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Resumen

Se describe el Filtrado Digital en Tiempo Real para estimacion de parametros en sistemas estocasticos lineales
estacionarios; sus caracteristicas temporales y de respuesta en forma local y global. Se presentan ejemplos con las
técnicas de Variable Instrumental, Factor de Olvido Matricial y como caso especial el algoritmo Modos Deslizantes
Tradicional. Los aportes de esta tesis son:
- Formalizacién de los conceptos de Filtrado Digital en Tiempo Real para estimacion de parametros en sistemas
estocasticos lineales estacionarios,

- Definicion de las caracteristicas locales y globales en calidad de respuesta y tiempo de los FDTR y FDMTR:

o Caracteristicas de las tareas,

o Sincronia,

0 Periodos de muestreo,

o Tiempos de convergencia,
- Anaélisis computacional temporal de los FDMTR en funcion del tamafio de la matriz de parametros a estimar.
- Procedimiento de implantacion de un FDTR en un sistema operativo de tiempo real.
Palabras clave: Filtro Digital, estimacién, convergencia, restriccion, Tiempo Real.

Abstract
This doctoral thesis describe RTDF concepts by parameter estimators to stochastic stationary linear systems and it expose
temporal and response quality characteristics in local and global form. Finally, | present examples of Instrumental
Variable, Matrix Forgetting Factor and Sliding Modes Traditional techniques in SISO and MIMO cases. The advances in
this thesis are:
- Formal definition of Real Time Digital Filters to parameter estimation of stationary lineal stochastic systems by RTDF
and RTMDF concepts,
- Definition of local and global properties in response quality and time quality in RTDF and RTMDF:

o] Tasks characterization,

o] Synchrony,

o] Sample periods,

o] Convergence times,
- Temporal computational analysis of RTMDF by size of parameters matrix,
- Implantation of RTDF and RTMDF in a real time operating system.
Keywords: Digital Filter, estimation, convergence, constraint, Real Time.

1 Estado del Arte del Filtrado Digital en Tiempo Real

En [Baras, 1999] Se dice que los Filtros Digitales estan en Tiempo Real si son capaces de expresarse en ecuaciones
recursivas de acuerdo. En [Chui y Chen, 1999] se dice los filtros digitales como el de Kalman se implementan en
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aplicaciones de Tiempo Real gracias al reciente desarrollo de computadoras de alta velocidad: Expresan al Tiempo Real
como sinénimo de rapido y plantean la capacidad del filtro para expresarse en forma recursiva. En [Gustaffson, 2000] se
describe a los filtros digitales RIF como “aplicaciones para procesamiento de sefiales estdndares en Tiempo Real”, sin dar
ningln argumento que valide sus afirmaciones. En [Kuo, 1996] se dan algunos ejemplos sencillos de sistemas (aplicables a
filtrado) con restricciones de tiempo impuestas por el mundo fisico. En [Ifeachor y Jervis 1996] se hace una revision del
procesamiento de sefiales en Tiempo Real; se describe al procesamiento digital en Tiempo Real como una secuencia: filtro
de entrada, convertidor AD con retenedor, procesamiento digital, convertidor DA y filtro de salida. En ningn momento se
hace el analisis temporal y se explica que todo depende de la potencia del hardware. En [Liu, 2000] se trata de establecer un
lazo entre la teoria de filtrado y la de los STR, pero solo menciona al Filtro de Kalman dentro de su introduccion sin
explicar si lo implementd o no y cudl fue le proceso de implementacién. En [Papaulis y Bertran, 1989] se hace una
cuantificacién de los tiempos de ejecucion de cada etapa en el procedimiento de filtrado digital para el manejo de sefiales
desde un punto de vista practico, donde consideran: tiempos de ejecucion del algoritmo de filtrado, el procesador, tiempos
de conversion A/D y D/A, diagramas de tiempos y restricciones de precedencia. En [Stefan y Bodson, 1994] se presenta la
estimacion de pardmetros “en tiempo real” y flujos de un motor de induccidn por el método Minimos Cuadrados Recursivo.

La justificacion de la estimacién en tiempo real viene de la implantacion del algoritmo en un DSP Motorota 56001, un
convertidor A/D y una computadora compatible con IBM, Tiempo Real es considerado sinénimo de En Linea. En
[Takahashi, Sakaguchi y Ohya 1999] se presenta la estimacion en Tiempo Real de posturas de cuerpo humano usando el
filtro de Kalman. Estos investigadores toman fotografias de posturas del cuerpo humano con una camara CCD y analizan las
siluetas reconstruyéndolas con un modelo autoregresivo AR donde estiman sus parametros con el filtro de Kalman. Su
implantacion fue en una PC con Windows NT y en C++; se trata de un filtro en linea sobre una plataforma de ambiente
compartido (Windows) y no de Tiempo Real como QNX o RT-Linux.

2 Filtrado Digital en Tiempo Real: Estimacion de Parametros en Sistemas Estocasticos Lineales
Estacionarios

Los FDTR y los FDMTR no son Filtros Digitales en Linea, ya que un “Sistema en Linea es aquel sistema que siempre debe
estar encendido, disponible y generalmente conectados a una red de computadoras y depende de la capacidad del hardware
para atender peticiones de servicio” y en ningin momento esta en sincronia con el mundo real ni tiene restricciones
temporales. Son disefiados de acuerdo a las necesidades del ambiente con que interactian, las cotas de las restricciones de
tiempo sin diferentes para cada filtro y el conjunto de filtros que pueda expresarse en Tiempo Real es variado. En este
trabajo se describen formalmente los conceptos de Filtrado Digital en Tiempo Real como estimadores de pardmetros en
sistemas lineales estacionarios; se exponen sus caracteristicas temporales y de respuesta en forma local y global.

Definicion (Filtro Digital en Tiempo Real FDTR). Todo FDTR es un Filtro Digital que debe cumplir ([Medel, Guevara y

Flores, 2003] y [Medel, Guevara y Flores 2004]):

a. Extraccion y emision de informacién observable y sincronizada con el tiempo de evolucién del proceso considerando
los criterios de Kotel'nikov (1933), Nyquist (1928), Whittaker, (1915), Shannon (1948), Ecker (2000).

b.  Emision de respuestas correctas (por ejemplo, los criterios usados en [Haykin 1991], [Caines, 1986] o [Ogata, 1980]
entre otros),

c. Respuestas acotadas en tiempo a través de intervalos semi-abiertos en forma local y global de acuerdo a las
restricciones temporales del proceso dinamico presentados por Buttazzo, (1997), Burns y Wellings, (1997),

d. Capacidad de expresarse en forma recursiva a través de ecuaciones en diferencias finitas.

Definicion (Analisis global y local). Todo FDTR debe ser analizado en calidad de respuesta y tiempo de manera global y
local:
a. Global. La convergencia a un >0 a través del funcional de error J(k);, conforme aHaykin (1991), involucrando un
intervalo de convergencia m, un tiempo de convergencia t; ; y un plazo de convergencia d;.
Todo FDTR como estimador de parametros tiene un funcional de error acotado:
m* = arg mlng:‘n P{la,-alsA}=1 (1)

Donde A es la cota del error definida por la varianza de las perturbaciones del sistema.
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b.

Local. Implica la estabilidad del proceso a través de sus parametros a(k); y el de los tiempos de finalizado f(k); del
FDTR dentro de los plazos absolutos correspondientes [Id(K)i_min, LD(K)i_max)--

Todo FDTR dara una respuesta local estable si al estimar el conjunto de parametros del SLIT (Sistema Lineal
Invariante en el Tiempo) a filtrar, caen todos ellos dentro del circulo unitario para todo intervalo k. Esto es:

la.K)l} <L k=1,-n )

Definicion (Tiempos de ejecucion del FDTR o FDMTR). El algoritmo de todo FDTR puede estar compuesto por el
siguiente conjunto de sub-tareas ([Liu y Layland, 1973]) (ver Figura 1):

a.
b.

c
d
e.
f
g

C(k), : Tiempo de ejecucion del algoritmo de la ecuacion de estado propuesta.

C(k), - Tiempo de ejecucidn del algoritmo de la ecuacion de la sefial observable.

C(k), : Tiempo de ejecucion del algoritmo del estimador.

C(k), : Tiempo de ejecucion del algoritmo del error de convergencia.

C(k),, : Tiempo de ejecucion del acondicionamiento de la entrada u(t) del sistema fisico.

C(K), - Tiempo de ejecucidn del acondicionamiento de la salida y(t) del sistema fisico.

C(K),,. : Tiempo de ejecucion del acondicionamiento de la salida estimada y(t) del sistema fisico.

[D(k)i_minv D(k)i_max) .
Entrada del Salida del
sistemareal [ Sistema sistema real

Real

Acond. de | C(k Acond. de | C(k
laentrada (W la salida ( )ay
0 Clkle Clkkve  salica
Estad L, [Estados Acond. del estl_mada_
stados [ lobserv. sist. obs.
Estimador en Calculo del
Tiempo Real error
C(K)a C(ky

Fig. 1. Diagrama de implementacion a bloques de un FDTR utilizado como estimador.

Como se considera que es un sistema concurrente, todos estos tiempos de ejecucion deben ser sumados para obtener un
tiempo de ejecucion C(k), . Tal que:

C(k)i =C(k), +C(k), +C(k), +C(k); +C(K)z +C(k)q +C(K) e @)

Definicion (Filtro Digital Multivariable en Tiempo Real FDMTR). Todo FDMTR es un filtro digital con restricciones
impuestas por el proceso con el que interactla; teniendo que cumplir con (ver [Medel, Guevara y Poznyak, 2004]):

a.  Extraccion y emisién de informacion multivariable observable, donde {uk), eu)} Y {y(k)J ey(k)} ,CONj jkez*, en
sentido de los criterios de Kotel'nikov (1933), Nyquist (1928), Whittaker, (1915), Shannon (1948), Ecker (2000).

® 00T

Respuestas correctas en relacion a algun criterio preestablecido como los de Haykin (1991) y Medel (2002).
Expresarse en forma recursiva,

Valor de convergencia acotado dentro de un intervalo finito sobre el cual estara oscilando el valor de la convergencia.
Manejo de operaciones matriciales de acuerdo a la dinamica del proceso para cada iteracion, respetando las

restricciones de las dindmicas del proceso,

—h

Planificabilidad de las tareas concurrentes del filtro si es implantado en una computadora digital con un SOTR.
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Proposicion (Tiempo de muestreo en todo FDMTR). Todo FDMTR recibe y da entradas y salidas (u(k) ¥ Y(k) con
k e Zz*) con respecto a la variable de cambio més rapido considerando ambos vectores, esto es:
tmuestreoMIMO = min{tmuestreo (u(k)l )’ tmuestreo (y(k) 1VK)} (4)

Proposicion (Tiempo de convergencia en todo FDMTR). El tiempo de convergencia (t. ) de todo FDMTR es un maximo
valor escalar definido como:
t, = max{f(k=my),} con {f(k=m,,) jc f(m) (6)

3 Ejemplos de FDTR y FDMTR y su Analisis Computacional

Esta clase de FD pueden implementarse como sistemas dedicados (embedded systems) de acuerdo a lo escrito por Burns y
Williams (1997) a través de microcontroladores, DSP’s, etc.; 0 en computadoras con Sistemas Operativos de Tiempo Real
(SOTR) [Liu, 2000], como es el caso de este trabajo. Para esta tesis los experimentos de FDTR y FDMTR se implantaron en
QNX Neutrino 6.0 [QNX, 2003] vy se graficaron en Matlab. Se presenta el método Variable Instrumental en sus variantes
FDTR y FDMTR, como casos especiales se presentaron los estimadores Factor de Olvido Exponencial y Modos Deslizantes
Tradicional; en el primero no es posible analizar su estabilidad directamente, el segundo no es un estimador para sistemas
lineales; sin embargo ambos cumplen las condiciones temporales locales y globales desarrolladas en esta tesis. En este
documento se presentara el primer método propuesto, considerando que se aplicéd la misma metodologia para los otros dos.

3.1 Implantacion del FDMTR Variable Instrumental para seguimiento de Tareas en Tiempo Real Periédicas

El sistema a analizar es un conjunto de 2 Tareas en Tiempo Real Periddicas concurrentes (TTRP) e independientes. Se tiene
el conjunto de tiempos de arribo relativos 7, como sefial observable y se desea estimar su matriz de parametros Ay). Este
modelo esta descrito en [Guevara, Medel y Flores 2003] y [Guevara, Medel y Cruz, 2004].

Las ecuaciones del tiempo de arribo relativo de las TTRP se expresan a continuacion:

X(k+1) = Ax(k) +V(k) (6)
Ty = Xy T W ® )
Donde:
& Xy €S el estado del sistema,
b. Ry € la sefial observable (tiempo de arribo relativo),
C. Vg ¥ W, SON las perturbaciones internas y externas respectivamente.
d

A es la matriz de pardmetros a estimar.

Las condiciones hipotéticas del FDMTR son:
E{N(ku)”:k)}: (0]
E{N(M”(Tk)}: ®§v(“
E‘{/(k)”(Tm}: G)im ©))
E {N(k)(W(k))T }: ®§vm
E {/mé/(k))T }: ®5m
E {/(k)(w(k))T }: (0]

El estimador esta expresado en forma recursiva:

Ay =(AyyBisy + 79 Z)B ©)

(k)
El error de estimacidn es definido por:
Ay = Ay — A, (10)
De acuerdo a Medel (2002) el error de estimacion esta descrito por:
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A =((-AO; +6] (I -A))(O% (A% +1+A%)+0] (1+2A)" (11)
Asi como el funcional del error de acuerdo:

‘](k) :E(A(k)(A(k))T)' (12)

Para el modelo de las TTRP se consideraron los siguientes datos:

A|05 02 (13)
103 04
o _[095 093 (14
0 0,97 0.94
o _|095 093 (15)
Yo 10,97 0.94

Como resultado se presenta la matriz de precedencia de tareas:

nx Xk Pk Bk Ak Jk
nk o G
Xk] — - 5> < <
Pkl < < < - <
Akl < - < < -
Bkl < < < - <
kl< < < < <

Tabla 1. Matriz de precedencia de tareas para el FDMTR Variable Instrumental

Para la implementacién experimental del FDMTR de tomaron las siguientes consideraciones:

a. Los tiempos de ejecucion (Cy) obtenidos son los maximos y las técnicas de medicion se describen en: [Guevara,
Medel y Flores, 2003] y [Guevara, Medel y Flores 2004].

El plazo maximo D, max, del sistema es igual al periodo T .

El tiempo de inicio (sy- lg) se obtuvo tal que s, = l¢y+0.0015 ms.

El periodo de muestreo T (impulso del temporizador de Tiempo Real) para la activacion de tareas es de 10 ms.

El plazo minimo Dgmin= 1 ms.

El plazo de convergencia del conjunto de TTRP es: d=4s.

~ooo0oT

Los tiempos de ejecucion maximos para cada tarea se obtuvieron midiendo el tiempo de ejecucién de 250 instancias en
QNX utilizando el cédigo presentado en el anexo. Se presentan las graficas de la medicién de tiempos de ejecucion. Los
tiempos de ejecucidn obedecen a una funcion de distribucion normal con ruidos gaussianos.

256



Filtrado Digital en Tiempo Real: Analisis Computacional para Estimacion de Parametros en ...

Tiempos de ejecucion de Xk
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Cxk_max= 1.205 ms.
CXkﬁmin: 1.195ms.
CXkﬁmedia: 1200 ms.

Tiempos de ejecucion de pik

1.094 1.096 1.098 11 1.102 1.104 1.106

Crk_max= 1.105 ms.
Cr_min= 1.095 ms.
Crk_media= 1.000 ms.

Fig. 2. Tiempos de ejecucion de las tareas Xk y nk del FDMTR como estimador

Como resultado de las mediciones, se obtuvo una distribucion normal para cada tarea en tiempo real del FDMTR:

a. Xk: Ecuacién de estados del sistema. Cyx= 1.205 ms,
b. mk: Ecuacion de estados observables. Cm=1.105 ms,
C. Bk: Varianza de la sefial observable. Cgi= 0.955 ms,
d. Pk: Ecuacion de Ricatti. Cp=1.103 ms,
e. Ak: Estimador de parametros. Ca= 1.353 ms,
f. Jk: Funcional de error. Cy= 1.405 ms,
j O: Tarea creadora. Co =0.743 ms.

El tiempo de finalizado total f_ , es igual a la suma del tiempo de ejecucion Cuy mas la suma de sus cambios de contexto

descritos por (s para cada intervalo k . En este trabajo, se considerd al promedio de la suma de los cambios de

w0 =)
contexto, para todas las evoluciones K :

fr‘k = C(k) + G(S(k) - I(k)) : (16)
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Los tiempos medidos fueron los siguientes:

a. T(k) = 10 ms,

b. I(k) = T(k-l)k ms,

C. Sk = I(k)+ 0.09 ms,
d. C(k) = 7.126 ms,

e. D(k)mln = 1 ms,

f. D(k)max: 10 ms,

g. f(k) = 7.135 ms,

h. L(k) = -2.865 ms,

i P(k) = 0 ms.

Para un experimento del FDMTR como estimador de parametros se obtuvo la Figura 3 con los siguientes resultados:

Estimacion de la matriz A para el seguimiento de TTR

06 T T T T
ay
s e
I N.,,\'““v.\_u.j"“'""—"
041 :
D3

A estimada

01r

ol | Mol PN

-01

1 1 1 1
a 200 400 500 800 1000
k

Fig. 3. Gréfica de la estimacion de la matriz de pardmetros “A” a través del FDMTR Variable Instrumental

Se observa que Mya= 354 intervalos, t; max= 3,54 s, por lo tanto el tiempo de convergencia del FDMTR es t. =3.54 s.

a. m= [354, 213, 241, 318] intervalos,
b. t= [3.54,2.13,2.41, 3.18] s,
c. d= 4 s. (400 intervalos)

Con t. < d se muestra que el plazo de convergencia se cumpli6. De ésta manera el FDMTR cumple sus condiciones locales
y globales tanto en calidad de respuesta como en tiempo. La Figura 4 muestra las graficas de los valores obtenidos.
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Fig. 4. Estado interno xg, sefial observable 7, error de estimacion y funcional j, parael FDTR

Las Figuras 5, 6 y 7 son un ejemplo del comportamiento de un FDMTR usado como estimador de pardmetros a través de la
técnica de variable instrumental; sin embargo, es necesario hacer mas de una ejecucion para validar su funcionamiento.

006
0.05 ~
0.04 4

= 0,03+

Jii

0.02

800 1000 1

k

Fig. 5. Respuesta del funcional de error J(k) para el FDMTR por el método Variable Instrumental
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Estimador de parametros (FDMTR) por el metodo Variable Instrumental

]

0.6

04}

021

Parametros estimados

| | |
0 200 400 600 800 1000

Fig. 6. Gréfica de la estimacion de la matriz de pardmetros “A” a través del FDMTR Variable Instrumental para 100 experimentos

La Figura 7 muestra los funcionales de error para cada parametro estimado por el FDTMR.

014~
012
014

008"

1000 O Experimentos

800 1000 O

Funcional de error para el pardmetro a; ;= 0.5 Funcional de error para el pardmetro a; ,= 0.2
Fig. 7. Funcionales de error para el FDMTR del ejemplo como estimador de pardmetros por el método Variable Instrumental para 100

experimentos (a; 1 Y a;2)

De acuerdo a los 100 experimentos realizados para la estimacion de pardmetros usando un FDMTR con el método de
Variable Instrumental, se obtuvieron un conjunto de valores de convergencia para tiempos maximos, tal que:

Mmax=  [384, 255, 267, 345] intervalos,

a.
b. tomax= [3.84, 2,55, 2.67, 3.45] s,
c. d= 4 s. (400 intervalos)
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Por lo tanto el estimador Variable Instrumental cumple con la definicion de FDMTR con un tiempo de convergencia (el
mayor de todos) de 8.84 segundos, menor al plazo de convergencia.

3.2 Anadlisis computacional de los Filtros Digitales en Tiempo Real

No es posible hacer una comparacion en respuesta y decidir cual es mejor estimador: el estimador Variable Instrumental se
utiliza para sistemas con parametros invariantes en el tiempo, el estimador Factor de Olvido Matricial se usa con
pardmetros variantes en el tiempo y el estimador Modos Deslizantes Tradicional es de caracteristicas no lineales (0
bilineales) con pardmetros con discontinuidades. Sin embargo, es necesario estudiar su computabilidad y complejidad
[Brokshear, 1993], [Cutland, 1980]. Los tres FDTR (incluyendo su variante multivariable) presentados en este trabajo son
computables, son funciones recursivas anidadas que mapean del conjunto de los nimeros reales a los reales; esto es:

FDTR(y,,):R - R, conk, neZ’ (17)
FDMTR(Y,,):R™" — R™", conk neZ’ (18)

En la se presentan los resultados del anélisis de complejidad temporal de los FDMTR: Variable Instrumental, Factor de
Olvido Matricial y Modos Deslizantes Tradicional. El estudio consisti6 en la medicién de los tiempos de ejecucion
maximos para n variables, es decir, para matrices de pardmetros de dimensién nxn; se inici6 el experimento para n= 1
(FDTR) y se fue incrementando en nimero de variables hasta llegar a matrices de 20x20.

En la Figura 8 se superponen los resultados del andlisis computacional de complejidad temporal de los FDMTR
estudiados en este trabajo. Se observa que el algoritmo mas complejo temporalmente es el de Factor de Olvido Matricial
seguido del Variable Instrumental y por Gltimo el Modos Deslizantes Tradicional. La justificacion principal es el uso
extensivo de matrices y operaciones matriciales a través de arreglos de apuntadores en lenguaje C aunado a la cantidad de
operaciones binarias que componen al filtro. El algoritmo Factor de Olvido Matricial es el que involucra mas operaciones,
un mayor nimero de matrices y tareas concurrentes.

Complejidad de los algoritmos VI, MFF y DMT
8000 -

7000 |

6000

e)]

5000 -

4000

3000 -

Tiempo de ejecucion (mse

2000

1000 -

0 /

0 5 10 15 20
Variables (n)

Fig. 8. Complejidad temporal polinomial de los FDMTR (de arriba a abajo): Factor de Olvido Matricial, Variable Instrumental y
Modos Deslizantes Tradicional

De acuerdo a este analisis computacional, los algoritmos de los FDTR y FDMTR son computables y de complejidad P, por
lo tanto pueden implementarse en computadoras digitales con plataformas de Tiempo Real.
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4 Conclusiones

Independientemente de la plataforma en Tiempo Real en que se implanten los FDTR y FDMTR, deben cumplir con: la
interaccidn con procesos reales, emision de repuestas correctas, sincronia con los procesos, un error de convergencia
acotado por un valor predefinido y la expresion en forma recursiva para seguir la dindmica del proceso. Las restricciones
temporales minimas en los FDTR y FDMTR son: tiempo de muestreo, tiempo de ejecucidn, plazo minimo, plazo maximo,
tiempo de convergencia y plazo de convergencia.

El algoritmo Variable Instrumental se utiliza para estimar parametros en sistemas invariantes en el tiempo con
perturbaciones correlacionadas con la sefial observable pero no entre ellas. Los tiempos de convergencia estuvieron
acotados por una cota A del error de estimacién definida por las varianzas de las perturbaciones internas y externas; los
tiempos de convergencia fueron los segundos mas aceptables.

El algoritmo Factor de Olvido Matricial se utiliza para estimar parametros variantes en el tiempo. El error de
convergencia A estuvo acotado en funcién del proceso real; en la estimacidn se aprecié un pequefio defasamiento temporal
respecto a los parametros reales. Otro problema que se present6 en la implantacion fue la eleccién de la mejor matriz de
olvido R, debido a que se aprecid cierta sensibilidad de hasta diezmilésimos en sus elementos, dando como resultado una
deformacion en la secuencia de la matriz de parametros estimada o un disparo y una indeterminacion en la gananciaT.

Como caso especial se presentd el algoritmo Modos Deslizantes Tradicional para estimacion de parametros con
discontinuidades; se aplica para sistemas lineales con parametros discontinuos. El tiempo de convergencia estuvo acotado
por un A predefinido con resultados muy buenos y proximos al vector de parametros en funcion del incremento del tiempo.

El analisis temporal de los filtros se realizé con los tiempos maximos de ejecucion medidos para 1000 iteraciones en
cada caso; de igual manera, para la convergencia se repitieron 250 experimentos por cada algoritmo para obtener los
tiempos de convergencia maximos. En base a esto se presentd un analisis computacional en funcién de su computabilidad y
complejidad temporal. Los tres algoritmos son computables, mapean de los nimeros reales a los nimeros reales y a través
de programas de computo con funciones recursivas (ciclos while) lograron implementarse y calcular respuestas en tiempos
finitos. Los tres algoritmos estudiados tienen complejidad P, pueden resolverse en tiempos accesibles en funcion del
namero de variables que manejen. La complejidad temporal es mayor en el FDMTR Factor de Olvido Matricial, debido al
manejo extensivo de operaciones matriciales mediante arreglos de apuntadores a dobles en C; enseguida se tiene el FDMTR
Variable Instrumental, el nimero de operaciones matriciales es menor al MFF y se ve reflejado en sus tiempos de ejecucion;
finalmente se tiene el filtro Modos Deslizantes Tradicional, éste cuenta con el menor ndmero de operaciones matriciales y
por lo tanto con menor tiempo de ejecucion.

La teoria y procedimientos presentados en esta tesis son generales y aplicables a todos los filtros digitales lineales que
interactden con procesos fisicos reales, que impongan restricciones temporales y requieran ser descritos a través de los
procedimientos de estimacion o identificacion de manera dinamica. Los aportes principales son:

- Formalizacién de los conceptos de Filtrado Digital en Tiempo Real para estimacién de pardmetros en sistemas

estocasticos lineales estacionarios a través de los conceptos de FDTR y FDMTR,

- Definicion de las caracteristicas locales y globales en calidad de respuesta y tiempo de los FDTR y FDMTR:

0 Caracteristicas de las tareas,

o0 Sincronia,

0 Periodos de muestreo,

0 Tiempos de convergencia,

Andlisis computacional temporal de los FDMTR en funcion del tamafio de la matriz de parametros a estimar.
Procedimiento de implantacion de un FDTR en un sistema operativo de tiempo real.
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