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Abstract 
 
Image segmentation plays an important role in many systems of computer vision. According to criterions of many 
authors the segmentation finishes when it satisfies the goals of the observer. For that reason, an only method there is 
not able of solving all the problems that exists in the present time. In this work, we carry out a comparison between 
two segmentation techniques; namely, through the mean shift, where we give a new algorithm, and by using spectral 
methods. In the paper we discuss, through examples with biomedical real images, the advantages and disadvantages 
of them. 
Keywords: Image segmentation, mean shift, spectral methods. 
 
Resumen 
 
La segmentación de imagen juega un importante rol en muchos sistemas de visión por computadora. Acorde al 
criterio de muchos autores la segmentación finaliza cuando son satisfechos los objetivos del observador. Por esa 
razón, no hay un único método capaz de resolver todos los problemas que existen en la época actual. En este trabajo, 
nosotros llevamos a cabo una comparación entre dos técnicas de segmentación; a saber, a través de la media 
desplazada, donde nosotros ofrecemos un nuevo algortimo, y usando los métodos espectrales. En el artículo nosotros 
discutimos, a través de ejemplos con imágenes biomédicas reales, las ventajas y desventajas de ellos. 
Palabras claves: Segmentación de imagen, media desplazada, métodos espectrales 

 
1 Introduction 
 
Segmentation and contour extraction are important steps in many systems of high level. Segmented images are now used 
routinely in a multitude of different applications, such as, diagnosis, treatment planning, localization of pathology, study 
of anatomical structure, computer-integrated surgery, among others. However, image segmentation remains a difficult 
task due to both the variability of object shapes and the variation in image quality. Particularly, medical images are often 
corrupted by noise and sampling artifacts, which can cause considerable difficulties when applying rigid methods. 
Nevertheless, in spite of the most complex algorithms developed until present, segmentation continues being very 
dependent on the application and an only method there is not able of solving all the problems arising in the universe. 

The pathological anatomy is a speciality, where the use of different techniques of digital image processing (DIP) 
allows improving the accuracy of the diagnosis of many diseases.  One of the most important diseases in order to study 
today is the cancer, which constitutes one of the first causes of death in all those countries where the epidemics do not have 
an important weight. 

Many segmentation methods have been proposed for medical-image data [1-6]. Unfortunately, segmentation using 
traditional low-level image processing techniques, such as thresholding, histogram, region growing and other classical 
operations requires a considerable amount of interactive guidance in order to attain satisfactory results. Automating 
these model-free approaches is difficult because of complexity, shadows, and variability within and across individual 
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objects. Furthermore, noise and other image artifacts can cause incorrect regions or boundary discontinuities in objects 
recovered from these methods. 

A robust technique used in the present work was the mean shift, which is a nonparemetric procedure and it is an 
extremely versatile tool for feature analysis and can provide reliable solutions for many vision tasks [7, 8]. The mean 
shift was proposed in 1975 by Fukunaga and Hostetler [9] and largely forgotten until Cheng´s paper [10] rekindled 
interest in it. In spite of its excellent qualities, the mean shift procedure does not seem to be known in statistical 
literature.  

The other technique used to carry out the comparison was the spectral methods, which is based on the calculation of 
the eigenvectors and eigenvalues of a matrix obtained from the affinities of the pixels in the image. In particular, it was 
used a spectral method called of Normalized Cut [11], which measures both total dissimilarity between the different 
groups as well as the total similarity within groups. The main idea is solving the eigenvalue problem for a small random 
subset of pixels (sample) and then extrapolating this solution to the full set of pixels. The theoretical aspects of the used 
methods are exposed in the developing of the work. 

The paper is structured of the following way: in section 2 are given the details of the most significant theoretical 
aspects of each of the used methods. In section 3 the characteristics of the study images are described, and in section 4 
the steps in the experimentation are explained. Here, we will carry out an analysis and discussion of both methods. 
Finally, in section 5 the most important conclusions are given.  

 
2 Theoretical Aspects  
 
2.1 The mean shift 
 
Kernel density estimation (know as the Parzen window technique in pattern recognition literature [8]) is the most 
popular density estimation method. Given n data points xi i=1, …., n in the d-dimensional space Rd , the multivariate 
kernel density estimator with kernel K (x) and a symmetric positive definite dxd bandwidth matrix H, computed in the 
point x  is given by 
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Some considerations on matrix H and the mathematical background and other definitions can be found in [8]. 

Employing only one bandwidth parameter, the kernel density estimator in the expression (1) becomes the well-known 
expression  
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The quality of a kernel density estimator is measured by the mean of the square error between the density and its 

estimate, integrated over the domain of definition. In practice, however, only an asymptotic approximation on this 
measure can be computed [8]. 
A digital image can be represented as a two-dimensional array of p-dimensional vectors (pixels), where p =1 in the gray 
level case, three for color images, and p > 3 in the multispectral case [8]. The space of the pixels is known as the spatial 
domain, while the gray level, color, or spectral information is represented in the range domain. For both domains, 
Euclidean metric is assumed. In this edition the case of gray level images will be only analyzed.  
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As was pointed in [8] when the location and range vectors are concatenated in the joint spatial-range domain of 
dimension d = p+2, their different nature has to be compensated by proper normalization with the hs and hr parameters. 
Thus, the multi-variable kernel is defined as the product of two radially symmetric kernels and the Euclidean metric 
allows a single bandwidth for each domain, that is,  
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were xs is the spatial part, xr is the range part of a feature vector, k (x) the common profile used in both domains, hs and 
hr the employed kernel bandwidths, and C the corresponding normalization constant.  

The novelty lies in applying the mean shift procedure for the data points in the joint spatial-range domain. Each data 
point becomes associated to a point of convergence which represents the local mode of the density in the d-dimensional 
space. The process, having the parameters hs and hr, take into account simultaneously both the spatial and range 
information. For the segmentation task, the convergence points sufficiently close in the joint domain are fused to obtain 
the homogenous regions in the image. 
 
2.1.1 Mean shift as normalized density gradient estimate 
The iterative procedure of the mean shift is introduced as normalized density gradient estimate. By employing a 
differentiable kernel, an estimate of the density gradient can be defined as the gradient of the kernel density estimate; 
that is,   
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Conditions on the kernel K(x) and the window radio h to guarantee asymptotic unbiasedness, mean-square 

consistency, and uniform consistency of the estimate in the expression (4) are derived in [9]. 
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where  is the volume of the d-dimensional sphere [8]. dc
 

Then, for the Epanechnikov kernel the density gradient estimate in the expression (4) becomes,  
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where the region  is a hypersphere of radius  h having the volume   centered on x, and containing  data 
points, that is, the uniform kernel [7, 8]. The last term in expression (5) is called the sample mean shift, 
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As it will be shown in section 2.1.1.1, using a kernel different form the Epanechnikov kernel for the derivation of the 
density gradient estimate results in a weighted mean computation in the expression (6). 

The quantity 
)( d

d chn
nx is the kernel density estimate  computed with the hypersphere , and thus we 

can write the expression (5) as, 
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The expression (5) shows that an estimate of the normalized gradient can be obtained by computing the sample mean 

shift in a uniform kernel centered on x. In addition, when this estimate is obtained with the Epanechnikov kernel, the 
mean shift vector has the direction of the gradient of the density estimate at x. As the mean shift vector always points 
towards the direction of the maximum increase in the density, it can define a path leading to a local density maximum; 
that is, to a mode of the density (see Fig. 1). 
 
 
 

x1 x2 x3 x4 x5 x6 x7

f (x) 

 
 
 
 
 
 
 
 
 
 
 
 
                                           

Fig. 1.  Gradient mode clustering. 
 

From expression (8) one can deduce that the normalized gradient introduces a desirable adaptive behavior, since the 
mean shift step is large for low density regions corresponding to valleys, and decreases as x approaches a mode. 

Mathematically, this is justified since (x)f
(x)f
(x)f

E 
U 
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. Thus the corresponding step size for the same gradient will 

be greater than that near a mode. This will allow observations far from the mode or near a local minimum to move 

towards the mode faster than using  alone.  (x)f E ∇̂ 
The mean shift procedure obtained by successive 
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 computation of the mean shift vector  and )( , xM Uh

 translation of the window   by  )(xSh )( , xM Uh

is guaranteed to converge [7, 8, 10]. 
 
2.1.1.1 Generalization 
Employing the profile notation, the density estimate in the expression (3) can be written as,  
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The first step in the analysis of a feature space with the underlying density f(x) is to find the modes of this density. 
The mode are  located  among  the  zeros  of  the  gradient ∇f(x) = 0 and the mean shift procedure in an elegant way to 
locate the zeros without estimating the density. 

By denoting with ; that is, the profile defined by the derivative of profile k with the sign changed (we 

assume that the derivative of k exits
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(see expression (4)) becomes,  
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One can observe that the derivate of the Epanechnikov profile is the uniform profile, while the derivate of the normal 
profile remains as exponential. 

The last bracket in expression (10) contains the mean shift vector computed with a kernel G(x) defined by 

( )2 )( xcgxG =  , where  c is a normalization constant; that is,  
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Then, the density estimate at x becomes,  
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By using the expressions (11) y (12), the expression (10) becomes, 
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it is a generalization of the mean shift vector (see expression (8)). This allows using other kernels, for example, Gauss 
kernel, which gives wonderful results. 

Basically, the algorithm that we use in this work has two steps, a filtering step and other, which is exactly the 
segmentation [11]. The filtered algorithm has the following steps [8]: 

Let Xi and Zi,  i=1,..,n, be the input and filtered images in the joint spatial-range domain.  For each pixel p ∈ Xi, 
, where  and , β  being the quantity of bits/pixel in the image. 3),,( ℜ∈= zyxp 2y)(x, ℜ∈ 1]2[0,z β −∈  

1. Initialization 
2. Compute the mean shift vector until convergence. We look for the mode, in which the mentioned pixel (p) 

converges. This can be carried out by using a uniform kernel o Gaussian. We used as stop criterion the 
absolute error.   

3. Assign in Zi the z component of the calculated value (intensity of the level grey). 

The steps of the proposed segmentation algorithm are the following: 

1. Run the mean shift filtering procedure for the image and store all the information about the d-dimensional 
convergence point in zi. 
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2. Define the regions that are in the spatial domain (hs) and that its intensities are smaller or equal than hr/2 (range 
domain). 

3. For each of the defined regions in the step 2, one looks for all the pixels belonging to her and assigns in Z the 
mean of its intensity values.  

4. Build the region graph through an adjacent list of the following way: for each region, one looks for all adjacent 
regions that are on the right hand side and below her. 

5. While there exists nodes in the graph, which have been not visited, to run a variant of the “Depth-First Search” 
(DFS), which concatenates adjacent regions [11], where we gave as parameter a node, which has been not 
visited. 

6. Go to the step 3 while is not obtained the stability (i. e, no more pixel value modifications). 
7. Optional: Eliminate spatial regions containing less than M pixels, since those regions are considered irrelevant.  
8. Optional (Binary): To all the pixels belonging to background, one assigns the white color and the black color to 

objects. 
 
2.2 Spectral Methods  
 
As have been pointed, spectral methods are based on the calculation of the eigenvectors and eigenvalues of a matrix 
derived from the affinities of the pixels in the image. Normalized Cut is a spectral method that measures both, total 
dissimilarity between the different groups as well as the total similarity within groups. The main difficulty of this 
method is the high dimension of the eigenproblem to be solved to natural images, which does not permit the use of 
standard techniques. A possible approach in this context is considering the image as a graph only locally connected 
imposing null values for the affinity between non-closed pixels, it guarantees an sparse structure for the affinity matrix 
and a considerable reduction of the time and memory computational cost of the problem. 

However, it is not clear how the neglected affinities affect the image segmentation and techniques that involve dense 
affinity matrix promise better results. A spectral technique where all affinities are retained was proposed in [13]. The 
method is an extension of the Nystrom approximation for the integral eigenvalue problem. The main idea is solving the 
eigenvalue problem for a small random subset of pixels (sample) and then extrapolating this solution to the full set of 
pixels.  
 
2.2.1 Normalized cut and Nystrom method 
Let G be a set of pixels and let W be a weighted affinity matrix, then the method of Normalized Cut divides to G in two 
subsets G1 and G2 such that the normalized cut between them is minimum.  The normalized cut is defined as,  
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where cut(G1,G2) is the sum of the weights between  G1 and G2, vol (G1) and vol (G2) is the sum of the degrees within 
the sets G1 and G2, respectively, and the symbol “ || ” denotes the harmonic mean.  
 The solution of this minimization problem can be approached by solving the standard eigenvalue problem following: 
 

VVWDD λ=−− )( 2/12/1  (16) 

 
where D is a diagonal matrix, Dii = Σj Wij and D-1/2 denotes the positive symmetric square root of the inverse of D. 
Basically, the ith component of the second largest eigenvector determines the embedding of the ith pixel. This process 
partitions the image in two disjointed sets. 
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For the sake of simplicity, the sample is defined as the first n pixels of the image matrix. The strategy consists of 
dividing the W matrix of the following way:  
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and approximating the matrix W  by a low-rank matrix,  
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where the dimensions of the matrices A and B are nxn and (nx(N-n)), respectively,  n<<N.   

If A is a defined positive matrix, the second largest eigenvector of  W  can be estimated by calculating the second 
column of the V matrix, which is defined of the following way,  
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where US  and contain the spectral decomposition of the matrix, SΛ
 

S = A + A-1/2 B BTA-1/2 (20) 
 
 

Note that the eigenproblem dimension is n, it implicates that if n is taken sufficiently small, the problem now can be 
solved to a suitable computation time. 

It is clear to see that an interesting aspect of the algorithm is to know when the second largest eigenvector of W is a 
good approximation of the corresponding eigenvector of W. Although both vectors are theoretically different, the 
structure of the affinity matrix for natural images permits that generally 

ˆ

BABT 1− is a good approximation for the 
matrix C, and therefore the obtained segmentation by the method gives suitable results. The numerical experimentation 
carried out in [13] using the Corel data base, shows that roughly 100 randomly chosen samples are sufficient to capture 
the salient groups in typical natural images. 

In this case, the elements of the used affinity matrix have the form,  
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where Xi is the spatial localization and Ii is the gray level of the ith node. 
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3 Features of the studied images 
 
As biomedical images, we use biopsies, which represent histological cuts in malignant tumors. These were included in 
paraffin by using the inmunohistoquimic technique with the complex method of avidina biotina. Finally, monoclonal 
CD34 was contrasted with green methyl to accentuate new formation of blood vessels. These biopsies were obtained 
from human bodies of soft parts. This analysis was carried out for more of 80 patients. In Fig. 2 can be seen typical 
images, which were captured via MADIP system with a resolution of 512x512x8 bit/pixels [14]. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. These images represent the blood vessels in malignant tumors. Some blood vessels are marked with arrows. 
 

In Fig. 3 can be observed a horizontal profile through the centre of a vessel; i. e., a plot of the pixel intensities along 
a single row.  
 
 

(a) 

(b) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. An intensity profile through the centre of a vessel. Profile is indicated by a line in 3 (a). 
 

There are several notable characteristics of these images, which are common to typical images that we encounter in 
the tissues of biopsies: 
1. The intensity is slightly darker within the blood vessel than in the local surrounding background.  It is emphasized 

that this observation holds only within the local surroundings. 
2. High local variation of intensity is observed both within the blood vessel and the background. However, the local 

variation of intensity is higher within the blood vessel than in background regions (see Fig. 2(a)). 
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3. The variability of blood vessels both, in size and shape can be observed (see Fig. 2). 
 

Due to acquisition protocol, the images are corrupted with a lot of noise. 
 

4 Experimental Results. Analysis and Discussion 
 
Now, we shall expose the obtained results in the blood vessels segmentation through the mean shift and a spectral 
technique, which was based on Nystrom method. In both methods the calculations were carried out by using MATLAB 
(ver. 6.5). In the case of the spectral method, the computational methods were elaborated by the authors and we included 
the modifications suggested in [15].  The size of the used sample was n = 30. In Fig. 4 a first example of this 
comparison is represented.   
 
 
 

(a) 

(b) (c) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. (a) Original image, (b) Binary image by using the mean shift vector, (c) Obtained segmentation by the spectral method. 
 

It is possible to observe (see Fig. 4) as the two methods were robust for the segmentation of histological images (in 
this case, blood vessels; but it was tested with other biomedical images). According to opinion of the physicians both 
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techniques were able of discriminating all blood vessels (BV), what it has much importance from point of view of the 
diagnostic. However, it can be seen that the obtained results with the mean shift were less noisy (see Fig. 4(b)). This is 
due by the effect of the used algorithm in the mean shift. 

In Figs. 5, 6 and 7 appear other obtained results in the BV segmentation through the mean shift and with the spectral 
method.  
 
 

(a) 

(b) (c) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. (a) Original image, (b) Segmentation via the mean shift, (c) Obtained segmentation via the spectral method. 
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(a) 

(b) (c) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6. (a) Original image, (b) Segmentation through the mean shift, (c) Obtained segmentation with the spectral method. 
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(a) 

(b) (c) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7. (a) Original image, (b) Segmentation via the mean shift, (c) Segmentation via the spectral method. The circles mark the 
difference between the two methods. 

 
In the presented examples, one can note as the two methods were able of isolating of effective way all the blood 

vessels. However, it can be observed that the segmented images with the mean shift algorithm were less noisy than the 
obtained images via the spectral method. In addition, the edges are noticed more robust and more defined in the images 
segmented with the mean shift (see circles in Fig. 7). In order to obtain more clear images with the spectral method is 
necessary to carry out an additional step with the goal of eliminating the spike noise which arises in the segmentation 
process. This procedure could be carried out through a morphological technique, which can be an opening or a majority 
filter. It is necessary to point out that this behavior was of this way for all the images which were processed. 

From the point of view of algorithm, the mean shift is less complex than the spectral method and the segmentation 
process was carried out faster. In fact, in a Pentium IV to 2.6 GHz, the segmentation by the spectral method took 20 
minutes, while that through the mean shift delayed running only 2 minutes. 
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 368

5 Conclusions 
 
In this work, we carried out a comparison between two robust technique of segmentation; namely, the mean shift and the 
spectral methods. We demonstrated by extensive experimentation, by using real image data, as the obtained images 
through the mean shift were less noisy than the spectral method.  In addition, the obtained edges were more defined 
through the mean shift. It was tested that the algorithm of the mean shift was 10 times more rapid than the spectral 
method. These techniques can be extended to another biomedical images and its application is valid in other tasks where 
it are necessary to use robust methods of segmentation. 
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