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Abstract 
 
In this work two quantifying contrast models are proposed. The first contrast measure method employs the concept de-
nominated difference of contrast; while the second one takes in consideration the luminance gradient concept. These 
models allow the selection of the best parameters in a group of output images obtained from the application of the mor-
phological toggle mappings with size criteria. These morphological transformations have the characteristic of modifying 
the output contrast based on some proximity criterion. In order to illustrate the performance of these quantifying contrast 
models, a number of images were processed and compared at pixel and partition level 
Keywords: Contrast Measure, Toggle Mappings, Flat Zone, Partition, Visualization. 
 
Resumen 
 
En este trabajo son propuestos dos modelos para cuantificar el contraste. El primer método para evaluar el contraste em-
plea el concepto denominado diferencia de contraste, mientras que el segundo método toma en consideración el concepto 
de gradiente de la luminancia. Estos modelos permiten la selección del mejor parámetro en un grupo de imágenes de sali-
da obtenidas a partir de la aplicación de los mapeos de contraste morfológicos con criterio de tamaño. Estas transforma-
ciones morfológicas tienen la característica de modificar el contraste de salida basados en algún criterio de proximidad. 
Para ilustrar el comportamiento de estos modelos que permiten cuantificar el contraste, un número de imágenes fueron 
procesadas y comparadas tanto a nivel píxel como a nivel partición. 
Palabras Clave: Medida de Contraste,  Mapeos de Contraste, Zona Plana, Partición, Visualización 

 
 
1   Introduction 

 
In mathematical morphology the contrast enhancement is based on the morphological contrast mappings as described by 

Serra [17]. The main idea of these transformations is the comparison of each point of the original image with two patterns; 
subsequently, the nearest value with respect to the original image is selected. The first works related to the contrast theory 
were carried out by Meyer and Serra [13]. Indirectly, a special class of toggle mappings denominated morphological slope 
filters (MSF) were introduced by Terol–Villalobos [22], [23], [24]. Here a gradient criterion was used as a proximity crite-
rion. Moreover, in [25] the flat zone concept on the partition was introduced in the numerical case and the morphological 
slope filters were defined as connected transformations. Once the basic flat zone operations were defined in the numerical 
case on the partition; the morphological toggle mappings were proposed as connected transformations by Mendiola and 
Terol [11], [12]. One important difference between the toggle mappings proposed by Serra [17] and those proposed by 
Mendiola and Terol [11][12] was that the size of the structuring element was considered as variable parameter in the primi-
tives as well as in the proximity criterion. Hence a wide set of contrasted representations was obtained. However; this origi-
nates a problem related to the selection of the best parameters associated with the output images presenting a good visual 
contrast. So far several morphological contrast transformations have been mentioned, disregarding the improvement of the 
contrast from the point of view of visualization. In other words it is important to be able to measure or calculate the physi-
cal contrast in images in a way that it is representative of the apparent or perceived contrast. The contrast measure directly 
involves the luminance concept; however, it is hard to have a direct measure of this physical parameter in the images. For 
example, in the literature the Michelson and Weber contrast measures have been used as common physical models [8]. 
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While numerous models based on the human visual system have been proposed, they are mostly concerned with predicting 
our ability to perceive basic geometric shapes and optical illusions. Few of these models work properly; meanly because the 
human visual system is enormously complex. It is difficult to design comprehensive models, and even more difficult to 
design experiments to validate their predictions. Nevertheless, there have been several attempts that have produced reason-
able successful models. These include – and this list is far from being complete – Barten [3], Blommaert and Martens [5], 
Horn [7], Peli [15], and Stockham [21]. Most of these models are concerned with predicting visual effects such as contrast 
sensitivity [3], lightness induction/assimilation and border effects [5], and lightness determination [7], Peli [15] and Stock-
ham [21]. In our case, the main purpose of introducing two morphological contrast methods is to have a contrast measure 
useful in the determination of the output images presenting an enhancement in the contrast from the point of view of visual 
contrast. In other words, we can say that if the best parameters are obtained when the images are processed by some en-
hancement transformation, then the selected output image will present an improvement in the contrast and therefore a good 
visual contrast. The first quantitative contrast measure introduced in this work uses the concept denominated difference of 
contrast, and the second one employs the luminance gradient concept [2]. The proposal of these models is also accompanied 
with a series of experimental images computed by the application of the morphological toggle mappings with size criteria. 
These output images were processed at pixel and on the partition level with the purpose of illustrating the performance of 
the contrast measure. 

This paper is organized as follows. Section 2, briefly presents the morphological contrast mappings defined at partition 
and pixel level. In section 3, two quantitative contrast methods are introduced as the proposal of this work; in addition sev-
eral examples showing the operation of these measure contrast methods will be presented.  
 
 
2 Morphological Basic Transformations and Toggle Mappings 
 
2.1 Morphological Basic Transformations 
 

In mathematical morphology a transformation is a morphological filter if and only if it is increasing and idempotent.  
The basic morphological filters at pixel level are the opening γµB and closing ϕµB by a structuring element µB, where B is 

the elementary structuring element (3x3 pixels in this work) containing the origin, is its transposed ( = {-x: x ∈B}) and 
µ, a homothetic parameter. These transformations are expressed by:  

B̂ B̂

 

γµB (f)(x) = δ (εB̂µ µB(f))(x)  and  ϕµB (f)(x) = ε (δB̂µ µB(f))(x)  

 
Where δµB and εµB are the dilation and erosion, respectively, expressed by the equations: 

 
{ }xB̂µyf(y); (f(x))µBε ∈= ∧  and { }xB̂µyf(y); (f(x))µBδ ∈= ∨   

 
Where ∨ and ∧ are the sup and inf operators. Once defined the morphological dilation and erosion, the morphological 
gradient, morphological internal gradient and morphological external gradient are defined as follows: 
 

grad µB(f)(x) = δµB(f)(x)- εµB(f)(x) (1) 

gradiµB(f)(x)=  f(x)- εµBf(x)  

gradeµB(f)(x)= δµB(f)(x)-f(x) (2) 

 
Remark 1.  Henceforth, the expression γµ , γµB will be equivalent i.e. γµ , = γµB. The elementary structuring element B will be 
avoided. When the homothetic parameter µ=1, it will also be discarded, i.e. δµB = δB=δ. By convention, when µ = 0, the 
structuring element µB is a set composed by one point (the origin).  
 
2.2 Connectivity 
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Serra [18] established connectivity by means of the concept of connected class. 
 
Definition 1. A connected class C in ℘(E) is a subset of ℘(E) such that:  

 
a) ∅  ∈ C for all x ∈ E, {x} ∈ C. 
b) For each family Ci in C, ∩i Ci  ≠ ∅ ⇒ ∪i Ci ∈ C 

 
 
Where ℘(E) represents the set of all sets of E. An element of C is called a connected set. One equivalent definition to 

the connected class notion is the opening family expressed by the next theorem [18]. 
 

   
(a)   (b) 

Fig. 1. Connected components extraction (a) Binary image X, (b) The opening γx(X) extracts the connected component in X where point 
x belongs 

Theorem 1. (Connectivity characterized by openings). The definition of a connectivity class C is equivalent to the defini-
tion of a family of openings {γx , x ∈ E} such that: 
(a)∀ x∈E, γx({x}) = {x} 
(b)∀ x,y ∈ E and A⊂E, γx(A) = γy(A) or γx(A) ∩ γy(A) = ∅ 
(c)∀ x ∈ E and A⊂E, ∀ x ∉ A ⇒ γx(A) = ∅ 
 

When the transformation γx is associated to the usual connectivity (arcwise) in Z2 (Z is the set of integers), the opening 
γx(A) can be defined as the union of all paths containing x that are included in A. When a space is equipped with γx, the 
connectivity can be expressed using this operator. A set A⊂Z2 is connected if and only if γx(A) =A. In Fig.1 the behavior of 
this opening is illustrated. The connected component of the input image X (Fig. 1(a)), where point x belongs, is the output 
of the opening γx(X); while the other components are eliminated. 
 
Definition 2. (Partition). Given a space E, a function P: E→℘(E) is called a partition of E if:  (a) x∈ P(x),  x ∈ E,  (b) P(x) 
= P(y) or P(x) ∩ P(y) = ∅  with x, y ∈ E. 
 

P(x) is an element of the partition containing x. If there is a connectivity defined in E and;  ∀ x, the component P(x) be-
longs to this connectivity, then the partition is connected.  

 
Definition 3. The flat zones of a function f: Z2→ Z are defined as the connected components (largest) of points with the 
same value of the function. 
 

The operator Fx(f) will represent the flat zone of a function f at point x. 
 
Definition 4. An operator is connected if and only if it extends the flat zones of the input image.  
 
Definition 5. Let x be a point of Z2 equipped with γx . Two flat zones Fx(f) and Fy(f) in Z2 are adjacent if:  Fx(f) ∩ Fy(f) = γx 
(Fx(f) ∪ Fy(f)) 
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Note that: (a) x ∈ Fx(f), and (b) ∀x, y, Fx(f) = Fy(f) or Fx(f) ∩ Fy(f) = ∅. Therefore, the flat zone notion generates a parti-
tion of the image. Then, the use of both concepts, flat zone and partition were used for the introduction of morphological 
transformations in the gray level case.  
 
Definition 6. Let x be a point in Z2 equipped with γx. The set of flat zones adjacent to Fx is given by: Ax = { Fx´ (f): x´∈ Z2 , 
Fx(f)∪ Fx’ (f)´= γx (Fx (f)∪ Fx’(f))}. 

 
In Fig. 2 the adjacent flat zone concept is illustrated; in Fig. 2(b) and 2(c) two adjacent flat zones are presented; while in 

Fig. 2(d) the adjacency of the expression Fx(f)∪ Fy(f) = γx (Fx(f)∪Fy(f)) is illustrated. 
 
 
 

   
(a)   (b) 

   
(c) (d) 

Fig. 2. (a) Image f with 14 flat zones; (b) Flat zone in the point x, Fx(f); (c) Flat zone in the point  y, Fy(f); (d) Two adjacent flat zones, 
i.e,  Fx(f)∪ Fy(f) = γx (Fx(f)∪Fy(f)) 

In the case of working on the partition the transformations should be operated on the pair ( f , Pf ) and the element ( f , Pf 

) (x) is taken as the gray level value of the connected component Fx= γx (Zt ( f )). The morphological dilation and erosion 
applied over the flat zones are given by: 

 
δ( f, Pf  )(x) = max{ ( f , Pf  )( y ):Fy (f) ∈  Ax ∪ { Fx (f) } }  

ε(f , Pf  )(x) = min{ ( f , Pf   )( y ):Fy(f) ∈  Ax ∪ { Fx (f) } } 
  

The opening and closing on the partition induced by f are: 
 

γ µ( f , Pf )(x)= δµ (  εµ ( f , Pf  ),Pf )(x) 
  

ϕ µ( f , Pf )(x) = εµ  (  δµ ( f , Pf  ), Pf )(x) 
  

Once defined the morphological erosion and dilation on the partition, the morphological gradient, internal gradient and 
external gradient on the partition are defined as: 

))(,())(,())(,grad( x
f

Pfx
f

Pfx
f

Pf εδ −=  (3) 

))(,())(,())(,gradi( x
f

Pfx
f

Pfx
f

Pf ε−=   
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))(,())(,())(,e(dgra x
f

Pfx
f

Pfx
f

Pf −= δ  (4) 

The basic morphological transformations defined in this section enable us to present the morphological toggle mappings 
of three states in the next section. 

2.3 Morphological Toggle Mappings  

As was expressed in the introduction, the contrast mappings consist in the selection of some patterns (primitives) for 
each point of the image in accordance with a proximity criterion. The choosing of the primitives is very important; since the 
degradation of the output images can be attenuated if the primitives are idempotent transformations as described by Serra 
[17]. On the other hand, in Mendiola and Terol [11], [12] the morphological toggle mappings on the partition of two and 
three states with size criteria were proposed. The proximity criterion with size criteria basically permits a different perform-
ance of the morphological toggle mappings; hence it is another way of modifying the contrast in an image. As follows the 
contrast mappings of three states on the partition with size criteria are considered. These toggle mappings are composed by 
three primitives: opening and closing on the partition and original image (see section 2.2). The proximity criterion ρ(x) (see 
equations (5)) on the partition takes into consideration the bright and dark regions of the image; and a ratio factor in each 
point of the image is calculated. The proximity criterion ρ(x) takes its values in the interval [0, 1].  

 

,
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))(,(
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Thus, expression (6) establishes a toggle mapping of three states on the partition with size criteria. 
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In the case of working at pixel level, the primitives used are: morphological opening, morphological closing and the 
original image (see section 2.1). The proximity criterion ρ(x) (see equation (7)) at pixel level takes its values in the interval 
[0, 1]. 
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The toggle mapping of three states at pixel level with size criteria is expressed in the equation (8). 
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The main advantage of working on the partition is that the flat zones of the image will never be broken during their proc-

essing; and the generation of new contours into the output image will be avoided. The former situation occurs because the 
transformations employed are connected. From equations (6) and (8) notice that the size of the structural element is given 
by the parameters µ1 and µ2; while the parameters α and β take values in the interval [0,1]. In this work the size of the pa-
rameters µ1 and µ2 will be fixed; while the parameters α and β will be changing. The problem is reduced to finding ade-
quate values for the parameters α and β such that the output images present a visual improvement. In Fig. 3, some output 
images were obtained by the application of formulas (6) and (8). The output images in Figs. 3(b), 3(c) and 3(d) present an 
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improvement in the contrast; however, we could not say which of these images present the best visual contrast. The next 
section considers this problem and two quantitative contrast methods will provide an indirect estimation of a contrast meas-
ure for each output image. 

3 Contrast Measure 

The improvement of images after enhancement is often very difficult to measure. In practice, many definitions of the 
contrast measure are used; for example, see Morrow et al. [14], Kim et al. [9] and Beghdadi and Negrate [4] . In general 
terms, contrast refers to the difference in luminance between an object and its surroundings. In psycho visual studies, the 
contrast C of an object with luminance L against its surrounding luminance Ls is defined as follows [14]: 
 

s

s

L
LLC −

=   

   
(a)   (b) 

   
(c)   (d) 

Fig. 3. (a) Original image; (b) Output image with µ1 = 13 , µ2 = 7, α = 0.019 and β = 0.039 at pixel level; (c) Output image with µ1 = 13 , 
µ2 = 7, α = 0.117 and β = 0.235 at pixel level; (d) Output image with µ1=13, µ2=7, α=0.196 and β=0.392 on the partition 

However, there is not a universal measure which can specify both the objective and subjective validity of the enhance-
ment method [9]. For example, the local contrast proposed by Gordon and Rangayan [6] was defined by the mean grey 
values in two rectangular windows centered on a current pixel. Beghdadi and Negrate [4] proposed another definition of the 
local contrast based on the local edge information of the image, in order to improve the method proposed by Gordon and 
Rangayan [6]. On the other hand, the use of statistical measures of grey level distribution as mea surement of local contrast 
enhancement (for example, mean, variance or entropy) has not been particularly meaningful when the contrast of the im-
ages has been modified. An approach proposed in Morrow et al. [14], which has greater consistency than statistical meas-
ures, is based on the contrast histogram. In Agaian et al. [1] an interesting method was proposed in order to obtain a quanti-
tative measure of image enhancement. Basically the maximum intensity and minimum intensity inside the block were ana-
lyzed to calculate the measure of the enhancement. Starting from this idea, we introduce two methods allowing us to deter-
mine which image has a good visual contrast in a set of images. The first of them employs a physical concept denominated 
difference of contrast and the second one makes use of the gradient luminance concept. Both methods rely on some en-
hancement parameters. 
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3.1 Model to Evaluate the Contrast Quality Based on the Difference of Contrast  

In Jain [8] the Weber law was expressed by means of a logarithm expression; i.e.: 
 

C = a1+a2logL  (9) 
 
Where C is called the contrast, L the luminance, a1 and a2 two constants. If a1=0, the equation (9) is written as: 
 
 

C= a2logL (10) 
 
The difference of contrast (G) considering a2 fixed can be calculated from equation (10) and is expressed by:  
 

G= Ci-Cj = a2log ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

j

i

L
L

 
(11) 

 
An indirect measure of the difference of contrast G, can be obtained from equation (11) if the luminance L is substituted 

by the gray level intensity of function f. Considering Li ≈ fs and Lj ≈ fo, where fo and fs belong to the domain of definition of 
f, denoted by Df. Expression (11) is written as: 

 

  D  f f,f  with ff      log soso2 ∈≠=
s

o

f
f

aG  (12) 

 
In our particular case,  fo= Imax(x) and  fs= Imin(x); where Imax (x) and Imin (x) represent the maximum and minimum inten-

sity values taken from one set of pixels contained in a window (B) of elemental size (3×3 elements),  and x ∈ Df. Notice 
that the window corresponds to the structuring element B. The sum of the values of G (see equation (12)) for each pixel of 
an image f of size N×M is denoted as GI, and the formulation is written in equation (13). For the sake of simplicity; let us 
consider Imax(x)= max{f(x+b): b ⊆ B } and Imin(x)= min{f(x+b): b ⊆ B}; x∈Df. Then: 

 

∑
∈

=
f

in

ax

Dx x
x

aGI  
)(I
)(I

log
m

m

2  (13) 

 
Where Imax(x) and Imin(x) values correspond with the morphological dilation and erosion defined by the order-statistical 

filters [10]. Thus, equation (13) can be expressed as: 
 

∑
∈

=
fDx

xf
xf

aGI  
))((  
))((  

log2 ε
δ  (14) 

By some algebraic steps the equation (14) is rewritten as follows: 
 

∑
∈

⎥
⎦

⎤
⎢
⎣

⎡ −=
fDx

xfxfaGI )))((log()))((log(2 εδ  (15) 

 
The morphological erosion and dilation commute with anamorphoses [18], [19], therefore: 
 

ε(logf) = logε(f)  and  δ(logf) = logδ ( f ) (16) 
 
By applying expressions (16) and (1), equation (15) can be written as: 
 

∑
∈

=
fD

aGI
x

x))grad(logf(2  (17) 
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Note that the morphological gradient (see equation 1) employed in this case is at pixel level; however equation (3) must 
be considered if the analysis is carried out on the partition. In equation (17) the a2 value has not been calculated; but in 
accordance with the Weber law, the constant a2 has been found to be 50. The Weber law is expressed as [8]: 

 
C=50logL  

  

 
Consequently, for L=100, C =100. If the maximum intensity value in the analyzed images is 255, the value of a2 is calcu-

lated as follows: 
 

a2log255 = 50log100 then a2 ≈ 41.55 (18) 
 
Taking the value of a2 encountered in (18); the final expression of GI is given by equation (19)  
 

∑
∈

=
fDx

GI x))grad(logf(55.41  (19) 

 
Equation (19) indicates that the measure of GI is given by the morphological gradient acting on a space visually im-

proved by the logarithmic law. The following steps enable us to determine the best values of GI and consequently the im-
ages corresponding to these values: 
 
Step 1.-Calculate and graph the GI values vs. parameters for a set of images. 
Step 2.- Obtain the global maximum or the minimum with greater altitude of the graph GI values vs. parameters. The image 
with good visual contrast will be associated to the global maximum or minimum with greater altitude contained within a 
subset of GI values where their behavior is almost constant.  
 

   
(a)   (b) 

Fig. 4. (a),(b)  Original images 

The fact of choosing a subset of GI values where their behavior is almost constant obeys to the next two situations:  a) A 
constant interval of GI values indicates that the internal structures of the image present a stable behavior. In other words, 
the internal structures of the image do not change considerably when the enhancement filter is applied. In this interval the 
output images will be smooth. b) In smooth images, the signal to noise ratio is low, making well defined edges; these edges 
are perceived as having more detail or signal.  

Images with high signal-noise quotients are perceived as agreeable to the eye; however, sharp shadow edges or lumi-
nance discontinuity may have high values, but this not necessarily means a good contrast. For example: if an input image is 
processed with a contrast enhancement transformation producing a great degradation in the output image, then higher GI 
values can produce an output image without good visual contrast. In consequence the election of the parametric values 
controlling directly the contrast transformations must be done with care in order to avoid the problems mentioned above. In 
order to illustrate the performance of this quantitative contrast method, the images in Fig. 4 will be processed; subsequently 
steps 1 and 2 will be applied. This analysis is achieved at pixel and on the partition level.  

The parameters µ1 = 13 and µ2 = 7 where used in equations (5), (6), (7) and (8) as fixed parameters. While α and β var-
ied in the close interval [0, 1], in such a way that 27 output images were generated. For each output image generated, the 
values of GI were calculated at pixel and on the partition level; and their respective values may be found in Table 1. By 
applying step 1; the GI values are calculated and the graphs of these values are presented in Fig. 5. Note that each graph has 
a 3D representation considering the parameters α, β and GI values. By considering a process at pixel level and using equa-
tions (7) and (8), graphs in Figs. 5(a) and 5(b) are obtained; while the graphs in Figs. 5(c) and 5(d) correspond to the im-
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ages processed by means of equations (5) and (6). Step 2 allows the determination of the best parameters associated with 
the output images having a good visual contrast. Such parameters are obtained from Table 1 and they are presented in Table 
2 (analysis at pixel level) and Table 3 (analysis on the partition). The images presenting a good visual contrast in accor-
dance with the model employed are shown in Fig. 6. The four output images of Fig. 6 present a good visual contrast with 
respect to the model utilized;  

Table 1. GI values of the output images generated from: (a) Fig. 4(a) at pixel level; (b) Fig. 4(b) at pixel level; (c) Fig. 4(a) on the 
partition; (d) Fig. 4(b) on the partition 

Nº of 
image α β (a) (b) (c) (d) 

1 0 0 82962,9417 35591,59 146662,89 41918,27 
2 0.019 0.039 273979,466 144007,869 284220,43 128697,73 
3 0.039 0.078 293499,884 171921,029 312527,7 160493,54 

4 0.058 0.117 317949,041 205339,82 337984,8 195917,78 
5 0.078 0.156 346806,781 248234,06 355443,14 234100,82 
6 0.098 0.196 358912,63 294282,71 370028,45 277826,526 
7 0.117 0.235 396587,99 333197,3 388471,4 323543,51 
8 0.137 0.274 428753,15 368931,92 408302,11 364771 
9 0.156 0.313 443631,32 398006,768 423133,09 403370,47 
10 0.176 0.352 468914,5 415230,31 467319,3 424762,13 
11 0.196 0.392 479843,94 421780,8 476224,84 433270,58 
12 0.215 0.431 492983,99 416898,12 523370,68 432317,1 
13 0.235 0.470 501461,04 406119,11 525066,92 423159,82 
14 0.254 0.509 496030,78 387869,12 525630,05 408050,29 
15 0.274 0.549 499873,05 368238,3 537924,73 388620,037 
16 0.294 0.588 486847,9 345637,99 486847,9 366612,47 
17 0.313 0.627 474190,73 328031,82 503673,41 350406,62 
18 0.333 0.666 473306,242 315317,69 506907,27 334869,87 
19 0.352 0.705 461409,43 291308,64 478033,95 318783,27 
20 0.372 0.745 454945,199 293330,08 480810,01 308272,95 
21 0.392 0.784 442201,39 287242,68 469884,17 299586,61 
22 0.411 0.823 431201,87 282033,511 468481,8 293748,98 
23 0.431 0.862 424879,65 277140,772 470592,42 289589,53 
24 0.450 0.901 415317,92 272347,36 445731,16 284514,16 
25 0.470 0.941 410222,89 266812,026 415896,31 279230,6 
26 0.490 0.98 409489,92 260026,489 410390,94 274127,82 
27 0.509 1 402560,48 250689,29 408945,03 265855,95 
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Fig. 5. (a),(b),(c),(d) Respective graphs of the GI values obtained from Table 1 
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Table 2. Selection of the maximum or minimum obtained from the graphs of Figs. 5 (a) and 5(b). In this case the images were processed 
at pixel level 

 

Figures Global 
maximum 

Minimum with 
greater altitude 

Maximum or minimumin 
accordance with step 2 

Image 
selected 

Fig 2(a) 468914,5 479843,94 479843,94 Nº of 
image:14 

Fig.2(b) 421780,8 291308,64 421780,8 Nº of im-
age:11 

 

Table 3. Selection of the maximum or minimum obtained from the graphs of Figs.5 (c) and 5(d). In this case the images were processed 
on the partition 

 

Figures Global 
maximum 

Minimum with 
greater altitude 

Maximum or minimum in 
accordance with step 2 

Image 
selected 

Fig 2(c) 537924,73 486847,9 537924,73 Nº of 
image:15 

Fig.2(d) 433270,58 - 433270,58 Nº of 
image:11 

 
 
 

   
(a) (b) 

 

   
(c) (d) 

 
Fig. 6. Output images with the parameters obtained from Table 2 and Table 3; (a),(b) Output images processed at pixel level; (c),(d) 

Output images processed on the partition 
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(a)   (b) 

   
(c) (d) 

Fig. 7. Threshold of the images in Figure 6, (a) Fig. 6(a) between 90-187 sections; (b) Fig. 6(b) between 84-173 sections; (c) Fig. 6(c) 
between 90-187 sections; (d) Fig. 6(d) between 84-173 sections 

However, the flat zones of the output images  processed  at  pixel  level   will  be  broken,  which  does  not occur when 
the  images are processed on the partition. In order to show this effect, the threshold for each image of Fig. 6 is obtained 
and the results can be observed in Fig. 7. Compare the images of Fig. 7(a)-7(b) with the images of Fig.7(c)-7(d) and note 
that the shape of the structural element appears in the image when these are processed at pixel level. 

This fact let us determine that the images computed on the partition will have a better behavior than those obtained from 
a pixel level treatment. The measure of the contrast in the images not necessarily indicates a good visual contrast. By ana-
lyzing formula (13) note that a greater difference between Imax (x) and Imin(x) does not correspond with what we see; since 
higher GI values can be obtained for different parameters, but the output images associated with these parameters probably 
have not a good visual contrast. This fact makes us to find the regions where GI values present an almost constant behavior 
into the graphs in order to detect the best parameters. The traditional way of studying structures sizes constituting the image 
is by means of the granulometric study of the image [16]. In Fig. 8 the curves for determining the structures sizes of the 
images 6(b) and 6(d) are shown for the opening case. Although these curves do not correspond with the granulometric 
definition, the form of the curves is similar to those of granulometric density. The curves in Fig. 8 were obtained for sizes 
of the structural element (µ) in the interval [1,20] and each value was calculated over the integral of the image γ µ( f , Pf )- γ 
µ+1( f , Pf ) in the partition case and γ µ( f )- γ µ+1( f ) at pixel level.  Note that at pixel level the graph in Fig. 8(a) detects a 
great variation in sizes; while in the curve of  the Fig. 8(b) several flat zones have been merged and a smooth curve is ob-
tained. In the case of image 6(d) two important accumulated regions have been detected in the graph of Fig. 8(b).
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Fig. 8. (a) Integral (Volume) on the image γ µ( f )- γ µ+-1( f ), (b) Integral (Volume) on the image γ µ(( f , Pf ))- γ µ+1(( f , Pf )) 
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Until now, the main idea to obtain well contrasted images from a visual point of view, establishes that the smoothing of 
the images will produce well defined contours. However, the measure of the GI values does not involve the contours of the 
image. Therefore another method to quantify the contrast is proposed; where the contours of the image are taken into ac-
count.  
 
3.2 Contrast Measure Based on the Analysis of Image Edges  

 
Given a two-dimensional luminance distribution across a surface, the luminance gradient is defined as [2]: 

 

ab
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Where La and Lb are the luminances at two closely spaced points a and b on the surface, and where the points are sepa-

rated by a distance ∆x=b-a. (The absolute value is necessary to eliminate any directional dependence.) When ∆x→0: 
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Changes in luminance are associated with the contours of the image, since they produce changes in the scene. One trans-

formation that enables us to work directly with the contours of the image is the morphological external gradient (see equa-
tion 2). This gradient expression is used in order to have an indirect measure of the variations of the contras (VLG) into a 
window B. For the sake of simplicity; let us consider maxgrade(x)=max{grade(x+b): b ∈ B} and min-
grade(x)=min{grade(x+b): b ∈ B}; where x belongs to the domain of definition of f; denoted by Df .The VLG expression is 
given as follows: 

 
[ ]∑

∈

−=
fDx

xdeminxdemaxVLG )(gra)(gra  (20) 

 
Where maxgrade(x) represents the maximum intensity value of the external gradient and mingrade(x) the minimum in-

tensity value of the external gradient. These values are taken from one set of pixels contained in a window (B) of elemental 
size (3×3 elements). Expression (4) for the external gradient must be considered in the case of working on the partition. 
Again a set of output images will be analyzed with the objective of knowing which output contrasted image presents good 
visual contrast. The idea of this second quantitative contrast method consists in the selection of the best parameters associ-
ated with some value of VLG obtained from the graph VLG vs. parameters. The analysis of the graphs will be focused 
mainly on the maxima and minima of the graphs, since they are associated with substantial changes in intensity. For the 
global maximum of the graphs, the contrast of the images will be higher; while the global minimum will produce a smooth 
contrast. The steps 3, 4 and 5 will be employed for the selection of local maximum and minimum producing good visual 
contrast.  

 
Step 3.-Calculate and draw the graph VLG values vs. parameters for a set of output enhanced images. 
Step 4.- A smooth visual contrast will correspond to the value of VLG associated with the global minimum or maximum 

with smaller altitude in the graph of VLG values vs. parameters. 
Step 5.- A higher visual contrast will correspond to the value of VLG associated with the global maximum or the mini-

mum with greater altitude in the graph of VLG values vs. parameters. 
Step 6.-An intermediate visual contrast will correspond to the value of VLG associated with any local maximum or local 

minimum not considered in  steps 4 and 5. 

In order to illustrate the performance of this second contrast method, the images in Fig. 4 were analyzed. These images 
were processed at pixel level with equations (7) and (8); the analysis on the partition was done with equations (5) and (6). 
The parameters µ1 = 13 and µ2 = 7 in the equations (5), (6), (7) and (8) were fixed; and the variable parameters α and β 
took their values in the interval [0, 1]. Step 3 establishes that VLG values must be calculated and plotted. In Table 4 the 
VLG calculated values are presented.  
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The maximum or minimum for each processed image can be obtained from Table 4 and the graphs are presented in Fig. 
9. The analysis of the maximum and minimum corresponding to each output image is summarized in Table 5 (analysis at 
pixel level) and Table 6 (analysis at partition level) in agreement with steps 4 and 5. The set of output images related to the 
parameters of Tables 5 and 6 are shown in Fig. 10.  

Table 4. VLG values of the output images generates from: (a) Fig. 4(a) at pixel level, (b) Fig. 4(b) at pixel level, (c) Fig. 4(a) on the 
partition, (b) Fig. 4(b) on the partition 

Nº of 
image α β (a) (b) (c) (d) 

1 0 0 178062 102345 226833 90075 
2 0.019 0.039 856950 382502 852736 369460 
3 0.039 0.078 1001434 433160 967186 431527 

4 0.058 0.117 1092674 488086 1116680 517252 
5 0.078 0.156 1163136 541931 1224875 573834 
6 0.098 0.196 1252704 593671 1338330 627690 
7 0.117 0.235 1335568 637264 1401583 676019 
8 0.137 0.274 1427302 688872 1493208 716025 
9 0.156 0.313 1491286 723719 1538241 749970 

10 0.176 0.352 1542954 766278 1594667 794928 
11 0.196 0.392 1599556 812012 1651967 845687 
12 0.215 0.431 1636148 851577 1688989 890145 
13 0.235 0.470 1664972 887289 1693407 925872 
14 0.254 0.509 1691804 912013 1695790 956024 
15 0.274 0.549 1696840 928967 1679666 967923 
16 0.294 0.588 1687766 940656 1655937 972618 
17 0.313 0.627 1665154 935399 1622253 965099 
18 0.333 0.666 1636698 924885 1583523 952551 
19 0.352 0.705 1602930 905318 1524559 933482 
20 0.372 0.745 1593142 883827 1500465 916387 
21 0.392 0.784 1569358 865932 1463979 895523 
22 0.411 0.823 1551284 849744 1442468 875836 
23 0.431 0.862 1539342 836728 1411789 861055 
24 0.450 0.901 1526936 823852 1403806 847619 
25 0.470 0.941 1523970 811735 1395297 835626 
26 0.490 0.98 1528378 803113 1395838 832581 
27 0.509 1 1528738 800563 1403214 835087 
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Fig. 9. (a),(b),(c),(d) Respective graphs of the VLG values obtained from Table 2 
Table 5. Selection of the maximum and minimum obtained from the graphs of Figs. 9(a) and 9(b). In this case the images were processed 
at pixel level 

Figure Global maximum Global minimum Nº of image 
2(a) 1696840 1395297 15, 25 
2(b) 940656 - 16 

 
Table 6. Selection of the maximum and minimum obtained from the graphs of Figs.9 (c) and 9(d). In this case the images were processed 
on the partition. 

Figure Global maximum Global minimum Nº of image 
2(a) 1695790 1395297 14, 25 
2(b) 972618 832581 16, 26 

 

    
             (a)   (b)   (c) 

   
d) e) 

   
(f)   (g) 

Fig. 10. (a),(c) Output images with a higher visual contrast, at pixel level; (d),(f) Output images with a higher visual contrast, on the 
partition; (b) Output image with a smooth visual contrast at pixel level; (e),(g) Output images with smooth visual contrast on the partition 

 

  
(a)   (b) 

Fig. 11. (a) Threshold of Fig. 10(a) between 139-245 sections; (b) Threshold of Fig. 10(d) between 139-245 sections 
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(a)   (b) 

Fig. 12. In both images the contours were multiplied by 4, (a) Internal gradient on the partition of the image in Fig. 10(f); (b) Internal 
gradient on the partition of the image in Fig. 10(g) 

 
The output images in Fig. 10(a),10(c),10(d) and 10(f) complying with step 5 present a high visual contrast. While the im-
ages in Fig. 10(b),10(e) and 10(g) have a smooth visual contrast in agreement with step 4. The output images processed on 
the partition present a better behavior that those processed at pixel level, since they  have  been   processed  by  means  of  a 
connected  transformation;  in consequence the flat zones of the images will never be broken. Observe this behavior in Fig. 
11.  The main difference among the output contrasted images obtained in Fig, 10 are the contours of the images. Smooth 
images will present more defined contours; such images were obtained from the global minimum; whereas images associ-
ated with the global maximum will present sharp contours related to high intensity zones of the image. As an example Fig 
12 describes this circumstance. In this case the internal gradient on the partition was obtained for the images in Figs.10 (f) 
and 10(g). In Fig. 12(b) several flat zones were merged and the contours of this image are more defined than those contours 
within the image in Fig. 12(a). The neighboring pixels surrounding the contours in the images of Figs. 10(a), Fig.10(c), 
10(d) and 10(f) are characterized as suffering important changes of intensity, therefore they are classified as high contrast 
images; rather the images of Fig. 10(b), 10(e) and 10(g) which present a smooth contrast. This behavior can be understood 
by comparing the histograms of the internal gradient of these images. One example is given in Fig. 13.  
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Overlapped graphs
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Fig. 13. (a) Gradient on the partition of the images in Fig. 10(d); (b) Gradient on the partition of the images in Fig. 10(e); (c) Histogram 
of the internal gradient on the partition of the image in Fig. 10(d), (d) Histogram of the internal gradient on the partition of the image in 

Fig. 10(e); (e) Overlapped graphs 
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In Fig. 13(a) and 13(b) the internal gradient on the partition of the images in Fig. 10(d) and 10(e) are presented. The histo-
gram of the image in Fig. 13(a) is shown in Fig. 13(c). This histogram is associated with a high visual contrast. In the case 
of a smooth contrast, the histogram is given in Fig 13(d); here the histogram of the internal gradient on the partition of the 
image in Fig. 10(e) is obtained. The histogram of Fig. 13(c) presents more variations than the one in Fig. 13(d); which ex-
plains the high contrast in Fig.10 (d). Notice that the frequency for the values in the histogram of Fig. 13(d) is greater than 
the one in histogram of Fig. 13(c). This fact is due to the merging of several flat zones during the image processing, result-
ing in a better contrast (see Fig. 10(e)). In Fig. 13(e), graphs 13 (c) and 13(d) are overlapped in order to have a better appre-
ciation of this situation.  
    The output images obtained through both quantitative contrast methods present some important differences; the first 
method analyzes all contours in a general way; while the second method analyzes only the regions where there are impor-
tant changes in the contours. Therefore each one of these quantitative contrast methods must be applied taking into consid-
eration these differences.  

4   Conclusion 

Two quantitative contrast methods have been proposed in order to determine the output images associated with a good 
visual contrast. In accordance with the analyzed examples, the behavior of the output contrasted images is better when they 
are processed on the partition by means of connected transformations. Finally the quantitative contrast methods presented 
are simple to apply and design, rendering them practical. 
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