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= Resumen: En este articulo se presenta de manera completa, rigurosa
y compacta, la teorfa cldsica de las finanzas (TF). No pretende intro-
ducir teoremas novedosos, sino sélo entretejerlos usando un método
que nunca ha sido utilizado en la demostracion de representaciones de
utilidad: el teorema de Tarski (1957) sobre puntos fijos de reticulos.
Define explicitamente los conceptos tipicos aplicados en la teoria y
practica de las finanzas a partir de la nocion filoséficamente fundamen-
tal de la racionalidad: el concepto de preferencia. La contribucién del
trabajo consiste en presentar de manera compacta, ordenada, rigurosa
y abstracta, las definiciones y teoremas fundamentales, asi como en
proveer demostraciones novedosas de éstos. El trabajo culmina oftre-
ciendo una explicacion general del conocido concepto de portafolio
aprovechando el desarrollo abstracto que le precede. Es de esperarse
que el trabajo tenga una utilidad did4ctica en la ensefianza de la TF.

= Abstract: In the present paper classical financial theory (TF) is pre-
sented in a complete, rigorous and compact way. It does not intend
to introduce novel theorems, but only to interweave them using
a method that has never been used in the demonstration of utility
representations: Tarski’s (1957) theorem on fixed points of lattices.
It defines explicitly the typical concepts applied in financial theory
and practice, starting with the philosophically fundamental notion of
rationality: the concept of preference. The contribution of the paper
consists of presenting the fundamental concepts and theorems in a
compact, orderly, rigorous and abstract way, as well as in providing
novel proofs of the latter. The paper ends by offering a general ex-
planation of the well-known concept of portfolio, taking advantage
of the preceding abstract development. Hopefully, this work will be
useful in the teaching of TF.
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s Motivacion

La TF, basada en la teoria de la utilidad esperada de John von Neumann
y Oskar Morgenstern (1947), concibe los proyectos de inversion finan-
ciera como loterias en un sentido muy preciso y postula un concepto de
racionalidad bastante plausible desde un punto de vista estadistico. Per-
mite asimismo definir un concepto toral para la economia financiera: el
concepto de aversion al riesgo. De la TF se desprende una metodologia
bien definida para la administracién financiera. La teoria de la utilidad
esperada de Von Neumann y Morgenstern; por otra parte, es también el
fundamento de la teoria de la eleccion racional como se presenta en el
famoso e importante texto cldsico de Luce y Raiffa (1957).

Después de presentar con bastante detalle los fundamentos de la TF,
procedo a definir los conceptos relevantes para las finanzas y a explicar
los detalles metodoldgicos de su aplicacion.

»  Fundamentos

El concepto fundamental de la TF es el de preferencia regular (a veces
llamada “racional”), el cual se introduce en la siguiente definicién.

DEFINICION 1 B es una estructura de preferencia regular Syss
existen Py - tales que

©) B=(P,>);

(1) P es un conjunto no vacio;

(2) =~ es una relacién binaria sobre P;

(3) = es conectada; es decir, paratodo p,ge P:p>q 0 q*> p;

(4) = esreflexiva; es decir, paratodo pe P: p = p;

(5) = es transitiva; es decir, para todo p,q,reP:sip>=q y q>r
entonces p > r.

Decimos que una relacién de preferencia que satisface las condicio-
nes (2)—(5) de la definicién 1 es regular. La siguiente definicién introdu-
ce las relaciones que vienen l6gicamente asociadas a = .
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DEFINICION 2 Sea <P,>-> una estructura de preferencia regular.
Definimos los siguientes conceptos:

(1) Si p,q € P, decimos que p es estrictamente preferido a q 'y escri-
bimos p > g syss no es el caso que g > p. Decimos que > es la parte
asimétrica de = .

(2) Si p,qe P, decimos que p es indiferente a q y escribimos

p=qsyssqzpypx=q.

Larelacion > es calificada como asimétrica porque efectivamente lo
es. Ello se demuestra mds abajo (véase el lema 1).

DEFINICION 3 {8 es una estructura de preferencia estricta Syss
existen Py > tales que

©0) R=(P.-);

(1) > esla parte asimétrica de una relacién de preferencia regular;

(2) * es negativamente transitiva; es decir, para todo p,q,r € P tal
que p>g:obien p>r,obien r>g,oambas cosas a la vez.

El siguiente lema es inmediato y solamente recoge las propiedades
elementales de la relacion de preferencia estricta.

LEMA I Sea <P, >—> una estructura de preferencia estricta. Entonces:

(1) > es asimétrica; es decir, para todo p,q,€ P:si p > g entonces
no es el casoque g > p;

(2) > esirreflexiva; es decir, para todo p € P, no es el caso que p > p.

(3) > es transitiva; es decir, para todo p,q,r € P,p>=qy q>r

implican p > r.

(4) >~ es aciclica; es decir, para toda secuencia finita p,,...,p, tal
que p, > p,>...>p  >p noeselcasoque p > p,.

(5) > es negativamente transitiva.

Demostracion: Supéngase que p > ¢ . Esto significaque p > g pero
no g > p. Si g > p tendriamos que g > p perono p > q. Pero esto es
incompatible con lo primero.

Si > fuera reflexiva, tendriamos p > p'y, por la asimetria de >, in-
feririamos que no es el caso que p > p, obteniendo una contradiccion.

Supdéngaseque p>=q y g >=r.Sir > p,como p>q implica p > g,
tendriamos 7 > ¢, por la transitividad de . Pero ello contradice ¢ > r.
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Mostraré por induccion sobre la longitud de las secuencias la aciclici-
dad de . Es inmediato, por la asimetria de >, que si p, > p, entonces
no es el caso que p, > p,. Supéngase que la proposicion vale para n—1
y considérese la secuencia p, = p, >=...>p > p .Si p > ptendria-
mos por transitividad que p > p,, contrariamente a la hipotesis.

Finalmente, sean p, ¢, r elementos de P y supongase que p > ¢.Si
r~q,setiene p>r;sir~ p, setiene r > g . Sirno es indiferente ni a
p ni a g, s6lo hay tres posibilidades: »>p>qg,p>r>q y p>q>r.
En el primer caso se tiene » > ¢, en el segundo tanto p > como r > ¢q,
y en el tercero p > r.o

La motivacién econdmica para introducir > es la de comparar dife-
rentes “loterias” sobre un cierto conjunto de “premios”. El concepto de
loteria se define, de manera precisa, como una distribucién simple de
probabilidad.

DEFINICION 4 Sea X un conjunto no vacio. Una distribucién simple
de probabilidad sobre X es una funcién p:S — [0, 1] ,donde S es un sub-
conjunto finito de X, tal que p(x) >0 paratodo xe S,y X p(x) =1.
El conjunto S es llamado el soporte de p y denotado como ‘sop(p)’. Sipy
q son dos distribuciones simples de probabilidad sobre Xy a €|0,1], la
combinacion convexa op+\1— a)q de p y ¢ se define como la funcién
r definida sobre T = sop( p)Usop q) que asigna a x €T el nimero
Ocp(x)+(1—oc q x), en el entendido de que plx)=0si xesop(p)
y q(x)= 0six esop(q).

LEMA 2 Si p y g son distribuciones simples de probabilidad sobre
X, la combinacién convexa r= Ocp+(1— a)q de py q(O <a<l1)
también es una distribucién simple de probabilidad sobre X con
T= sop( p) U sop (q) como soporte. En otras palabras, el conjunto P de
todas las distribuciones simples de probabilidad sobre un conjunto no
vacio X es convexo.

Demostracion: Sean p y g distribuciones simples de probabilidad
sobre X y sea r=ap+\1—a)g la combinacién convexa de p y ¢
(0<o<1). Sea T = sop Ep} U sop(q). Claramente, 7"es un subconjun-
to finitode X. Si xeT,plx)>0 o0 g x)>0. Si Oc=0,r(x)=q(x)>0.
Sio=1r(x)= p(x) >0.En cualquier otro caso, ap(x) >0y ,
(1- a)q(x) >0 de manera que r()?) = Ocp(x)+(1— a)q(x) >0. o

Al establecer la convexidad del conjunto de las distribuciones sim-
ples de probabilidad sobre un conjunto X, el lema 2 nos permite introdu-
cir la siguiente definicién.
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DEFINICION 5 2 es una estructura de Von Neumann-Morgenstern
syss existen X, Py > y tales que

0) A={X,P>);

(1) X es un conjunto no vacio;

(2) P es el conjunto de las distribuciones simples de probabilidad
sobre X;

3) <P,>—> es una estructura de preferencia estricta; es decir, > es
asimétrica y negativamente transitiva sobre P;

(4) para todo p,ge Pconp>qyu«o 6(0,1)2 si » € P entonces
Ocp+(1—0¢ r=oagq+\1-o)r;

(5) sip, gy rson elementos de P tales que p > g > r, entonces exis-
ten o, 6(0,1 tales que ap+(1-a)r=q> ﬁp+(1—[3)r;

(6) existen al menos dos elementos p,q € P talesque p>gq.

Los elementos de P son llamados loferias. Para cualquier x € X,0_
es la loteria que asigna el premio x con probabilidad 1. Si existe un
premio b maximamente preferido en X y uno minimamente preferido
w,6, es la loterfa maximamente preferida y 0, la menos deseable. En tal
caso se tiene, para cualquier p € P,6, = p =6, .0, y 6, son llamadas las
loterias extremas y cualquier combinacion convexa de ellas una combi-
nacion extrema. En todo caso, el axioma 6 de la definicion 5 garantiza
que la estructura es no trivial al exigir que haya al menos dos loterias
que no sean indiferentes entre si.

LEMA 3 Para todo p,qe Pcon p>gq y todo a,ﬁe(O,l):ap+
(1—a)q>,3p+(1—ﬁ)q syss o > f3.

Demostracion: Supéngase que o > f3 ysea ¥ = 3/ . Claramente,
0 <y <1y tenemos, dado que p > g,

(D p=(1-v)p+yp
- (1— y)q+ Yp por el axioma 4 de la def. 5
=yp+(1-7)q.
Por ende, por el mismo axioma,

2) Otp+(1—0£)q>—a[j/p+(l—}/)q:|+(l—a)q
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=ayp+a(1—y)q+(1—a)q
=oyptaq—oyqg+q—oq
=Ozj/p+(1—a)/)q
=Bp+(1-B)a.
Supéngase ahora que orp+(1—0ot)q > ﬂp+(1—ﬁ)q. Si B=a,
3) ap+(1-a)g=pp+(1-p)q;
si B> o, por virtud del primer resultado,
4) Otp+(1—0¢)q>—ﬁp+(l—ﬁ)q
- ocp+(1—oc)q.
En ambos casos contradiciendo la asimetria de > .o

LEMA 4 Para toda p,q,r € P:si p >=r > q, existe precisamente un
ae[O,l] tal que r ~op+\1-)q.

Demostracion: Si r ~ p, la asercion vale con oo = 1; si » ~ g , esco-
jase 0. = 0. Sean, pues, p =7 >-q,B =r{ﬁ € [0,1]|ﬁp+(l—ﬂ)q - r?, y
B=1{Be [0,1]|r - PBp+ (1 - ﬁ)q . Nétese que estos conjuntos son no va-
cios por el axioma 5 de la definicién 5. Mostraremos que o = infB = supB
no es elemento ni de B ni de B. Esto implica que » ~op+(1-a)q,
pues de lo contrario tendriamos Ocp+(1—oc)q =ror=ap+\l-a)gq,
siendo que lo primero implica o € B y lo segundo 0. € B.

Sea B, pues, cualquier elemento de B, de modo que
ﬁp+(1—ﬁ)q =r=q.

Por el axioma 5 de la definicién 5, existe un y € (0, 1) tal que

5) v[Br+(1-B)al+(1-7)q-r
Sea 8’ = By. Como y >0, tenemos que B’ € [0,1]; como y<L,B" <.
Ademais,

(6) Bp+(1-p)a=y[Bp+(1-B)q|+(1-7)qg~r,
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de modo que 8’ € B . Esto muestra que para todo elemento de B siem-
pre existe uno mds pequefio que también estd en B. Un argumento
andlogo muestra que para todo € B siempre existe un 8’ mayor que
también esta en B .o

Por virtud del lema 4, cada p € P es indiferente precisamente a una
combinacién extrema. En lo subsiguiente, ¢ : P — P serd la funcién
que asigna a cada p € P la combinacién extrema (p( p) que es indife-
rente a p.

LEMA 5 Paratodo p,ge P y ae[O,l]:ap+(1—a)q~oc(p(p)
+(1—a)<p(q).

Demostracion: Sea f : [0.1] > [0,1] la funcién definida por la si-
guiente condicion:

7 f(a)za’ Syss ap+(1—a)q~a’go(p)+(1—oc’)(p(q).

Claramente, f(l)= 1,f(0)=0 y f es creciente en [0,1]; es de-
cir, a>f implica fla)> f([? para todo a,ﬂe[O,l].En efecto, si
a>Bap+(1-a)g~a'p(p)+(1-a)e(q) y Bp+(1-B)a~ Bo(p)
+ (1 - [3’)(p q), entonces, por el lema 3,

’

(8) o'o(p)+(1-a)e(q)~ap+(1-a)q
=Bp+(1-B)q
~Bo(p)+(1-5)o(q)
lo cual implica, nuevamente por el lema 3, f(a)=a’> B’ = f(B).

Para un a arbitrario, pero fijo, consideremos sendas secuencias con-
vergentes de puntos de [0,1]. Una, (97k) decreciente y aproximandose
a o como limite por arriba (o sea, ¢ <7y, para todo k); la otra, (Zk)
creciente y aproximandose a o por abajo (0 sea, ¥, < o para todo k).
Consideremos ahora las secuencias de intervalos

(7] [, ]

Como cualquiera de estos subintervalos es un reticulo completamen-
te ordenado y completo (con respecto a la relacién de orden usual entre
ndmeros reales), y f es creciente, el teorema de Tarski (1957) implica
que en cada uno de estos intervalos hay puntos fijos
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5, <[7.a]. o <[ay)

es decir, puntos tales que @, = f(&k) y o, = f(Qck) . Luego, para es-
tos puntos,

) ap+(1-a,)q~a,0(p)+(1-a,)e(q)
y
(10) o, p+(1-e,)a~a,0(p)+(1-a,)e(q).

Si oves &, o ¢, para algiin k, ya terminamos. De lo contrario, con-
sidérense los intervalos

an 1, =lreplap+(i-a,)g-r-ap+(1-2,)q}

y

(12) J, {re Pla,o(p)+(1-,)0(g) - r - 2,0(p)+ (1-2, )9 ()}
Sean I=n,_ I, y J=n,_ J, .Esficil ver que I es no vacio, ya que

al menos o p+(1—a)qestd en I. Andlogamente, J tampoco es vacio

porque al menos a(p( p65+ (1- a)(p(q) es elemento de J. Ademds, tanto

I como J son clases de indiferencia. En efecto, si r € I tenemos, para
cualquier &,

(13) ap+(1-a)g-r-ap+(1-o,)q
Por lo tanto, por el lema 4, existe precisamente un f3, tal que
a4y r~Blap+(1-a,)q]+(1-B,)[e,p+(1-2,)q]-
Sea 6, = B.a, +(1— ﬁk)gk. Luego,
(15) r~8,p+(1-6,)q.
Si r+ ozp+(1—06)q, tenemos dos posibles casos: (i)
7> ap+(1—oc)q o (ii) < ap+(1—oc)q . En el primer caso, por vir-

tud del lema 3, tenemos 0,>a; en el segundo, 0, <a. Asi, o bien
existe un n>0 tal que 6, > @, paratoda!>n ;o bien existe un n>0



La estructura légica de la teoria clésica... m 89

tal que 6, <, para toda / > n. En el primer caso tenemos, para cual-
quiera de esos /,

(16) r~0p+(1-6,)g-ap+(1-&)q>r.
En el segundo caso tenemos
a7 r>—g]p+(1—gl)q>—9kp+(1—9k)q~r.
Por consiguiente, » ~ op + (1- Oc)q.
Un argumento andlogo muestra que
(18) 7={re Plr~ap(p)+(-a)p(g)}.
Sin embargo, I =J porque /, =J, paratodo k, de manera que
(19) O!p+(1—0€)q~06(p(p)+(1—06)(/)(q).m

LEMA 6 Si p, ,reP,(xe[O,l] y p ~ q entonces Ocp+(1—oc)
r~aq+(l—a r.

Demostracion: Si p ~q, (p(q) = (p(p) y, por el lema 5,
20) olap+(i-a)rl-ap(p)+(1-a)o(r)=ap(q)+(1-a)
q)(r) ~ q)[aq+(1—a)r:|
de donde se sigue que
1) ap+(1—a)r~ag+(1-a)r.o
Para cada premio x € X, sea u(x) el numero en [0,1] tal que
(22) § ~ulx)s +(1-u(x)s .

Sea u :x — R la funcién definida por esta condicion. Esta claro que
la utilidad del premio x no es mds que el nimero o tal que

(23) 8 ~ad, +(1-a)§, .
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Si no hubiere un premio mejor, o uno peor, o ambas cosas; o si toma-
ramos otras loterias como punto de referencia para definir la utilidad de
los premios, habria que ampliar la definicién del siguiente modo.

DEFINICION 6 Sean &, y 8, loterfas cualesquiera, con §, = &, .
Hacemos u(b)=1 y u(w)=0. Para cualquier x €X, si 0, >6 >8
hacemos u(x) = o si

(24) 8, ~as +(1-a)s .

Si &, - 0,, sabemos por el lema 4 que existe precisamente un o € (0, 1)
tal que

(25) 8, ~ad, +(1—a)5w.

En este caso hacemos u(x)=1/c. Finalmente, si 6 >~ §_, también
por el lema 4 sabemos que existe un & € (0, 1) tal que

(26) S, ~ad,+(1-0a)s,.

En este caso hacemos u(x)=—a /(1— o). De este modo queda defi-
nida la funcion de utilidad u: X — R.

Como en la aplicacién que nos concierne es razonable suponer que
siempre hay un premio mdximo y uno minimo (pues ni las ganancias
ni las pérdidas financieras pueden ser infinitas), habré de restringir las
demostraciones subsecuentes al caso en que existen un premio mejor y
uno peor.

LEMA 7 Paratodo p € P, p es indiferente a la loteria que da el premio

b con probabilidad zxewp( )u(x) p(x) y el premio w con probabilidad

1- z ceson(n) ¥ (x) p (x).

Demostracion: La demostracién es por induccién sobre la cardinali-

dad de sop(p). Si sop(p)z{x},p(x)=l=5 (x)y

x

(27 u(x)=ulx Z u(x) p(x).
op(p)
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Luego,
(28) p=§,
~u(x)5b +(1-ux))s

w

:( D u(x)p(x))5b+(l— D M(X)P(X))5w~

xesop( p) xesop( p)

Sea ahora sop(p) = {xl,...,xn,xm} y sea

29) a=3p(x).
Definase la funcién
P, :{xl,...,x"} - [0,1]
por la condicién
(30) pl(xk)=oc’1p(xk) k=1,...,n
Entonces p; es un nueva distribucién simple de probabilidad sobre

X con soporte {xl,. ..,xn} .De hecho, p=ap, + (1-a 0. 'y tenemos,
por el lema 5, "

(31) <P(p)=0«0(191)+(1‘0‘)9"(5xn+,)

Supdngase, como hipdtesis inductiva, que

) (p(p,)z(iu(xk)pl(xk)jaﬁ(l_gu(xk)p](xk)]aw;

y ademds ya habiamos probado que
33) 05 )= (u(x)5xm (xn+1))5b + (1 ~u(x)s, (x,, ))5
Sean k= Z o (xk)p1 (xk) y A= u(x)5an (xnﬂ). Entonces

34 o(p)=a[xs,+(1-x)s, [+(1-a)[25,+(1-2)8, ]

w
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—[ax+(1-)2]8, +[a(1-Kk)+(1-a) (1-2)]6

w

= [oac+(1—a)l]5b +[1—(06K+(1—05))l]5w~

Ahora bien,

(35 ox+ (1—a)r= aZu(xk)pl (xk)+ (1- oc)u(x)dmI (xnﬂ)

k=1

_ gu(xk)(ap, (x,))+u ()-8, (x,.,))

El siguiente es el resultado principal de este trabajo.

TEOREMA 1 (TEOREMA DE REPRESENTACION) Sea (X, P,>)
una estructura de Von Neumann-Morgenstern. Entonces existe una fun-
cion u: X - R tal que

(36) P> q Syss z u(x)p(x)> 2 u(y)p(y).

xesop(p) yesoplq)

Si u' es cualquier otra funcion tal, entonces existen constantes o > 0
y B tales que u’ =ou+f3.

Demostracion: La funcion u arriba definida satisface esta condicion.
En efecto, como

(37) p~( D u(x)p(x))5b+(1— D u(x)p(x))5w

xesop(p) xesop(p)

y

(38) q~( > u(y)p(y)j5b+(1— > u(y)q(y))fsw

vesoplq) yesop(p)

la equivalencia se sigue inmediatamente por el lema 3.
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Si u’ es otra funcion que satisface el enunciado del teorema de repre-
sentacién, sea 3= o’ (w) y sea o, el ndmero tal que

(39) u’(b)—ﬁ=u'(b)—u’(w)=a[u(b)—u(w)]=a.

Como u’(b)—u’(w)>0, o > 0; ademas, u'(b)—ﬁza y tenemos que
(40) ' (B)=a+B=cud)+B v u'(w)=p=oculw)+p.

Mas en general, si u(x)= A,

41) 8 ~28,+(1-2)8 =p

y

@2) w(x)=u(x)s (x)

X

= > w(y)p(y)

yesop(p)

=u' (b)[ 25, +(1-2)8, |(»)

+ u’(w)[le +(1—l)5w:|(w)
=Ala+p)+(1-1)B

oA+ B=aulx)+p. o

TEOREMA 2 Para todo x,y € X :8_> 5), siempre que x>y Syss u
es estrictamente creciente.

Demostracion: Supéngase que §_ > 5y y que x> y. Entonces

(43) u(x)5h +(1—u(x))5w ~6 > 5}7 ~u(y)5b +(1—u(y))5

w?

de modo que ulx) > u(y) por el lema 3.

SuFéngase ahora que u es estrictamente creciente y que x > y. Enton-
ces ulx)>ul(y) y tenemos, nuevamente por el lema 3,

(44) o, ~u(x)5h +(1—u(x))5w >u(y)5,, +(1_”(y))5w ~98,.0
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Una vez que hemos demostrado su existencia, podemos definir el
valor esperado de cualquier loterfa.

DEFINICION 7 El valor esperado de la loteria p, E(p), se define como

Y ) pla).

xexop( p)
n Teoria cldsica de las finanzas

De aqui en adelante vamos a aplicar a las finanzas la teorfa desarrollada
hasta el momento. El conjunto X serd concebido ahora como un intervalo
de cantidades de dinero (intervalo cerrado de nimeros reales), con una
cantidad maxima b y una minima w. Como X es convexo, X es cerrado
bajo combinaciones convexas finitas; es decir, si x,,...,x son cantida-

desdedineroy ¢,,..., sonnimeros entre 0y 1 tales que 2 o =1,
n . . , .

entonces z 1, & x, € X.2En particular, si p es una loteria cualquiera, y

normalizamos la funcién de utilidad de manera que sus valores sean ele-

mentos de X, la suma Z u(x)p(x) es una combinacién convexa

xesop(p)
de puntos de X y, por lo tanto, también es un elemento de X, de manera
que E(p)e X para toda loterfa p. Asf, la loterfa &, (»y ©s laloteria que

asigna probabilidad uno al premio E ( p) = Z )u(x) p(x).

xesop( yZ

Es posible indagar si el agente prefiere recibir con seguridad la can-
tidad de dinero Z 0, X, a obtener una de las cantidades x, con pro-

babilidad ¢, . Por ejemplo, es posible indagar si prefiere recibir $190.00
en vez del derecho a participar en una loteria en la que puede recibir
$1,000.00, con probabilidad de 0.1, o $1.00 con probabilidad de 0.9. Si
prefiere tomar los $190.00 en vez de entrar al sorteo, diremos que tiene
aversion al riesgo. Esto motiva la definicion de agente averso al riesgo
en términos de preferencias sobre ciertas loterias; a saber, entre 62 s

2 Cfr. Nikaido 1968, teorema 2.1, p 17.
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y la loteria combinada p = 2 p 105,65 Con esta motivacién introduci-

mos formalmente la siguiente definicién.
DEFINICION 8 La relacién de preferencia > es aversa al riesgo

syss, para toda combinacién convexa Z 1,0, x, de puntos de X,

(45) A Za S,

Ke=1% K

> es propensa al riesgo syss, para toda combinacion convexa 2 0L X,
de puntos de X,

(46) 52 F=1% % = Z aksxk ’

=1

Es neutral al riesgo syss, no es ni aversa ni propensa al riesgo.

La aversion al riesgo estd asociada con una caracteristica de la fun-
cion de utilidad que se conoce como ‘“concavidad”. Recuérdese que
una funcion u es estrictamente concava syss ulox) +(1—ox’) > au(zx
+(1-a)ulx’) siempre que x # x”. Tenemos el siguiente resultado.

TEOREMA 3 La relacion de preferencia > es aversa al riesgo syss,
la funcion de utilidad u es estrictamente concava.

Demostracion: Supdngase que > es aversa al riesgo y considérese la
combinacion ax +(1— o) x’,x # x’ . Por hipétesis,

47) S, iy~ 08 +(1-a)8..
Luego, por el teorema de representacion,
(48) ulax+(1=a)x’) = E[(SW(H)X,]
> E[océx +(1- 06)5),]
= ocE(6X)+(1— a)E(éx,) = ou(x) + (1= ) u(x’).

Supdéngase ahora que u es estrictamente concava y recuérdese Taka-
yama (1985:69) que ello implica, para toda » < @ y conjunto de nime-

. .
ros positivos @ ,...,o tales que Z 0, =1, que
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n

(49) u(gakxk]=2aku(xk).

k=1

Luego,

(50) E(azzzlakxk ) B u( knl aka]

= E{z (xk5xk }
k=1

De aqui se desprende, nuevamente por el teorema de representacion,
que

n
(51) 85 1~ 24,0

La consecuencia metodoldgica de este resultado es que si el adminis-
trador financiero percibe que su cliente es averso al riesgo, entonces debe
utilizar una funcion de utilidad céncava para modelar sus preferencias.

Puede resultar ttil saber que el grado de disposicién a jugar cualquier
loteria podria medirse en términos de ganancias seguras si cada loteria
tuviese un equivalente cierto en el siguiente sentido.

DEFINICION 9 Un equivalente cierto de una loteria p es todo pre-
mio x tal que §_~ p .

Si cierta condicion es satisfecha, es posible garantizar que toda lote-
ria tiene un Unico equivalente cierto.

TEOREMA 4 Si X es un intervalo de R, y u es continua, entonces
toda loteria p tiene por lo menos un equivalente cierto. Si u es estricta-
mente creciente, toda p tiene como mdximo un equivalente cierto.

Demostracion: Supongase que u es continua en X. Como X es un
intervalo cerrado, la imagen de X, que es X mismo, también lo es. Como
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E(p) es una combinacion convexa de puntos de X, £ p) € X . Porlo tan-
to, hay un punto x en X tal que ulx) = E(p) ANS 5){) =ulx)= E(p)
de donde se deduce que §_~ p.Es obvio que si u es estrictamente cre-
ciente solo puede haber un equivalente cierto.o

Un obvio corolario de este teorema es que si > es aversa al riesgo,

entonces cada loteria tiene precisamente un equivalente cierto.
» Aplicaciones de la teoria

La TF modela las carteras como loterias y propone la regla de maximizar
la utilidad esperada para la toma de decisiones financieras. Mds concre-
tamente, supongase que el agente estd frente a una situacion tipica: Hay
en el mercado de activos financieros un bono con tasa de rendimiento
fija r y con un precio en el momento inicial (tiempo 7 = 0) de P, - Hay
también [l acciones de empresas a=1,...,]Ll que ofrecen rendimien-
tos que dependen de las circunstancias que prevalezcan (“estados de la
naturaleza”). Puede haber v estados de la naturaleza s=1,...,v. Cada

accién a ofrece un vector de pagos posibles (xa1 sees Xy ) siendo el pago as

el que ofrece la accién a si ocurre el estado s.

La probabilidad de que el pago a tenga lugar, pues, es igual a la pro-
babilidad 7 de que ocurra el estado de la naturaleza s. El precio inicial
(en ¢t = 0) de la accidn a es Py de manera que el vector de precios en

el tiempo t=0es p, = ( Pyyreees Py Py, ) Un portafolio se modela
como un vector de bonos y acciones z = (za,zb) donde
(52) 2, = (202, ).

Suponemos que el agente posee una cierta cantidad de dinero w, que
estd dispuesto a invertir. Su problema es elegir la cartera que le brin-

de los maximos beneficios a su inversién. Con esta suma de dinero, el
agente puede adquirir cualquier cartera en el conjunto factible

(53) F={zlpz<w}.

Si el agente adquiriera la cartera z = (za,zb) € F y tuviera lugar el
estado s, recibirfa como pago la suma
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(54) W, =x1S21+“'+xuSZu+(1+r)pbozb'
Esto implica que hay una loteria g sobre X tal que

sop(q)z{wl,...,wv} y ‘J(Ws):”x-

Por lo tanto, la funcién objetivo del problema es

(55) Elq)= Y a(y)a(y)=Yu(w)z.

yesop(q) s=1

La regla de racionalidad que propone la TF a los administradores fi-
nancieros es la siguiente: elijase aquella cartera que resuelva el siguiente
programa:

v
MaximizarZZu(ws)n'S
s=1
sujetoa ze F.

Si el administrador elige una funcién de utilidad céncava (lo cual
usualmente deberd ser el caso, pues los agentes tienden a ser aversos al
riesgo), este problema se resuelve con el método de los lagrangianos,
mediante la resolucién de condiciones de primer orden.
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