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n  Abstract: Objective:  The purpose of this paper is to explore different distributions 
in conditional Value at Risk (VaR) modeling as an option in the Mexican market.  

 Methodology:  We estimate a GARCH model under the Gaussian, Normal Inverse 
Gaussian, Skew Generalized t and the Stable distribution assumption, then we im-
plement the model in predicting one-day ahead VaR and finally we examine the 
performance among the four VaR models during a period of high volatility.

 Results: The backtesting result confirms that the stable-VaR approach outperforms 
the other models in the VaR’s prediction at 99% confidence level.

 Limitations: Although the VaR is a widely used risk measure is not a coherent risk 
measure, for this reason, a natural extension of our work should be to estimate the 
expected shortfall and this may produce different insights. 

 Conclusions:  Our findings reveal that models that consider some empirical charac-
teristic of financial returns such as leptokurtic, volatility clustering and asymmetry 
improve the VaR predicting capacity. This finding is important in the search more 
robust approaches for VaR estimates.  
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n  Resumen: Objetivo: El propósito de este trabajo es explorar diferentes distribu-
ciones en la estimación del Valor en Riesgo (VaR) como una opción en el mercado 
mexicano.

 Metodología: Estimamos un modelo GARCH bajo la hipótesis de las distribuciones 
Gaussiana, Normal Inversa Gaussiana, t-student Sesgada Generalizada y Estable.  
Implementamos este modelo para predecir los VaR a un día y finalmente examina-
mos el desempeño de estos cuatro modelos VaR durante una período de alta volati-
lidad.

 Resultados: El resultado del backtesting confirma que el VaR estable a un nivel de 
confianza del 99% supera a los otros modelos en la predicción del VaR. 

 Limitaciones: Aunque el VaR es una medida de riesgo ampliamente utilizada, no 
es una medida de riesgo coherente, por esta razón, una extensión natural de nuestra 
investigación sería estimar el Valor en Riesgo Condicional (CVaR) lo cual podría 
generar diferentes resultados.

 Conclusiones: Nuestros hallazgos revelan que los modelos que consideran algunas 
características empíricas de los rendimientos financieros, tales como leptocurtosis, 
agrupamiento de volatilidad y asimetría, mejoran la capacidad de predicción del 
VaR. Lo anterior es importante en la búsqueda de enfoques más precisos y eficientes 
en la estimación de VaR. 
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n  Introduction 

The first objective of the present paper is to different distributions in conditional Value 
at Risk (VaR) modeling as an option in the Mexican market. The interest in stable dis-
tributions has been increasing since the seminal work by Mandelbrot (1963) and Fama 
(1965) led them to the conclusion that marginal distributions of financial data exhibit 
skewness and leptokurtosis.

Empirical evidence reveals that stable distributions capture the leptokurtic nature 
of financial data (Fama, 1965a; Mandelbrodt, 1963, 1967; McCulloch, 1986; Mittnik, 
Paolella, & Rachev, 2000; Nolan, 2014; Panorska, Mittnik, & Rachev, 1995) and they 
satisfy the Generalized Central Limit Theorem which state that the only possible non-
trivial limit of normalized sums of independent identically distributed (i.i.d) random 
variables is stable. 

In addition, some empirical research works  that assumed the stable distribution hy-
pothesis in the optimal portfolio problem are Rachev & Han (2000); Ortobelli, Huber, 
& Schwartz (2002) that analyzed and compared the performance of the stable distri-
bution assumption in portfolio theory considering the S&P500, dax30 and cac40 in-
dexes. In the same line, Climent, Venegas & Ortiz (2015) studied the optimal portfolio 
problem under the stable hypothesis and compared its performance with a Gaussian 
optimal portfolio, their results showed that the stable optimal portfolio has higher re-
turns and lower risk.

Dias Curto, Castro Pinto, & Nuno Tavares (2009) examined alternative conditional 
distributions (Normal, t-student and stable) for the djia, dax and pSi20 indexes con-
sidering an aR-gaRch model, their results show that the stable-gaRch model describes 
better the stock returns’ volatility. Similarly, Mohammadi (2017) analyzed the volatility 
predictive performance of the stable-gaRch and stable power-gaRch models and ap-
plied this method for predicting future values of the S&P500 stock market.

Khindanova, Rachev, & Schwartz (2001) applied stable distribution in VaR mod-
eling the forecast evaluation shows that stable VaR outperforms the normal model-
ing. Serrano & Mata (2018) compared the VaR estimation under the stable and normal 
gaRch approach before, during and after a crisis period the results provide evidence 
that the stable model provides better VaR estimates the normal one during a crisis pe-
riod but in tranquility periods, it overestimates the potential losses. 

The other distributions considered as an alternative for VaR modeling are the Skew 
Generalized t (gSt) and Normal Inverse Gaussian (nig) distributions. We chose the 
family of gSt distributions originally introduced by Theodossiou (1998) as a skew 
extension of the generalized t (gt) distribution because it provides a flexible tool for 
modeling data exhibiting diverse levels of tail thickness, skewness, and peakedness 
around the location. Many of the widely used distributions such as t-student, normal, 
Hansen’s skew t, exponential power, and skew exponential power (Sep) distributions 
are included as limiting or special cases in the gSt family. 

The gSt distribution has been widely used for modeling financial data, for example, 
Bali & Theodossiou (2007) computed the VaR considering ten different specifications of 
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the gaRch model based on the gSt distribution, the results indicate that the tS-gaRch 
and egaRch models have the best overall performance in terms of VaR accuracy.

More recently, Corlu, Meterelliyoz & Tiniç (2016) analyzed the suitability of gSt, 
nig and generalized lambda (gLd) distributions among others to describe stylized char-
acteristic on the equity index returns of twenty different countries and evaluated the 
models using the in-sample VaR failure rates, the results suggest that the gLd distribu-
tion is the best alternative, although this paper is focused only on the unconditional 
distribution of equity returns.

On the other hand, the nig distribution is a versatile univariate probability distribu-
tion that can capture, by its parameters, the stylized facts of heavy tails, skewness and 
kurtosis of asset yields (Protassov, 2004). Usually the literature defines the probability 
density function as Barndorff-Nielsen (1977) and Prause (1999), so nig is defined as 
the mean-variance mix between a normal random variable and a generalized inverse 
Gaussian random variable (gig). 

Applications of the nig distribution in finance have been found in several stud-
ies, for example, Barndorff-Nielsen (1977); Bølviken & Benth (2000) studied if the 
nig model is suitable for VaR evaluations in the Norwegian case; Corlu et al. (2016) 
analyzed the suitability of gSt, nig and generalized lambda (gLd) distributions among 
others to describe stylized characteristic on the equity index returns of twenty different 
countries. 

However, the focus in the literature has been on portfolio optimization, volatility 
predictive performance and VaR modeling for developed stock markets. To our knowl-
edge, there are no studies that apply a stable-gaRch model in VaR modeling in the 
Mexican market and compare its predictive performance during a crisis period with the 
one based on the gaRch model under the gSt, normal and nig hypotheses, respectively.

The rest of the paper is organized as follows: The second section presents details re-
lated to the probability density functions, the methodologies of the gaRch models, the 
measurement of VaR and the backtesting methodology. The third section describes the 
data and contains the empirical results. The fourth section compares the out-of-sample 
empirical results. The fifth section concludes the paper.

n  Methodology

Value at Risk (VaR) 
VaR methodology is commonly used for measuring market risk; it is a suitable mea-
surement since regulators accept this quantity as a basis for setting capital requirements 
for market risk exposure. 

A VaR measure is the maximum loss on a period of time (τ) at a specific confidence 
level ( q1- ). More formally, VaR is defined as: 

(1)   P X VaR qq
X
1# - =-" ,

where X represents the portfolio’s returns.
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This definition can be rewritten in terms of the probability distribution of portfolio 
value returns as follows:

(2)   VaR F qq
X

X1
1- =-
- ^ h  

where FX
1 $- ^ h is the inverse cumulative distribution function of portfolio returns in one 

period.
VaR estimates can be obtained via parametric approach, historical simulation and 

Monte Carlo simulation. 

Probability density functions
The development of more robust approaches for VaR estimates is crucial. In this pa-
per, we apply probability and time series theory to improve estimations of appropriate 
underlying distributions, to capture fat tails and volatility of conditional return distribu-
tions; and as a result, improve the estimation of VaR.

In this work, we introduce three families of distributions: Hansen’s skew t distri-
bution (Hansen-gSt), nig and stable distribution, which can capture the kurtosis and 
skewness of financial returns (Rachev & Han, 2000; Mittnik et al. 2000). 

Hansen’s skew t distribution (Hansen-gst). Hansen (1994) proposed a different para-
metric approach to modeling the conditional density of the normalized error. His sug-
gestion is to select a distribution which depends upon a low-dimensional parameter 
vector, and then let this parameter vector vary as a function of the conditional variables. 

Definition. Hansen-gSt distribution is a simple skewed generalization of t-Student 
density. The probability density function is defined as follows:
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The parameter η controls the tail thickness and λ controls the skewness. When 
" 3h , it is reduced to skewed normal distribution. When ,0m =  it is reduced to Stu-

dent’s t distribution. Figure 1 gives the probability density function of Hansen-gSt with 
different parameters. We can see that the smaller h  is, the fatter the tail is.

If a random variable Z follows a standard Hansen-gSt distribution with parameter η 
and m , we write it as ,Z GST+ h m^ h .
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Figure 1
Hansen’s skew t distribution with λ=0.5 and η=4, 10, 20

Normal Inverse Gaussian distribution (nig). The nig distribution is a specific case of 
the generalized hyperbolic distribution with m  = −1/2.

Definition. A random variable X follows a nig distribution with parameters /1 2m = - , 
X 0$  and 0$}  if the probability density function is
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where , 0$da  and , R!n b  such that ,!b a a-6 @  and km is the third order modified 
Bessel function. The parameter b  represents the asymmetry, a  the heaviness of the 
tails, m captures the form of the distribution, n  is a location parameter and dmeasures 
the dispersion (Corlu et al., 2016).

Stable distribution. The stable distribution is capable of capturing skewness and heavy 
tails and having many intriguing mathematical properties (Devroye & James, 2014; 
Fofack, & Nolan, 1999; Zolotarev, 1989). The class was characterized by Paul Lévy in 
his study of sums of independent identically distributed terms in the 1920’s. 

Stable distributions do not have mathematical expressions for their probability den-
sity (pdf) and cumulative distribution (cdf) functions, instead they are described by 
their characteristic function (cf).

Definition. A characteristic function of a stable random variable X is defined as 
follows:
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where 0 21 #a  is the index of stability or characteristic exponent, 1 1# #b-  is the 
skewness parameter, 0$c  is the scale parameter, and R!d  is the location parameter.

If a stable random variable X follows a stable distribution, we write it as X +  S (α, 
β, γ, δ). See Figure 2 for plots of stable densities.

Since we cannot get closed form of pdf and cdf for stable distributions (except that 
2a = ), we calculate them numerically (Mittnik, Doganoglu, & Chenyao, 1999; Nolan, 

1997). 

Figure 2
Stable densities S (α, β, γ, δ)

Goodness of fit. We use the Kolmogorov-Smirnov (kS) and Anderson-Darling (ad) sta-
tistics to compare the goodness-of-fit of the distributions of interest. The kS test statistic 
computes the difference between the fitted cumulative distribution function F x^ h  and 
the empirical cumulative distribution function F xt ^ h  as follows: supD F x F x= - t^ ^h h . 
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The ad test statistic computes the weighted average of the squared differences as fol-
lows: A F x F x2 2= - t^ ^ ^h hh , where the weights are chosen in such way that the discrep-
ancies in the tails are emphasized. 

garch models
Volatility plays an important role in financial models of pricing and hedging. For this 
reason finding the conditional distributions on which their estimates of this are more ef-
ficient is crucial. The traditional gaRch-normal model fails to capture the non-normal 
characteristics of financial returns. In this paper, we use three flexible distributions to 
describe the volatility of the stock returns characterized by leptokurtosis and skewness.

Empirical studies support that the gaRch (1, 1) model works well for financial data 
(Bali, & Theodossiou, 2007; Liu, & Brorsen, 1995; Panorska, Mittnik, & Rachev, 1995). 
It is important to mention that Starica (2003) shows that the gaRch (1,1) model has a 
poor volatility forecasting over long horizons, although at the same time he states that its  
model provides a precise estimation in a sample size of 2000 observations approximately.

 
garch (1, 1) model with stable distribution (stable-garch). Following Panorska, 
Mittnik, & Rachev (1995) and Naka & Oral (2013) we used the gaRch model proposed 
by Taylor (1986) and Schwert (1989). Since stable distributions do not have the second 
absolute expectation (except when 2a = ), the conditional variance is expressed in 
terms of the conditional standard deviation as follows:

(6)   

R
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where Rt  is the series of individual stock return at time t, tn  and tv  are, respectively, 
the conditional mean and conditional standard deviation of Rt , and zt  are i.i.d. stan-
dardized stable random variables, , , ,z S 1 0t + a b^ h  with 1 21 1a . 

To estimate the parameters in (6), we use the Maximum Likelihood Estimation 
(mLe) method3, where the pdfs of zt  were approximated using the computer program 
StaBLe.4 

Hansen-gst garch model. We consider the Hansen-gSt distribution as the innovation 
in the gaRch model to describe the asymmetry and fat-tail property. The model is set 
up as follows.

3  The algebraic routines required in this paper were written in MATLAB R2013a.
4  The StaBLe program is described in Nolan (1997).
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Individual stock return is modeled as

(7)   
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To estimate the parameters in (7), we use the mLe method, where the pdfs of zt  are 
approximated using the approach proposed by Hansen (1994). 

nig and Gaussian garch model. We consider the nig and the Gaussian distributions 
as the innovation in the gaRch model. Individual stock return is modeled as (7) with 

.c 0= To estimate the parameters of the nig distribution, we use mLe. 

Estimating VaR 
VaR estimation is realized by Monte Carlo simulation (Embrechts, McNeil & Frey, 
2005; Glasserman, 2003) considering a heteroscedastic VaR model on the basis of the 
stable distribution, Hansen-gSt, nig and normal distribution. We simulated 10,000 re-
alizations of the series of individual stock returns at time t and measure VaR as the 
negative of the q-th quantile of the simulated return’s distribution.

Backtesting
Since financial institutions have the freedom to specify their own model to compute 
their VaR, the procedure to backtesting becomes extremely important for regulators to 
assess the quality of the models.

 We evaluate and compare the performance for distributions-based heteroscedastic 
VaR models based on the Kupiec Unconditional Coverage (uc) test (1995) and the 
Christoffersen Conditional Coverage (cc) test (1998).

 
The Kupiec Unconditional coverage test (uc). Suppose we use the most recent k histor-
ical data to forecast the current VaR, define the indicator for VaR violations as follows:

(8)   ,
,I H VaR

H VaR1
0s

s s

s s1
$

=
-
-(

where H  are the historical returns and , ..., .s k1=  

The Kupiec likelihood ratio test (Kupiec, 1995) tests the null hypothesis: 
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Pr I E I1s sa a a= = =^ ^ ^ ^h h hh

i.e. it tests whether the expected proportion of violations is equal to a . 

The likelihood ratio test statistic is given by:

(9)   lnLR p p2 1
1

UC n N n

n N na a
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h< F

where N is the sample size, n is the number of violations and /p n N=  is the percentage 
of violations. This test follows an asymptotic chi-square distribution with one degree 
of freedom.

The Christoffersen Conditional Coverage test (CC). The Conditional Coverage test 
(Christoffersen, 1998) requires a correct unconditional coverage and furthermore, it 
ensures that the result series is i.i.d. This statistic test follows an asymptotic chi-square 
distribution with two degrees of freedom and is given by:

(10)  
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where nij  is the number of observations with value i followed by j, and
.Pr I j I iij s s 1r a a= = =-^ ^ ^h h h  

n  Empirical results

Data and descriptive statistics
For the empirical analysis, five assets with a different trading volume from five differ-
ent industries listed on the Mexican Stock Exchange (Bmv) have been chosen. These 
assets correspond to the following companies: Fomento Economico Mexicano, S.a.B. 
de c.v. (femSa) is a company that through its subsidiaries produces, distributes and 
markets non-alcoholic beverages throughout Latin America as part of the Coca-Cola 
system. The Company owns and operates convenience stores in Mexico and Colom-
bia and holds a stake in Heineken; Grupo Carso (gcaRSo) one of the most important 
conglomerates in Latin America, the company controls and operates companies in the 
industrial, commercial, infrastructure and construction sectors; Grupo Mexico S.a.B. 
de c.v. (gmexico) holds concessions to operate the Pacifico-Norte and Chihuahua-
Pacifico Railroad lines. Grupo Mexico, through subsidiaries, operates open-pit copper 
mines, underground mines, a coal mine, copper smelters, a rod mill facility, and a pre-
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cious metals refinery; Grupo Financiero Banorte S.a.B. de c.v. (gfnoRte) is a financial 
institution in Mexico. The Company offers banking services, premium banking, whole-
sale banking, leasing and factoring, warehousing, insurance, pensions and retirement 
savings; and Grupo Televisa, S.a.B., (teLeviSa), operates media and entertainment 
businesses in the Spanish speaking world. The Company has interests in television pro-
duction and broadcasting, programming, direct-to-home satellite services, publishing 
and publishing distribution, cable television, radio production, show business, feature 
films and Internet portals.

 We estimate the VaR of these five stocks (based on daily closing prices) over the 
period January 2, 2002 to December 31, 2009, about 2018 observations for each stock. 
The reference currency used is the Mexican peso and the asset returns are logarithmic 
returns. The series plot of the 5 stocks returns are shown in Figure 3. 

Figure 3
Daily returns (%) 

Descriptive statistics of daily returns are presented in Table 1. Based on the skew-
ness and kurtosis we observed that the data are asymmetric and have thicker tails than 
the normal distribution. In addition, the Jarque-Bera statistic is large and statistically 
significant, thereby implying that the assumption of normality is rejected.
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Goodness of fit
We use the kS and ad statistics to compare the goodness-of-fit of the distributions of 
interest. Table 2 presents the hypothesis test kS and ad to verify if the time series of 
the daily returns follow the proposed probability distribution, the p-value is reported 
in brackets. The null hypothesis is that the observed data originates from the hypoth-
esized distribution and is rejected if the p-value is lower than %.1a =  It can be seen 
that each time series is adjusted to some probability distribution under a significance 
level of 1%.

Table 2
Goodness-of-fit of alternative distributions

Distributions Stable Hansen-gSt nig

 kS ad kS ad kS ad

femSa 0,0220 
(0,2798)

7,9721 
(0,0001)

0,0481 
(0,0001)

6,1095 
(0,0000)

0,0317 
(0,0342)

0,6151 
(0,4338)

gmexico 0,0214 
(0,3134)

3,6424 
(0,0131)

0,0422 
(0,0014)

4,5792 
(0,0000)

0,0134 
(0,6634)

0,2109 
(0,6871)

gfnoRte 0,0282 
(0,0787)

8,5372 
(0,0000)

0,0503 
(0,0000)

3,1279 
(0,0000)

0,0259 
(0,1311)

1,3312 
(0,2225)

gcaRSo 0,0283 
(0,0769)

4,6652 
(0,0042)

0,0575 
(0,0000)

7,1203 
(0,0000)

0,0232 
(0,2257)

0,6576 
(0,5952)

teLeviSa 0,0188 
(0,4727)

2,3436 
(0,0599)

0,0270 
(0,1037)

5,8710 
(0,0000)

0,0162 
(0,4663)

0,5031 
(0,7436)

 
To estimate the different parameters of the probability density functions that have 

been proposed in this work, we use the mLe method. Table 3 shows these estimators, 
standard errors are in brackets.

Table 1
Descriptive statistics of scaled (100x) daily logarithmic stock returns

Series femSa gmexico gfnoRte gcaRSo teLeviSa

Sector Beverage and 
retail

Mining Financial Industrial Entertainment

Mean 0,0879 0,1760 0,1144 0,0712 0,0515
Std. Dev. 1,9187 2,9748 2,6948 2,2172 1,9511
Skewness 0,0162 -0,1803 0,0804 0,3402 0,3361
Kurtosis 8,1152 7,5224 15,7093 11,2821 6,3437
Jarque-Bera 2199,08 1729,73 13577,06 5803,62 977,59
Probability (JB) 0,0000 0,0000 0,0000 0,0000 0,0000
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Table 4
Maximum likelihood estimates for the gaRch model with alternative distributions

Distribu-

tions

 Stable Hansen-gSt

Parameters a0 a1 b1  aic a0 a1 c b1 aic

femSa 0,0370 0,0827 0,9173 1486,1 0,0511 0,0781 0,5187 0,9032 2104,6 

 (0,0214) (0,0515) (0,4421) (0,0290) (0,0391) (0,2903) (0,5261)

gmexico 0,0629 0,0990 0,9010 771,9 0,1065 0,0856 0,7286 0,8974 132,.3

  (0,0337) (0,0577)  (0,3740)  (0,0579) (0,0533) (0,3717) (0,4185)

gfnoRte 0,1033 0,1398 0,8532 1468,9 0,1753 0,1324 0,7449 0,8336 185,.5

  (0,0470)  (0,0719)  (0,4391)   (0,0741)  (0,0805) (0,3767) (0,466)

gcaRSo 0,0648 0,1183 0,8817 325,1 0,0481 0,1246 0,4424 0,8752  434,4

(0,0389) (0,0685) (0,3588) (0,0248) (0,0693) (0,2705) (0,3931)

teLeviSa 0,0258 0,0608 0,9392  2426,3 0,0007 0,0483 1,0445 0,9363 3274,2

 (0,0105) (0,0359) (0,3822) (0,0003) (0,0249) (0,5136) (0,4088)

Table 3 
Maximum likelihood estimates of alternative distributions

Distribu-

tions

Stable Hansen-gSt NIG

Parameters α β γ δ η λ μ δ α β

femSa 1,7959 0,1491 0,6240 -0,0198 5,4071 0,0374 -0,0004 0,0214 50,0046 2,7252

 (1,092) (0,066) (0,370) (0,010) (3,089) (0,019) (0,0002) (0,0102) (25,060) (1,366)

gmexico 1,8698 -0,0632 0,6584 0,0141 6,9216 -0,0050 0,0005 0,0150 41,2739 1,2137

 (0,986) (0,049) (0,283) (0,007) (3,901) (0.003) (0,0002) (0,0091) (17,134) (0,716)

gfnoRte 1,7580 0,0701 0,6080 -0,0091 5,1021 0,0175 0,0001 0,0163 29,2648 2,4850

 (0,768) (0,032) (0,261) (0,005) (2,648) (0,010) (0,0001) (0,0079) (12,966) (1,457)

gcaRSo 1,6957 0,0750 0,5872 -0,0076 4,1691 0,0165 0,0008 0,0167 23,8288 0,4351

(1,004) (0,039) (0,359) (0,004) (2,070) (0,004) (0,0004) (0,009) (12,865) (0,290)

teLeviSa 1,8958 0,3071 0,6639 -0,0242 8,8392 0,0404 0,0005 0,0167 23,1076 -0,3694

(0,904) (0,163) (0,413) (0,011) (4,510) (0,018) (0,0003) (0,0086) (11,581) (-0,231)

Estimating garch models 
Tables 4 and 5 present the maximum likelihood estimation for the gaRgh models as-
suming the alternative distribution functions, standard errors are in brackets.

 We can observe from Tables 4 and 5 that the sum of the parameters are less than 
one, ensuring the conditions for stationarity, in addition, for the Hansen-gSt gaRch 
model the asymmetric coefficients are significant, indicating the presence of asymmet-
ric leverage volatility effects. Finally, the Akaike Information Criterion (aic) indicates 
that the gaRch stable is the model that better captures the dynamics of the returns 
series; it is followed by the nig gaRch model, next to the Hansen-gSt and the normal 
gaRch models.
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Table 5
Maximum likelihood estimates for the gaRch model with alternative distributions

Distributions nig Normal

Parameters a0 a1 b1  aic a0 a1 b1 aic

femSa 0,0017 0,0849 0,8789 1870,1 0,0390 0,9181 0,0734 2370,1

 (0,0010) (0,0433) (0,4745) (0,0159) (0,5031) (0,0334)

gmexico 0,0005 0,0737 0,9121 1194,1 0,1396 0,8954 0,0883 1507,7

  (0,0003)  (0,0415)  (0,5070)   (0,0844)  (0,4608) (0,0631)

gfnoRte 0,0021 0,1625 0,8179 1797,6 0,2282 0,8305 0,1343 2266,8 

  (0,0011) (0,0964)  (0,4672)   (0,1346) (0,4616) (0,0812)

gcaRSo 0,0022 0,1322 0,8360 374,4 0,0825 0,8834 0,1028 488,1

(0,0011) (0,0568) (0,3470) (0,0468) (0,4585) (0,0501)

teLeviSa 0,0007 0,0815 0,9059 2635,5 0,0499 0,9315 0,0539 3670,6

  (0,0003) (0,0493)  (0,3894)   (0,0281) (0,5104) (0,0248)

VaR estimates 
VaR estimation is realized by Monte Carlo simulation based on 10,000 realizations of 
the series of individual stock. Table 6 provides the one-day ahead estimates of VaR for 
each returns, at 95% and 99% confidence levels.

Table 6
VaR estimates

Series VaR 95% VaR 99%

Stable Normal gSt nig Stable Normal gSt nig

femSa -2,1481 -1,3755 -1,2439 -2,1268 -3,6526 -1,9437 -2,0623 -3,6450

gcaRSo -0,8771 -0,5915 -0,5997 -0,6429 -1,8169 -0,8042 -0,9819 -1,7426

gfnoRte -1,7969 -1,2056 -1,1228 -1,7485 -3,1439 -1,7483 -1,9247 -2,8852

gmexico -1,2063 -0,7878 -0,8108 -1,2153 -1,9723 -1,1258 -1,3052 -2,1553

teLeviSa -1,5876 -1,1003 -1,0847 -1,4877 -2,3307 -1,5747 -1,6741 -2,1519

 

As observed in Table 6, except for gmexico, the stable-VaR estimates at 95% and 
99% confidence levels are higher than the normal, nig and Hansen-gSt VaR estimates, 
i.e., the stable VaR measurements provide more conservative5 VaR estimates of poten-
tial losses. On the contrary, the normal distribution produces the lowest VaR estimates 
at 99% among the four VaR models.

5  We categorize those models which provide relatively high-risk estimates as conservative.
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n  Evaluation of performance of heteroscedastic VaR models

We evaluated the performance of the heteroskedastic conditional Stable, Hansen-gSt, 
nig and Normal VaR models by computing the out-of-sample forecasts based on the 
Kupiec UC test and the Christoffersen CC test. The predicted one-day-ahead VaR is 
based on a rolling window out-of- sample procedure. The window size is fixed at 502 
observations, i.e., we used the most recent two years of historical data to estimate the 
current VaR. 

Tables 7 and 8 provide the backtesting results of VaR. The symbol “X” is used in 
the table to denote VaR models which pass the unconditional coverage test. Asterisk 
“*” and minus “-” signs indicate that the conditional coverage test is rejected at the 1% 
significance level as a result of overestimation and underestimation of the realized VaR, 
respectively. Models that satisfy the hypothesis of correct conditional coverage are ac-
cepted as well-specified VaR models.

Table 7
Kupiec likelihood ratio test at the 5% and 1% significance levels

Series Kupiec likelihood test VaR 95% Kupiec likelihood test VaR 99%
 Stable Normal gSt nig Stable Normal gSt nig

femSa * x x x x x x x

gcaRSo * x x x x - x x

gfnoRte * - - * x - - x

gmexico * - - * x - x x

teLeviSa * - x x x - x *

 
Table 8

Christoffersen test at the 5% and 1% significance levels

Series Christoffersen test VaR 95%
 

Christoffersen test VaR 99%

 Stable Normal gSt nig Stable Normal gSt nig

femSa * x - * x x x x

gcaRSo - - x x x - * -
gfnoRte * - - * x - x x

gmexico - - - x x - x x

teLeviSa * - x x x - x *

From Tables 7 and 8 we can see that the nig-VaR model provides correct uncon-
ditional and conditional coverage for three of the five series at 95% confidence level. 
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Besides the normal VaR approach tends to underestimate real market risk. At 99% con-
fidence level the stable-VaR estimates passed both tests, i.e the stable-VaR approach 
does very well in predicting critical loss at this confidence level. In addition, the gSt 
and nig also show good results, four of the five series passed the CC test; in contrast, 
the conditional normal VaR measurements significantly underestimate the potential 
losses.

n  Conclusions

In this paper, we estimated a gaRch model assuming three flexible distributions to 
describe the volatility of the stock returns characterized by leptokurtosis and skewness. 
We then implemented it in predicting one-day ahead VaRs and compared it with that of 
the gaRch-normal VaR model.

The empirical results suggest that the forecasted VaR obtained using the stable dis-
tribution provides the most accurate out-of-sample forecasts a 99% confidence level, 
i.e., our model improves the performance VaR measurements at this level with the 
stable distributional assumption. In contrast, this approach overestimates the VaR a 
95% confidence level.

Besides the VaR models based on gSt and nig distributions perform relatively bet-
ter than the normal distribution at low confidence level and have a satisfactory perfor-
mance at 99% confidence level.

Our findings reveal that models that consider some empirical characteristic of finan-
cial returns such as leptokurtic, volatility clustering and asymmetry improve the VaR 
predicting capacity. This finding is important in the search for more robust approaches 
for VaR estimates. 

Additionally, the stable distribution appears to be the most appropriate alternative in 
VaR modeling a 99% confidence level in the Mexican financial market. However, ad-
ditional research is needed. Multivariate stable distributions will be employed in future 
research to describe and examine portfolios behavior during financial crises.
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