límite (cuando nÆ•), el área delimitada por la curva. En este 
caso, la noción intuitiva de la suma del área de un número finito de muchos 
rectángulos, que se aproxima al área buscada, no ha sido adecuadamente desar-
rollada (en el sentido de Vygostky antes mencionado) en la noción precisa del 
límite para tener en cuenta y dar sustento a la noción “científica” de la integral 
definida. Vygostky confirma que “es esencial llevar primero los conceptos espon-
táneos a cierto grado de desarrollo que garantice que los conceptos científicos 
[el límite, en este caso] se encuentren realmente justo sobre los espontáneos” 
(p. 195). Debido a esa falta de desarrollo, el estudiante construye la noción de 
la suma infinita.

Las líneas 4, 5 y 9 revelan una de las fuentes espontáneas de la intuición de las 
líneas. El estudiante las considera, correctamente, como carentes del error de 
aproximación, que todo rectángulo delimitante o incluyente contiene. Nuestro 
experimento piloto, llevado a cabo en el otoño de 2000, reveló que los estudian-
tes que se preocupan por el ajuste exacto, la medida exacta de la línea, asimilan 
la técnica de los indivisibles muy rápidamente.

En las líneas 10 y 11, el estudiante integra la idea de las líneas (indivisibles) con 
la suma infinita para obtener el área. Una vez más, la suma total de las líneas es 
infinita debido a la falta del concepto adecuado del límite. En la línea 11, incor-
pora, superficialmente en ese momento, la integración de los indivisibles al plan 
de la integral definida.

Para facilitar la tercera fase de la trayectoria hipotética del desarrollo en la 
transformación de la intuición de lo indivisible en un concepto científico, hemos 
tomado la noción del estudiante de la suma infinita de longitudes de líneas y, 
con la ayuda de las fórmulas de Wallis, la hemos transformado en las integrales 
definidas de Porter-Wallis y Cavalieri-Wallis, cuyas matemáticas ya fueron abor-
dadas en secciones anteriores. La indicación de que cierto número de estudian-
tes haya preferido la integral de Porter-Wallis a la construcción de Riemann para 
determinar el área delimitada por la curva dada sugiere que esos estudiantes 
asimilaron el desarrollo propuesto del concepto.
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Las voces del salón de clases

La integral de Porter-Wallis fue introducida en la enseñanza en el contexto del 
experimento de enseñanza financiado por la subvención nsf/ROLE # 0126141, 
Introducción de los Indivisibles en la Enseñanza del Cálculo. Las respuestas de los 
estudiantes, que confirman la hipótesis del proyecto de que entre los estudian-
tes existen dos intuiciones del concepto del área, pueden agruparse de acuerdo 
con esas intuiciones. Los pasajes de los ensayos de los estudiantes citados 
a continuación indican que, para algunos de ellos, la integral PW es más simple 
en los cálculos y, para algunos otros, que conceptualmente es más significativa 
que la construcción de Riemann; para otros más, aquellos que entienden que 
el área se ajusta a los cuadrados unitarios, la construcción de Riemann es más 
natural. La integral PW, con un número reducido de variables cambiantes y su 
relación directa con el concepto intuitivo del promedio, se presenta como el 
sustento de la integral de Riemann para el Cálculo de primer año.

En el caso de las funciones continuas limitadas con un número finito de 
discontinuidades, la noción de la integración de Porter-Wallis coincide con la 
integración de Riemann y es más simple de derivar. La mayoría de los libros 
de texto y de los docentes introducen las sumas de Riemann con una ilustra-
ción geométrica de una serie de rectángulos verticales de anchos diferentes y 
alturas diferentes. La ilustración ayuda a entender una suma de Riemann, pero 
no mucho en el proceso del límite. Tanto el número de rectángulos como los 
anchos variantes y las alturas variantes son cambiantes y contribuyen a la con-
fusión del estudiante. La integral de Porter-Wallis, que implica únicamente los 
valores de la función en puntos equidistantes y su promedio, simplifica signifi-
cativamente ese problema; además, la definición de la integración de Riemann 
requiere no sólo un límite que incluye dos variables sino también el empleo de 
redes. Existe la tendencia a “deslizarse” sobre la compleja naturaleza de esa 
definición, especialmente debido a que su potencial completo nunca ha sido 
utilizado en el curso (Knisley, 1997); por lo demás, la integral PW implica menos 
variables en el proceso de obtención del límite, emplea el límite de secuencias 
en lugar del de redes y, puesto que:

a)	 no emplea la noción de aproximación al área, y
b)	 la altura indivisible con ancho 0 se ajusta exactamente al punto de la 

curva, ����������������������������������������������������       los estudiantes consideran a menudo que la integral PW es “más 
exacta”.
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Los pasajes de los estudiantes citados a continuación provienen de sus 
ensayos de matemáticas, cuyo objetivo era comparar los dos enfoques.

E1: Puedo decir que los dos métodos me parecen naturales, aunque el 
método de Riemann parece ser más complejo para mí. Las razones que 
tengo para decir eso son, primero: conocer dos métodos diferentes para 
calcular el área me ayudará a aprender más; por ejemplo: en el método 
de cálculo del área, el hecho de basarme primero en Riemann me ayuda a 
determinar si los rectángulos están delimitados por la curva (inscritos) o sobre 
ella (circunscritos), antes de aplicar el método correspondiente. El método de 
Porter-Wallis es menos complejo para mí, porque sólo tengo que aplicar una 
fórmula al cálculo del área; por lo tanto, puedo recordarlo más fácilmente.

E2: Me parece que el método de Porter-Wallis es más natural y fácil de 
aplicar que el de Riemann, porque tiene más sentido que, encontrando la altu-
ra promedio, finalmente llegue a encontrar el área delimitada por la curva. 
También es más fácil de calcular. No nos perdemos; pero con Riemann me 
pierdo muchas veces.

E3: Personalmente, prefiero el método de Riemann debido a los rectángu-
los visualmente compuestos, lo cual coincide con mi comprensión de lo que 
pasa, incluidas las funciones de la fórmula, etcétera. También siento que es 
más natural; lo básico de la integral de Riemann es encontrar las áreas más 
exactas (medición de las áreas) delimitadas por la curva y las fórmulas y los 
métodos satisfacen el objetivo.

E4: Al comparar los dos métodos, me parece que Riemann es mejor para 
el cálculo del área. Aunque los dos métodos deberían de arrojar fundamen-
talmente el mismo resultado, mi hipótesis es que el método de Riemann es más 
preciso. La razón es la siguiente: cuando se calcula el área de un rectángulo 
o de cualquier figura geométrica, se tienen las unidades como cuadrados uni-
tarios; la idea es que debemos poder ajustarlas en los cuadrados de longitud 
y ancho de 1 unidad. El número de cuadrados es igual al área de la figura. 
Esto parece relacionarse con la idea que sustenta a la integral de Riemann. 
Por consiguiente, me parece que la integral de Riemann es un mejor método 
para calcular el área.
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Conclusiones

Se concluye este artículo con algunas implicaciones más de los nuevos conceptos, 
al mismo tiempo que se hace notar su naturaleza poco común. Se ha mostrado 
un proceso mediante el cual el análisis de las entrevistas clínicas de los estudiantes 
centrado en la construcción de Riemann, combinado con la reinterpretación 
moderna de las fórmulas de Wallis, lleva a la formulación de nuevos conceptos 
matemáticos, las integrales de Cavalieri-Wallis y Porter-Wallis, y proporciona 
una nueva percepción de la naturaleza del principio de Cavalieri, algo que no 
sospechaba el autor de este artículo. La relación mutua entre esas integrales 
es muy interesante en sí misma. Por una parte, la integral de Cavalieri-Wallis 
permite calcular el cociente de las áreas, mientras que, por otra parte, la integral 
de Porter-Wallis permite calcular el área misma. Como resultado, la integral de 
Cavalieri-Wallis es constante [invariante] respecto a la dilatación, pero no así la 
integral de Porter-Wallis. Igualmente interesante es la función de la equidistan-
cia. Mientras que la equidistancia de los indivisibles en la construcción original 
de Cavalieri se introduce a mano, por así decirlo, en el enfoque que se presenta 
en este artículo es esencial para la definición el significado y la construcción de 
la integral de Porter-Wallis. La formulación de la integral de Porter-Wallis motivó 
que se hiciera una nueva definición del área, definición en la que la partición 
equidistante de la base desempeña una función crítica. Si las distancias entre los 
puntos muestra no fuesen iguales, entonces la fórmula (10) no arrojaría la media 
aritmética de las alturas. Para poder explicar ese efecto, sería necesario introducir 
ponderaciones estadísticas para cada ordenada muestra de la suma. Además, 
la integral de Porter-Wallis simplifica la exposición de la integral definida en el 
cálculo y constituye un fundamento más sólido para la integral de Riemann, que 
es más compleja.

También resulta intrigante ponderar el descubrimiento del área, que se 
puede definir para un rectángulo cuya base es el conjunto de números raciona-
les en el intervalo de unidades [0, 1] en el eje de las x y cuya altura es el intervalo 
continuo [0,1] en el eje de las y. Como antes se mencionó, el área medida con 
la ayuda de la medida de Lebesgue de un objeto de esas características es 0; sin 
embargo, el área medida con la ayuda de la integral de Porter-Wallis es 1. ¿Qué 
significa esa fascinante diferencia? ¿Qué nos dice respecto al concepto de un 
área en general? ¿Es el concepto típico de la medida de Lebesgue lo suficiente-
mente rico como para sacar a la luz todas las propiedades de los números racio-
nales? Además, ¿cuál es el análogo de la integral de Lebesgue en el contexto del 
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método Porter-Wallis? ¿Cuáles son las consecuencias matemáticas de la segunda 
solución propuesta para la paradoja Cavalieri-Torricelli? ¿Cuál es la función de 
la invariabilidad de dilatación de la nueva definición de la altura promedio de las 
regiones irregulares? Los estudiantes universitarios de matemáticas pueden abor-
dar exitosamente estas nuevas interrogantes si se les da la oportunidad de lidiar 
con cuestiones fundamentales de las matemáticas, como la relación entre lo 
discreto y lo continuo, la relación entre el cociente y el promedio o el significado 
del concepto de área.

Deseamos extender las gracias a nuestros colegas Mohamed Messaoudene, Ivan 
Petrovic, Maria Psarelli, Alexander Vaninsky y Joe Johnson por sus aleccionadoras 
discusiones sobre el tema y por su contribución intelectual.
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