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n 	 Resumen: En este artículo, por medio de modelación markoviana estudiamos la 
identificación de los estados estocásticos y pronóstico del índice mensual de pro-
ducción industrial en México de 1980 a 2018. Dado que la muestra de datos está 
sujeta a fuertes fluctuaciones económicas y financieras, de una batería de modelos 
autorregresivos (lineales y con parámetros markovianos de cambio de régimen) se 
elige la especificación del modelo que mejor se ajusta a los datos a través del factor 
de Bayes. La selección del modelo provee evidencia de que las tasas de crecimiento 
mensual de este índice presentan parámetros (media y volatilidad) que cambian con 
el tiempo. Se lleva a cabo un ejercicio de pronóstico sobre el modelo markoviano 
de mejor ajuste a los datos. Para medir su capacidad de inferencia, se compara su 
eficiencia respecto de la especificación lineal autorregresiva en la misma serie de 
datos. Los resultados muestran que la media de los errores de pronóstico (dentro y 
fuera de la muestra) son menores en la especificación markoviana. La metodología 
bayesiana aplicada permite estimar de forma endógena e inferir de manera precisa 
incluso por problemas de identificación de parámetros markovianos, pequeño nú-
mero de observaciones en regímenes, datos atípicos, número de regímenes e incer-
tidumbre de parámetros sujetos a cambio de estado.

n 	 Palabras clave: Índice de producción industrial, parámetros markovianos, análisis 
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n 	 Clasificación jel: E23; C24; C11; G17.

n 	 Abstract: In this article, by Markov switching modeling we study the identifica-
tion of unknown states and forecasting of the monthly industrial production index 
of Mexico from 1980 to 2018. Given that the data-sample is subject to strong eco-
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nomic and financial fluctuations, from a battery of auto-regressive models (linear 
and Markov switching parameters), the specification that best fits to data through 
the Bayes factor is chosen. The model selection of the monthly growth rates index 
leads to parameters (mean and volatility) change over time. A forecast exercise is 
carried out on the  Markovian model of best fit to data. To measure the accuracy 
on the estimation, its efficiency is compared with the linear auto-regressive models 
on the same data. Results provide evidence that  the mean of the forecasting er-
rors (in-sample and out-sample) are lower than those of the linear auto-regressive 
model. The Bayesian methodology applied allows to estimate endogenously and ac-
curately infer, despite of identification problems of Markov switching parameters, 
small number of observations in regimes, atypical data, number of regimes, and 
uncertainty in parameters subject to switch.

n 	 Keywords: Industrial production index, Markov switching, Bayesian analysis, fo-
recasting.
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n 	 Introducción 

Para el modelado de series de tiempo en mercados emergentes, particularmente en 
México, se requiere tomar en cuenta que los mercados económico-financieros son muy 
susceptibles a fluctuaciones financieras y económicas, tanto nacionales e internaciona-
les, así como a cambios en política monetaria, fiscal y de Gobierno. Por tanto, es insu-
ficiente que el modelado de las series de tiempo esté basado en parámetros constantes 
en el tiempo, ya que los patrones empíricos observados y esperados no podrían ser bien 
capturados (Hamilton, 2005). Más aún, los datos en economías emergentes son muy 
peculiares (pequeño número de observaciones en algún régimen, cambios estructura-
les, datos atípicos y mercados volátiles). Por lo anterior, metodologías econométricas 
estándares basadas en maximización de la función de verosimilitud podrían violar algu-
nos de sus supuestos y la posible estimación sería incierta (Frühwirth-Schnatter, 2006). 
El modelado bayesiano de series de tiempo con estas características de los datos es muy 
útil para académicos, investigadores y tomadores de decisión. 

Hay una literatura amplia en modelos econométricos en series de tiempo económi-
co-financieras que consideran parámetros sujetos a cambio de régimen con parámetros 
markovianos (ms) a partir de los trabajos de  Hamilton (1989) y Hamilton y Susmel 
(1994). En las compilaciones de  Diebold y Rudebusch  (1999),  Kim y Nelson (1999b),  
Hamilton y Raj (2002) y el trabajo de Frühwirth-Schnatter (2006), es posible encontrar 
una gran cantidad de referencias y evidencia empírica. Sin embargo, motivados con los 
trabajos de Frühwirth-Schnatter (2004) y Carrasco, Hu y Ploberger (2014) sobre mode-
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los autorregresivos univariantes con parámetros sujetos a cambio de régimen (ms-ar); 
así como con Kaufmann y Frühwirth-Schnatter (2002) y Bauwens, Dufays y Rombouts 
(2014), sobre modelos de varianza condicional heterocedástica dependiente del estado 
(ms-arch y ms-garch), consideramos importante probar la existencia de los cambios 
de régimen, los parámetros que son sujetos a cambio y el número de estados posibles. 
Por ejemplo, una equivocada especificación del modelo podría conducir a diferentes 
implicaciones económicas considerando el modelo de mejor ajuste a los datos. En el 
trabajo de Frühwirth-Schnatter (2001) se discute el número de estados asumido exó-
genamente en el trabajo de Engel y Kim (1999) sobre del tipo de cambio real Estados 
Unidos/Reino Unido.

Para el caso de series económico-financieras en México utilizando modelado econo-
métrico autorregresivo (ar), de heterocedasticidad condicional autorregresiva (arch y 
garch), y vectores autorregresivos (var) hay una gran cantidad de trabajos. Por tanto, 
solo mencionamos algunos estudios recientes que incluyen parámetros de cambio de 
régimen que responden diversas cuestiones económico-financieras y que difieren de 
aquellos resultados utilizando modelos con parámetros constantes: producción y ciclos 
económicos (Mejía-Reyes & Díaz-Carreño, 2010; Mejía-Reyes, Martínez Gómez & 
Rendón Balboa, 2005); cuestiones en series financieras (López-Herrera, 2004; López-
Herrera, Ortiz-Arango y Venegas-Martínez, 2011; López-Herrera & Venegas-Martínez, 
2011; Heath & Kopchak, 2015); tópicos en tipo de cambio (Bazdresch & Werner, 2005; 
Benavides & Capistrn, 2012; Islas-Camargo, Cortez y Sanabria Flores, 2017). Sin em-
bargo, en todos estos trabajos la apropiada especificación del modelo no es discutida 
formalmente. Una excepción es el estudio de Cabrera, Coronado, Rojas y Romero-
Meza (2018), donde se analizan los cambios de volatilidad en el índice de precios y 
cotizaciones de México, encontrando tres estados por el factor de Bayes. No obstante, 
este artículo omite cualquier ejercicio de pronóstico dentro y fuera de la muestra del 
índice de precios y de la volatilidad asociada. 

Es importante mencionar que la especificación sugerida en nuestro trabajo no ne-
cesariamente difiere de las impuestas exógenamente en los trabajos mencionados an-
teriormente ni tampoco contradice sus hallazgos. El objetivo del presente trabajo es 
complementar y posiblemente coincidir con algunas de las especificaciones asumidas, 
pero a diferencia de estos, el modelo econométrico sugerido en el presente trabajo es 
endógeno más que impuesto a priori por el investigador.

Por otro lado, una cuestión siempre importante para el modelado econométrico es 
que se considere el modelo de mejor ajuste de los datos y no solo mostrar que una espe-
cificación diferente deja resultados e implicaciones económicas distintas, sino también 
es igual de relevante el pronóstico de las series dentro y fuera de la muestra principal-
mente en modelos de cambio de régimen ms (Engel, 1994). Para esto, una vez que se 
elige una especificación sugerida por el factor de Bayes con base en Kass y Raftery 
(1995) y Frühwirth-Schnatter (2004), se realiza un ejercicio de pronóstico fuera de la 
muestra sobre las especificaciones ms, donde los errores de pronóstico se comparan 
con enfoques alternativos incluyendo los modelos lineales cuyos errores son muy difí-
ciles de mejorar en la mayoría de las aplicaciones empíricas. Un tema reconocido como 
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una debilidad de las especificaciones ms (Boot y Pick, 2017). Nuestro trabajo es muy 
cercano en metodología econométrica al de Cabrera, Coronado, Rojas y Romero-Meza 
(2018), pero aquí exploramos la pregunta sobre si el modelo de mejor ajuste ms deja 
errores de pronóstico fuera de la muestra menores que su principal competidor lineal. 

En este contexto, la contribución de este trabajo consiste es determinar si la serie de 
tiempo del índice mensual de producción industrial (ip) en México, no solo tiene com-
portamientos no lineales, sino cuál sería el modelo econométrico apropiado de acuerdo 
con su mejor ajuste a los datos para analizar su dinámica e inferencia. Una vez conocida 
esta especificación, mostrar si se pueden estimar errores de pronóstico menores que su 
principal competidor, el modelo lineal ar. 

Finalmente, consideramos importante mencionar que este artículo no es una simple 
batería de pruebas de no linealidad que se aplican a series económicas y dan una po-
sible explicación del resultado (por ejemplo, los errores estocásticos estimados y sus 
cuadrados no son independiente e idénticamente distribuidos). Estas pruebas solo debe-
rían ser una premisa para motivar el modelo econométrico no lineal. Tampoco se tiene 
como objetivo mostrar que algunas series de tiempo han sido mal especificadas y por 
tanto las conclusiones derivadas de esto podrían ser diferentes. Nuestro trabajo intenta 
complementar los hallazgos anteriores. Por último, también se desea dejar evidencia 
de que pruebas de cointegración, raíces unitarias, modelos con parámetros constantes 
var, arch y garch como supuestos de normalidad e independencia en los errores al 
cuadrado, deberían considerarse con precaución en las series de tiempo similares a la 
estudiada en este artículo.

En particular, asumir una especificación ms a priori, el caso estándar de dos esta-
dos como la mayoría de las referencias mencionadas lo asume, tendrá implicaciones 
económicas diferentes si solo hay un estado o si hay tres o más. Por ejemplo,  un tercer 
estado podría capturar fuertes fluctuaciones o datos atípicos que se presentan en menor 
porcentaje de la muestra. En dichos periodos de tiempo, la volatilidad es alta y muy 
probablemente sin dinámica autorregresiva. Lo que podría dejar en términos financie-
ros un mercado eficiente (no es posible predecir el precio de un activo con información 
del pasado). La volatilidad alta también implica riesgo e inestabilidad financiera quizás 
en breves periodos de tiempo, lo cual es información importante para los tomadores 
de decisión e inversionistas. Por otro lado, un modelo mal especificado de dos estados 
capturaría dichos datos en un solo estado con mayor persistencia, cuando el segundo 
régimen pueda solo corresponder a volatilidad media en donde fuera posible encontrar 
periodos no eficientes en el mercado, pero al incluir estos datos del tercer estado en el 
segundo, podría cambiar la eficiencia del tercero.3 

Si bien es posible mostrar que un modelo de dos estados es siempre posible de es-
timarse bajo restricciones en los parámetros y valores iniciales cercanos a un máximo 
local, es de observarse que omitiendo dichas restricciones podría modificar el máximo 
y no existir cambios de estado o quizá más de dos. Las implicaciones económicas  

3	 Véase Islas-Camargo, Cortez y Sanabria Flores (2017) para una discusión de eficiencia de dos regímenes en 
el mercado del tipo de cambio en México.
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derivadas de una errónea especificación del modelo estarán condicionadas a la especi-
ficación impuesta por el investigador. Por lo tanto, consideramos una herramienta de 
selección de especificación de mejor ajuste de datos útil para tomadores de decisiones, 
análisis económico e inferencia dentro y fuera de la muestra. Por otro lado, información 
sobre los parámetros sujetos a cambio de régimen proveen evidencia importante de 
riesgo en precios de los activos. Por ejemplo, una media de cero con volatilidad grande 
podría ser equivalente a una media alta con volatilidad baja y una media negativa con 
volatilidad baja. En el primero de los casos, el tomador de decisiones tendría sus pre-
cauciones ante volatilidad alta, en los últimos el riesgo sería menor. Sin embargo,  si 
ambos parámetros son sujetos a cambio de régimen es posible determinar si hay media 
y/o volatilidad cambiante en el tiempo, lo cual determinaría de forma más precisa la 
decisión del inversionista.

Finalmente, es importante no omitir que este trabajo no busca determinantes exóge-
nos de la dinámica del ip. Esto se deja para futura investigación, considerando la premi-
sa de que un posible modelo estructural debería considerar parámetros ms. El ejercicio 
de pronóstico fuera de la muestra es basado en el enfoque de pesos óptimos en modelos 
ms de  Boot y Pick  (2017); esto no implica que el pronóstico de la serie o sus errores 
no puedan ser mejorados incluyendo determinantes exógenos en el modelo, o quizá 
como en las series financieras, el proceso sea eficiente y no haya forma de predecir su 
rendimiento en el futuro, el único objetivo es mostrar si es posible mejorar los errores 
de pronóstico en comparación con su principal competidor lineal.

Respecto de la cuestión metodológica, es relevante mencionar que de acuerdo con  
Frühwirth-Schnatter (2006), los métodos de simulación bayesiana por cadenas de 
Markov Monte Carlo (mcmc), en el caso particular de series de las series de tiempo 
cortas y con posiblemente pocos datos en algún régimen, dejan una estimación más 
precisa que utilizar el enfoque frecuentista de la maximización de la verosimilitud 
(mle). Mas aún, bajo una adecuada selección de las distribuciones de probabilidad a 
priori, la mle es un caso particular del mcmc. En la sección de metodología discutimos 
por qué preferimos el enfoque bayesiano para este trabajo.

Para presentar los resultados de nuestra investigación, el artículo se organizará de la 
siguiente manera: en la segunda sección se discutirán algunas propiedades estadísticas 
de los datos; en la tercera sección la estructura econométrica y la metodología baye-
siana serán descritas y adicionalmente, se justificara la aplicación de esta metodología; 
en la cuarta sección se discutirán los resultados y se llevara a cabo el ejercicio de pro-
nóstico del índice de producción industrial en México. Finalmente, se presentarán las 
conclusiones en la última sección.

n 	 Datos del índice de producción en México

Esta sección ofrecemos una perspectiva exploratoria de los datos que sustentan la mo-
delación econométrica de la siguiente sección. Para esto, se analizan de manera gráfica 
y en un análisis exploratorio los datos mensuales del ip de México del mes enero de 
1980 al a marzo de 2018. Se ha elegido el largo de la serie (460 meses) de acuerdo 
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con la disponibilidad de los datos incluyendo los periodos de recesiones económico-
financieras más importantes de México.4 

En la Figura 1 graficamos las tasas de crecimiento porcentual del ip junto con la es-
timación de su densidad kernel de probabilidad subyacente.5 De la función de ajuste por 
el kernel, no es claro una mezcla de distribuciones normales, más bien, la frecuencia 
mensual de los datos deja una distribución con media cercana a cero, pero con largas 
colas. Sin embargo, parece tener cambios en la volatilidad de la serie. La representación 
de la serie de las tasas de crecimiento del ip podría sugerir, volatilidad alta entre 2008-
2009, media antes de 2008 y baja después de 2009. Para dicha serie se modelarán hasta 
la posible existencia de cuatro estados.

Un punto fino para denotar de este análisis exploratorio es el número de datos en 
cada posible estado. Es muy probable que en las recesiones profundas solo haya tres 
o cuatro datos por cada una de ellas. Esto viola los supuestos de mle y muy probable-
mente la estimación podría fallar.6 

De la Figura 1A la serie de tiempo en tasas porcentuales es claramente estacionaria. 
De los momentos muestrales, la inspección gráfica muestra que la varianza no es cons-
tante en el tiempo. La serie del ip como todos los índices económicos tiene tendencia y 
no tiene momentos constantes en el tiempo. De la Figura 1B la prueba de normalidad 
se rechazaría por las colas largas de la distribución.7

Figura 1
Gráfica descriptiva del ip en tasas de crecimiento mensual

A) Tasa de crecimiento mensual del índice de pro-
ducción industrial en porcentaje.

B) Histograma y función de densidad con base en el 
kernel de una normal.

4	 La fuente de los datos es la Organización para la Cooperación y el Desarrollo Económicos​ (oecd),  (http://
oecd.org).

5	 La densidad kernel se estimó con Matlab a través de la función ksdensity. Dicha función está basada en el 
kernel de una distribución normal.

6	 Es importante notar que la estimación del modelo de cambio de régimen Markovianos por mle en stata o 
cualquier otro paquete econométrico para esta serie del ip (en el caso de tres estados o más), tiene problemas 
porque el algoritmo de optimización no converge.

7	 Dadas las limitaciones del espacio no se presenta la estadística descriptiva, pero se encuentra disponible a 
petición en la dirección electrónica de los autores.

Fuente: Elaboración propia.
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n 	 Modelado econométrico y 	método de estimación bayesiano 

En la primera parte de esta sección, describimos el modelo econométrico para estudiar 
las tasas de crecimiento mensual del ip en México. El modelo propuesto es un auto-
rregresivo con ms, tanto en la media como en la varianza, y cuyo caso particular es el 
modelo lineal con parámetros constantes. 

La notación y definiciones están basadas en Timmermann (2000), Frühwirth-Sch-
natter (2004), y aplicada antes en Cabrera, Coronado, Rojas y Romero-Meza (2018). 
Sea yt  la serie de tiempo estacionaria en tasas de crecimiento de datos mensuales. El 
modelo base es un autorregresivo en donde todos sus parámetros siguen cambios de 
régimen (denotado como msar) dado por:

(1)		 L yS S St tt t tz g v f= +^ h6 6 6@ @ @

donde ,iidN 0 1t +f ^ h ; los parámetros autorregresivos Stz6 @  dependen del estado, el or-
den del polinomio es el número de rezagos (p) y L es el operador de rezagos; el inter-
cepto Stg6 @  implicaría una media dependiente del estado, y Stv6 @  captura la volatilidad 
del término de error por estado. El indicador de los estados St es una variable estocásti-
ca definida en un espacio discreto y finito , ...,K1" ,  que captura la dependencia de los 
parámetros del régimen para todo t. En dicho indicador, se asume que sigue un proceso 
de Markov de primer orden; es decir, la probabilidad de transición del estado k al estado 
l esta dado por Pr S S k1kl t t 1p = = =-^ h  para t=1,...,T, y los estados , , ...,k l K1! " , . El 
modelo autorregresivo (1) tiene como casos particulares los siguientes:

•	 Si solo el intercepto Stg6 @  y la volatilidad del término de error Stv6 @  dependen del 
estado, el modelo (1) se reduce al modelo denotado como msiar:

(2)		 L yt S S tt tz g v f= +^ h 6 6@ @ 		
 
•	 Si solo hay un estado, K=1, el modelo (1) se reduce al modelo lineal autorregresivo 

denotado como lar:

(3)		 L yt tz g vf= +^ h  

En resumen, para las tasas de crecimiento mensual del índice de producción, 
de acuerdo con todas las posibles combinaciones de parámetros y estados se tienen 
K(2p+1)−p posibles especificaciones autoregresivas definidas como msar, msiar y 
lar, una vez estimados entonces se procede a elegir el modelo de acuerdo con su 
ajuste de datos. El método de simulación bayesiana de Frühwirth-Schnatter (2004), nos 
permitirá llevar a cabo este objetivo. En particular, la ecuación (1) arroja una media y 
una volatilidad que dependen de los parámetros autorregresivos y el intercepto en cada  
estado. En el (2) los momentos dependen del intercepto por estado y en el último, (3) 
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los momentos son constantes en el tiempo. Los momentos de cada uno de estos mo-
delos son estudiados en Timmermann (2000).

Factor de Bayes y la probabilidad marginal (ml)
Usando la técnica del muestreo puente (Bridge-sampling) de Meng y Wong (1996) y 
los métodos de simulación de mcmc con base en Frühwirth-Schnatter (2004, 2006), 
es posible estimar de manera precisa la probabilidad o verosimilitud marginal (ml); es 
decir, Pr y M j^ h , y a partir de esta estimar la probabilidad de cada modelo condicional 
a la muestra de datos, Pr M yj^ h . De acuerdo con la literatura, el factor de Bayes para 
comparar el modelo i con el modelo j esta dado por:

Pr
Pr

Pr
Pr

BF y M
y M

M
M

y
y

,i j
j

i

j

i
= =

^
^

^
^h

h
h
h

donde o hay ninguna probabilidad preferida a priori para algún modelo; esto es, 
Pr PrM Mj i=^ ^h h . Por lo tanto, estimando la ml de cada especificación, el modelo 
con mayor tasa podría ser preferido de acuerdo con la guía sugerida en Kass y Raftery 
(1995).  

En la Tabla 1, que ofrece la guía convencional para la selección del modelo con base 
en el factor de Bayes, las probabilidades de los datos condicionales al modelo i respecto 
del modelo j con más alta ml son calculados para diferentes valores del logaritmo del 
factor de Bayes. Por ejemplo, si el  log BF 7,e i j =^ h  o mayor de 3 en base 10, el modelo 
j tiene un soporte de 99.9% de los datos; por lo tanto, se considera evidencia positiva 
en contra del modelo i y se puede rechazar. Por otro lado, si el logaritmo base 10 del 
factor de Bayes está entre -3 y 3 no es posible descartar ninguna especificación y ambos 
modelos pueden representar a los datos. 

Es importante mencionar que en el artículo de Kass y Raftery (1995) se muestra que 
los criterios Akaike y Schwarz para elegir el número de rezagos en procesos lineales 
autorregresivos son asintóticamente equivalentes al factor de Bayes. Más aún, los auto-
res presentan una correspondencia con la tabla chi-cuadrada de estadística clásica para 
referencia en pruebas de razón de verosimilitud utilizadas en econometría frecuentista 
para elegir la especificación en modelos anidados.

Procedimiento de estimación bayesiana
En este apartado describimos de manera general el procedimiento de estimación por 
métodos de simulación bayesiana para inferir de manera precisa la selección del mo-
delo con mejor ajuste a los datos y llevar acabo las inferencias asociadas del modelo 
seleccionado. 

La simulación de la ml de cada modelo autorregresivo se lleva a cabo con base en 
Frühwirth-Schnatter  (2004), los detalles y el código de matlab se pueden encontrar en 
el trabajo de Frühwirth-Schnatter (2006). Por lo tanto, el factor de Bayes para cada com-
binación posible de modelos puede ser estimado dada la razón en logaritmos de las ml.
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Una vez que elegida la especificación, se lleva a cabo un nuevo mcmc restringido. 
Esto es, en el método de simulación Monte Carlo se imponen las restricciones de identifi-
cación para los parámetros dependientes del estado. Es decir, si la especificación autorre-
gresiva preferida es un modelo de tres estados, una posible restricción para el muestreo 
mcmc es:  1

2 2 2
2 32 2v v v  y 1 2 32 2n n n . El procedimiento del mcmc restringido es 

como sigue:

•	 Para valores iniciales de los indicadores de los estados S y varianzas para el tér-
mino de error, muestrear los parámetros }  condicional a los datos y S, desde la 
función ,p y S}_ i . Los parámetros autorregresivos se muestrean a partir de un 
normal multivariante, la varianza de una gamma invertida, y las probabilidades de 
transición de una función de densidad de probabilidad Dirichlet. 

•	 Posteriormente, aplicar el muestreo rechazo-aceptación al paso anterior imponien-
do las restricciones de identificación dependientes del estado. Esto es, si los pará-
metros muestreados satisfacen las restricciones guarda los paramétros muestrea-
dos, de lo contrario se mantentienen los anteriores.

•	 Dados los parámetros del último paso, muestrear los indicadores de los estados por 
el algoritmo forward-smoothed-backward sugerido por  Kim y Nelson (1999a) y 
descrito en Frühwirth-Schnatter (2006). 

•	 Repetir todos los pasos anteriores 7 000 veces descartando los primeros 2 000 para 
eliminar la dependencia de los valores iniciales. 

Dada la salida del mcmc restringida, se pueden calcular todos los momentos poste-
riores para todos los parámetros (por ejemplo, la media y la desviación estándar). Así 
mismo, de la salida del mcmc restringida y de los indicadores simulados por el algo-
ritmo forward-smoothed-backward, se estima la media posterior de las probabilidades 
suavizadas de cada estado para , ...,t T1=  (en la sección de resultados, estás serán 
graficadas), lo cual es una de las contribuciones más importantes de los modelos con 
cambio de régimen.

Tabla 1
Guía de selección del factor de Bayes

log BFe ij^ h Pr M yi^ h Pr M yj^ h log BFij10 ^ h Guía de selección
7 0.999 0.001 3.040 Evidencia positiva en contra del modelo i
3 0.953 0.047 1.303

Nada que decir ambos modelos pueden
representar los datos

1 0.731 0.269 0.434
0 0.500 0.500 0.000
-1 0.269 0.731 -0.434
-3 0.047 0.953 -1.303
-7 0.001 0.999 -3.040 Evidencia positiva en contra del modelo j

Nota: Si el factor de Bayes en logaritmo base 10 es mayor de 20 (en valor absoluto) la evidencia es fuerte.
Fuente: Elaboración propia con base en Kass y Raftery (1995).
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¿Por qué aplicar métodos bayesianos a diferencia de estimación mle?
La respuesta está basada en dos cuestiones: eficiencia en la estimación y permite la 
comparación entre especificaciones markovianas. En primer lugar, es importante re-
cordar por qué los métodos bayesianos podrían superar la eficiencia en la estimación 
respecto de la econometría frecuentista por maximización de la verosimilitud (mle) por 
las siguientes razones: primero, en la estimación por mcmc las propiedades asintóticas 
aplican al número de simulaciones más que al tamaño de la muestra; segundo, no es 
necesario las condiciones de segundo orden ni la inversa del valor esperado de la matriz 
de información, que en el caso de mle, es muy común que dicha matriz sea singular en 
las iteraciones del algoritmo de maximización. Los segundos momentos se derivan de 
la salida del mcmc sin optimizar. Tercero, para encontrar la convergencia en el máximo 
local y/o global en mle se requieren muy buenos valores iniciales y acotar el dominio 
de maximización imponiendo restricciones, el caso del mcmc no depende de los valo-
res iniciales para la convergencia de la cadena sino más bien de las distribuciones de 
probabilidad a priori que aseguren una forma conocida de la distribución de probabili-
dad condicional posterior. Así también, un algoritmo que permita visitar el dominio del 
parámetro en la mayor medida posible. Por lo anterior, la estimación bayesiana podría 
dejar una estimación más precisa que mle si la optimización falla por alguna de las 
razones mencionadas anteriormente. Mas aún, bajo una adecuada elección de las distri-
buciones a priori, la estimación mle es un caso particular del mcmc. 

En segundo lugar, describiremos los motivos por los cuáles no es posible comparar 
modelos markovianos utilizando los criterios estándar de la econometría frecuentista a 
diferencia del enfoque bayesiano. La estimación lineal autorregresiva y comparación 
de modelos (es decir, el número de rezagos), es casi siempre factible aplicarla por la 
razón de verosimilitudes de cada modelo. Los criterios de la econometría frecuentista 
son Akaike, Schwarz y Hannan-Quinn. Todos utilizan el estadístico de contraste que 
sigue una distribución chi-cuadrada y en el caso de muestras de datos relativamente 
grandes, las propiedades asintóticas dejan estimadores insesgados y la prueba no tiene 
ningún problema. 

Por otro lado, es importante notar que, para probar un modelo con dos estados en 
contra de un modelo con un solo estado (lineal) la razón de las verosimilitudes no se 
aproxima a una chi-cuadrada ni asintóticamente. La razón es por dos cuestiones: pri-
mero, si bajo la hipótesis nula el verdadero modelo es lineal, cualquier otro modelo con 
parámetros ms no está identificado; este problema es llamado en la literatura nuisance-
parameters,8 Es decir, si solo hay una varianza o una media, no hay una forma única de 
estimar dos o más valores de los parámetros. Una técnica muy frecuentemente utilizada 
es aplicar restricciones a la optimización; por ejemplo, en el caso de dos estados: una 
media es más grande que la otra y/o una varianza es mayor que la otra. La estimación 
es factible y mle encontrará un máximo local. Pero si cambiamos las restricciones es 
probable que mle encuentre otro máximo local. Por ejemplo: si se estima el modelo 
sin restricciones, una posibilidad es que una media sea diferente de cero y la otra no, 
un modelo equivalente sería la primera es cero y la segunda no, pero otro modelo equi-
8	 Véase  Andrews  y Ploberger (1994) y Hansen (1996).
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valente es, alguna suma ponderada de las medias es igual a la media del modelo lineal. 
En el caso de dos varianzas esto no puede ocurrir porque una varianza no puede ser 
cero en ningún estado, pero si es posible qué alguna media ponderada de dos varianzas 
equivalga a la varianza del modelo lineal.

Segundo, los errores estándar pueden obtenerse con la inversa del valor esperado de 
la negativa de la matriz de información (matriz de segundas derivadas de la función de 
verosimilitud); sin embargo, en el caso de que la hipótesis nula no sea rechazada esta 
matriz suele ser singular. Mas aún, la matriz tiende a ser singular también en el caso de 
pocas observaciones en un estado.9

El artículo de Carrasco, Hu y Ploberger (2014) resuelve el problema antes mencio-
nado de manera parcial. Esto es, si únicamente se estima el modelo lineal es posible 
aplicar una batería de pruebas estadísticas para comprobar si el parámetro es depen-
diente del estado. La prueba es asintótica y puede realizarse por mle al modelo lineal. 
Sin embargo, no puede efectuarse para comparar dos estados contra tres estados, o un 
modelo en donde solo la media cambia contra otro en donde la media y la varianza son 
dependientes del estado. Lo anterior, porque las pruebas sugeridas en el artículo tienen 
como base el modelo lineal.

Por otra parte, los enfoques bayesianos utilizados en Frühwirth-Schnatter (2004) 
y Bauwens, Dufays y Rombouts (2014)  permiten la comparación de los modelos con 
cualquier número de estados, aunque los parámetros no estén identificados ni tomando 
como base única el modelo lineal. Lo anterior se debe a dos razones: primero, los erro-
res estándar y todos los momentos de los parámetros pueden estimarse por la salida del 
mcmc; es decir, no hay optimización. En segundo lugar, si un parámetro no está iden-
tificado los muestreos del parámetro coincidirán en dos estados y entonces se evaluará 
la función de probabilidad de dos parámetros contra uno. Esto dejará que la función de 
probabilidad univariante sea más alta que una bivariante y con esto se concluiría que 
no hay dos parámetros. Lo mismo ocurriría con cualquier número de estados. En la lite-
ratura es común restringir el muestreo aplicando aceptación-rechazo. Es decir, guardar 
el muestreo si una media es más grande que la otra, en otro caso, descartar el muestro. 
Sin embargo, al final del muestreo es posible observar que las salidas del mcmc estarán 
truncadas y no será posible estimar la función de probabilidad para todo el dominio, es 
decir, solo se evaluaría para la parte de muestreos aceptados. Esto dejará que la estima-
ción de la probabilidad del parámetro sea sesgada, por lo tanto, la probabilidad de todo 
el modelo (ml) será errónea bajo este problema. No obstante, si se impone la restricción 
y los muestreos cubren una gran parte del dominio del parámetro (es decir, sin trunca-
miento) entonces si habría dos parámetros claramente separados y el problema de sesgo 
disminuye. El problema de truncar la función es importante cuando un parámetro es 
cercano a otro en dos estados; es decir, cuando quizás el modelo es lineal. En resumen, 
ambos trabajos confirman que, bajo una estimación sin imponer restricciones de iden-
tificación al muestreo, las ml de cada modelo siempre podrán ser comparadas. A partir 
de estas entonces se puede aplicar el criterio de selección de la mejor especificación de 
ajuste a los datos por el factor de Bayes.
9	 Véase Hamilton (1994) y  Frühwirth-Schnatter (2006).
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n 	 Resultados

Esta sección la conformamos de tres apartados: primero, presentamos los resultados 
de la selección en la especificación del modelo de mejor ajuste a los datos con base 
en el factor de Bayes; segundo, reportamos las inferencias asociadas al modelo elegi-
do; finalmente presentamos en un apartado los resultados del ejercicio de pronóstico 
dentro y fuera de la muestra del modelo seleccionado en contraste con sus principales 
competidores. 

La Tabla 2 muestra los resultados de aplicar el factor de Bayes a las tasas de cre-
cimiento mensual del ip en México. Con base en la simulación de la ml descrita en la 
sección anterior, se toma como referencia el modelo que tiene la más alta ml y contra 
este se calcula el factor de Bayes de cada modelo. En la Tabla 2 se resalta con números 
en negritas el modelo con factor de cero puesto que se compara con el mismo; es decir, 
msar de cuatro estados y un solo rezago. De acuerdo con la Tabla 1 de referencia del 
factor de Bayes, los modelos sugeridos para el ip son todos aquellos de tres estados bajo 
especificaciones msar y msiar, y con cuatro estados y uno y dos rezagos marcados sus 
números con negritas. El resto de los modelos son rechazados con evidencia positiva 
(mayor de 3) y evidencia fuerte (mayor de 20) en el caso de especificaciones lineales.

La estimación de la probabilidad marginal por simulación mcmc está basada en 
Frühwirth-Schnatter (2006). La estimación del factor de Bayes (en logaritmo base 10) 
para el ip en tasas de crecimiento mensual, es con base en el modelo con probabili-
dad marginal más alta. Las especificaciones marcadas en negritas son modelos suge-
ridos por el factor de Bayes con base en la Tabla 1. Es relevante notar que series de 
tiempo económicas con cuatro estados no son nuevas en la literatura, en el trabajo de 
Frühwirth-Schnatter (2001) sobre el tipo de cambio real Estados Unidos/Reino Unido 
se encontraron cuatro en lugar de los tres estados asumidos exógenamente en Engel y 
Kim (1999). Cada uno de estos regímenes se vinculó con diversas causas económico-
financieras en estos países. Por otra parte, Clements y Krolzig (1998) encuentran tres 
estados para pib de Estados Unidos.

Tabla 2
Modelo y el factor de Bayes para el ip industrial de México

Rezagos/Estados lar msar msiar

1 2 3 4 2 3 4
0 30.62 5.30 2.33 3.27
1 31.39 6.41 2.14 0.00 5.93 2.66 1.40
2 31.37 4.97 1.98 2.77 4.35 1.33 2.21
3 32.03 5.70 2.61 4.12 4.93 2.06 3.67
4 32.50 5.50 2.84 5.62 4.57 1.88 3.95

Nota: La razón del factor de Bayes está medida en logaritmo base 10 en relación con el modelo de más alta proba-
bilidad marginal, es decir, la especificación msar (1).
Fuente: Elaboración propia.
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En las tasas de crecimiento mensual del ip, de acuerdo con su gráfica, se esperaba 
encontrar tres estados para diferentes volatilidades; sin embargo, el factor de Bayes 
sugiere también cuatro estados con un rezago para el modelo msar definido en la ecua-
ción (1) con mayor probabilidad marginal. Con el fin de estudiar las propiedades del 
modelo de cuatro estados, se elige dicha especificación con un solo rezago. La estima-
ción del modelo se lleva a cabo por el mcmc restringido descrito en la sección anterior.

En la Tabla 3 se reportan los momentos posteriores; es decir, la media y el intervalo 
de alta densidad posterior a 95% denominado como hpdi10 de cada uno de los paráme-
tros del modelo. De la media posterior de los parámetros de cada estado, se pueden de-
rivar la media y la volatilidad del proceso. Los interceptos de cada estado son diferentes 
de cero excepto para el estado dos, ya que el hpdi incluye el cero (-0.3187 y 0.2719). 
Todos los autorregresivos son diferentes de cero excepto el caso del estado uno de 
acuerdo con el hpdi (-0.4723 y 0.7938). Los momentos de las tasas de crecimiento del 
IP son: en el primer estado, media negativa alta (-4.4355) con volatilidad de 2.3796; en 
el segundo, media de cero con volatilidad 1.1497; en el tercero la media es de 0.1784 
con volatilidad más baja 0.9695, y en el último estado la media y la volatilidad son 
altas, 0.8853 y 1.8327. Las volatilidades se calcularon por las ecuaciones Yule-Walker 
condicionales a los estados. 

Por otro lado, por la estimación de las probabilidades de persistencia de la matriz de 
transición11 podemos concluir que la más alta es la del tercer estado; es decir, perma-
necer en este régimen de crecimiento moderado con la volatilidad más baja es 0.9571. 
La probabilidad menos persistente se refiere a volatilidad alta y recesión profunda 
0.4727,10 la cual coincide con las recesiones económico-financieras como se verá más 
adelante en el gráfico de probabilidades suavizadas en la Figura 2. Finalmente, de las 
probabilidades de estado estacionario se puede concluir que 2% del tiempo hay rece-
sión profunda, 23% sin crecimiento, 66% en crecimiento moderado y 9% crecimiento 
alto aproximadamente (véase el área gris de la Figura 2).

En la Figura 2 se grafica las probabilidades suavizadas para todo t de cada estado 
junto con las tasas de crecimiento del ip. En la Figura 2A el estado uno se caracteriza 
por alta volatilidad con y profunda recesión decrecimiento, el tiempo de las probabi-
lidades más altas coincide con las recesiones económicas de la década de 1980, 1995 
y 2008-2009. En el segundo estado (Figura 2B) el crecimiento es nulo y la volatilidad 
es media, los periodos de tiempo coinciden con etapas de los ochenta y periodos inme-
diatos después de las recesiones de 1995 y 2008-2009. El tercer estado (Figura 2C) es 
el más persistente y el que se presenta en mayor porcentaje en los datos, con tasa de 
crecimiento moderada y la volatilidad más baja. Finalmente, en la Figura 2D el cuarto 
estado captura apropiadamente los crecimientos fuertes después de las crisis económi-
cas de los ochenta y en periodos de tiempo de los noventa. 

10	 El hpdi (por sus siglas en inglés), se presenta el muestreo en el lugar 2.5 y 97.5% de cada parámetro de la 
salida del mcmc, el cual es el equivalente al intervalo de confianza de 95% en econometría frecuentista.  

11	 Dadas las limitaciones de espacio también se omitieron el resto de las probabilidades de transición, no obstan-
te están disponibles a petición en la dirección electrónica de los autores.
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Tabla 3
Momentos posteriores del modelo msar ecuación (1)

Parámetro Media hdpi al 95% Parámetro Media hdpi al 95%
S 1tg = -4.1254 -5.3150 -2.7709 11t 0.4727 0.0556 0.9558

,S1 1tz = 0.0699 -0.4723 0.7938 22t 0.8588 0.1752 0.9817
S 1
2

tv = 5.6346 1.3881 17.8508 33t 0.9571 0.7425 0.9996
S 2tg = -0.0189 -0.3187 0.2719 44t 0.6718 0.0636 0.9697

,S1 2tz = 0.4085 0.2488 0.6250 Probabilidades de estado estacionario
S
2

2tv = 1.1012 0.8306 1.5428 1t 0.0227 3t 0.6539
S 3tg = 0.2273 0.0346 0.4170 2t 0.2333 4t 0.0901

,S1 3tz = -0.2740 -0.4311 -0.0690 Media y volatilidad de cada estado
S
2

3tv = 0.8694 0.6746 1.0719 1n -4.4355 1v 2.3796
S 4tg = 1.5328 0.2199 2.5684 2n -0.0319 2v 1.1497

,S1 4tz = -0.7314 -0.9692 -0.5117 3n 0.1784 3v 0.9695
S
2

4tv = 1.5621 0.6661 3.3786 4n 0.8853 4v 1.8327

Nota: Los momentos y el hpdi posteriores se obtienen de la salida del mcmc restringido descrito en la sección 3.2. 
El subíndice indica el estado del parámetro de la media y la volatilidad.
Fuente: Elaboración propia.

De estos gráficos de probabilidades suavizadas dos aspectos importantes a denotar 
son los siguientes: primero, el estado de expansión alta no se vuelve a presentar con 
una probabilidad importante de 2000 hasta 2018; segundo, a partir de 1995, parece 
darse un cambio estructural y solo hay probabilidad importante de dos estados con alta 
probabilidad: volatilidad media y crecimiento nulo y volatilidad baja y expansión baja. 
Es decir, se puede asumir a partir de 1995 un solo un estado y podría considerarse una 
variable dicotómica para 2008-2009. Tercero, aunque este último resultado en los cam-
bios de estado podría considerarse esperado, los cambios son inferidos endógenamente 
y tienen un sustento estadístico. De los cuáles hay una probabilidad de volverse a pre-
sentar en algún momento del tiempo, principalmente los estados dos y tres.

Pronóstico en modelos de cambio de régimen ms
En esta sección concluimos con un ejercicio de pronóstico a partir del modelo selec-
cionado por el factor de Bayes con más alta ml para el ip. Lo anterior, con el fin de 
mostrar si el error de pronóstico por esta especificación ms de mejor ajuste a los datos, 
tiene alguna ventaja sobre su principal competidor, el modelo lineal autorregresivo. Sin 
embargo, dejamos para trabajos posteriores el pronóstico de la volatilidad con base en 
modelos ms-arch y ms-garch.

El procedimiento estándar de pronóstico en modelos ms, implica utilizar las pro-
babilidades suavizadas de la Figura 2 y de transición como estacionarias para tomar 
una media ponderada y dar un pronóstico de la serie (este se denotará como ms). Sin 
embargo, en la mayoría de los casos los errores de pronóstico de modelos ms no pue-
den superar a los del modelo lineal autorregresivo. Lo anterior, ya que los momentos 
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no condicionales de modelos ms equivalen a los momentos del lineal autorregresivo. 
Este dilema y las referencias son discutidas en Boot y Pick (2017). En dicho artículo, se 
sugiere utilizar óptimamente pesos para toda la serie con base en una especificación ms 
y aplicarlos para pronosticar la serie en lugar de las probabilidades suavizadas. Los au-
tores concluyen que los pesos óptimos son elegidos para minimizar el error cuadrático 
de pronóstico (msfe) y al aplicarlos en toda la serie, dejan errores de pronóstico dentro 
y fuera de la muestra menores que los del modelo lineal. Esto solamente en el caso de 
que la serie de tiempo presente cambios de régimen como proceso generador de datos. 
Para mostrar dicho resultado, realizaron un ejercicio del pib de Estados Unidos con un 
modelo de tres estados. Sus resultados dejan un error de pronóstico de 164 periodos de 
los últimos datos menor que el modelo lineal. La diferencia entre los errores la com-
prueban con pruebas estadísticas frecuentistas de la literatura en pronóstico.

En el presente trabajo se aplica el enfoque de Boot y Pick (2017); es decir, las 
probabilidades suavizadas se sustituirán por pesos wt^ h  óptimos para pronosticar 
y X wT T1 1b=+ +lt t ^ h . Donde los pesos, como se mencionó anteriormente, se eligen para 

minimizar el error de pronóstico en modelos de cambio de régimen (msfe); esta meto-
dología se denotará con opt.  

La Tabla 4 muestra la media del msfe con base en el modelo lineal autorregresivo 
lar, el pronóstico estándar de modelos de cambio de régimen ms y el óptimo opt, para 
64 periodos anteriores al último dato más 40 periodos de entrenamiento.12 El resulta-
do muestra que la media de msfe del pronóstico opt del ip (0.4422) es menor que el 
modelo lineal (0.4772). Incluso la media del ms también es menor (0.4428) que la del 
lineal. Por tanto, se puede concluir que la especificación sugerida por el factor de Bayes 
también tiene errores de pronóstico dentro de la muestra menores que el modelo lineal 
autorregresivo. 

12	 Se utilizó el código de matlab disponible por los autores para estimar el msfe.
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Figura 2
Probabilidades suavizadas y el indice de producción industrial (porcentaje)

Nota: Las probabilidades suavizadas fueron estimadas de la media posterior de la salida del mcmc restringido.
Fuente: Elaboración propia.
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Finalmente, en la parte inferior de la Tabla 4 presentamos el resultado para el pro-
nóstico fuera de la muestra del ip. El ip en T+1 (es decir, abril de 2018) se estimó con 
el modelo lineal, el procedimiento estándar ms y aplicando los pesos óptimos (opt). De 
esta estimación, se calculó el error al cuadrado con el dato real de 109.57 para el mes de 
abril. El menor error está dado cuando se aplican los pesos óptimos (0.0031), seguido 
por el de la metodología ms y tercero, el modelo lineal que presenta el error cuadrado 
más alto (0.0385) para este periodo de tiempo en específico.

Tabla 4
msfe del ip y pronóstico dentro y fuera de la muestra

Modelo lar ms opt

msfe (media) 0.4772 0.4428 0.4422
Dato de Apr-2018 109.5700

Pronóstico (T+1) 109.7662 109.8329 109.6257
Error al cuadrado 0.0385 0.0692 0.0031

Nota: La estimación del msfe está basada en  Boot y Pick (2017).
Fuente: Elaboración propia.

En resumen, con la metodología sugerida por  Boot y Pick (2017), determinamos 
que los errores de pronóstico del modelo ms el ip en México tiene menores errores que 
el modelo lineal autorregresivo lo qué en la práctica es difícil de superar. 

n 	 Conclusiones

En este trabajo, estudiamos la modelación econométrica y pronóstico dentro y fuera de 
la muestra, de procesos autorregresivos lineales y con parámetros markovianos sujetos 
a cambio de régimen de las tasas de crecimiento mensual del ip en México de 1980 a 
2018. Con base en la metodología bayesiana, fue posible la estimación de la ml de cada 
modelo para llevar acabo la selección de estos a través del factor de Bayes de acuerdo 
con su ajuste a los datos. Esta metodología nos permitió elegir el número de rezagos, 
los parámetros sujetos a cambio de régimen y el número de estados posibles. Dado el 
modelo con mayor probabilidad marginal, se llevó a cabo un ejercicio de pronóstico 
para mostrar que la especificación markoviana (ms) tiene errores de pronóstico meno-
res que el principal competidor, el modelo linear autorregresivo.

Del análisis exploratorio de las tasas de crecimiento mensual del ip no hay ninguna 
evidencia de una mezcla de distribuciones normales, ya que la serie parece distribuirse 
con largas colas y media de cero. Sin embargo, se encontraron tres y cuatro estados 
con diferente media y volatilidad con base en el factor de Bayes, resultado similar a 
Frühwirth-Schnatter (2001). Sobre la especificación con más alta ml, se llevó a cabo un 
ejercicio de pronóstico en comparación del modelo lineal. Primeramente, se calcularon 
los pesos óptimos que minimizan el error de pronóstico en modelos ms basado en Boot 
y Pick (2017). Dados estos pesos, se prueba que la media de estos errores (dentro de la 
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muestra) es menor en el modelo ms que en lineal. En segundo lugar, aplicando los pe-
sos óptimos y estimando el pronóstico fuera de la muestra para el mes de abril de 2018 
contra la metodología estándar ms y para el modelo lineal, también se tiene un menor 
error cuadrado que los demás. Es decir, de este ejercicio, el modelo ms seleccionado 
por el factor de Bayes para el caso del ip tiene menor error de pronóstico dentro y fuera 
de la muestra que el modelo lineal.

Es importante mencionar que la metodología bayesiana sugerida en este trabajo re-
suelve problemas de no identificación de parámetros ms para llevar a cabo comparación 
entre modelos (nuisance-parameters), el número reducido de observaciones en algún 
estado no es problema mientras que la estimación por mle falla. Lo anterior, porque las 
propiedades asintóticas son aplicadas al número de simulaciones más que en el tamaño de 
la muestra como en el enfoque de econometría frecuentista. Por último, bajo un adecuado 
muestreo de los parámetros todos los momentos pueden ser estimados con más precisión 
sin necesidad de la optimización como mle, donde en caso de no identificación y pocas 
observaciones en algún estado, la matriz de información suele ser singular. 

Finalmente, se deja para estudios posteriores el caso de series financieras de alta 
frecuencia con modelos de heterocedasticidad condicional (arch y garch) con pa-
rámetros de cambio de régimen markovianos (ms). Así mismo, este trabajo intenta 
aportar evidencia de que una posible especificación exógena de los estados podría estar 
mal especificada. Por ejemplo, en la mayoría de la literatura con datos de México citada 
anteriormente se imponen a priori dos estados. Por otro lado, es importante mencionar 
que para trabajos posteriores de co-movimientos, determinantes de la serie estudiada 
por modelos estructurales y var, así como las clásicas pruebas de estacionariedad y 
cointegración deberán tenerse en cuenta que los parámetros no son constantes en el 
tiempo, por lo que las implicaciones económicas de los resultados podrían ser distintas.

Otra línea de investigación futura podría extenderse considerando la interacción de 
la producción industrial de México con la de Estados Unidos, tomando en cuenta su 
sincronía, efectos de transmisión y los resultados de este trabajo.13 
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