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Abstract 
 

The formulation of the process of analog system design has been done on the basis of the control theory application. 
This approach produces many different design strategies inside the same optimization procedure and allows 
determining the problem of the optimal design strategy existence from the computer time point of view. Different kinds 
of system design strategies have been evaluated from the operations number. This analysis shows that the traditional 
approach is not time-optimal at least for the electronic circuit design. General methodology for any analog system 
design was formulated by means of the optimum control theory. The main equations for this design methodology 
include the special control functions that are introduced to generalize the design process. The problem of the time-
optimal design algorithm construction is defined as the minimal-time problem of the control theory. Numerical results 
of some nonlinear passive and active electronic circuit design demonstrate the efficiency of the proposed 
methodology. 
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1 Introduction 
 
The problem of the computer time reduction of a large 
system design is one of the essential problems of the total 
quality design improvement and the fundamental 
technology trends underscore the need to rethink 
conventional design methodology for the system design 
(Costello, 2001). This problem has a special significance for 
the VLSI electronic circuit design. Any system design 
methodology includes two main parts as a rule: the model of 
the system which can be simulated as algebraic equations or 
differential-integral equations and a parametric optimization 
procedure that achieves the objective function optimal 
point. The traditional design strategy for the system design 
has two fixed determined parts. The first part is the 
mathematical model of the physical system and the second 
one is the optimization procedure. In limits of this 
conception it is possible to change optimization strategy 
and use different models and different analysis methods. 
However, the time of the large-scale circuit analysis and the 
time of optimization procedure increase when the network 
scale increases.  

 There are some powerful methods that reduce the 
necessary time for the circuit analysis. Because a matrix of 
the large-scale circuit is a very sparse, the special sparse 
matrix techniques are used successfully for this purpose 
(Bunch and Rose, 1976; Duff and Reid, 1979; Osterby and 
Zlatev, 1983; George, 1984). Other approach to reduce the 
amount of computational required for the linear and 
nonlinear equations is based on the decomposition 
techniques. The partit ioning of a circuit matrix into 
bordered-block diagonal form can be done by branches 
tearing as in (Wu, 1976), or by nodes tearing as in 
(Sangiovanni-Vincentelli et al., 1977) and jointly with direct 
solution algorithms gives the solution of the problem. The 
extension of the direct solution methods can be obtained by 
hierarchical decomposition and macromodel representation 
(Rabat et al., 1985). Other approach for achieving 
decomposition at the nonlinear level consists on a special 
iteration techniques and has been realized in (Ruehli et al., 
1982; Ruehli and Ditlow, 1983) for the iterated timing 
analysis and circuit simulation. Optimization technique that 
is used for the circuit optimization and design, exert a very 
strong influence on the total necessary computer time too. 
The numerical methods are developed both for the 
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unconstrained and for the constrained optimization (Gill et 
al., 1981; Fletcher, 1981). The practical aspects of use of 
these methods are developed for VLSI circuit design, yield, 
timing and area optimization (Brayton and Hachtel, 1981; 
Ruehli, 1987; Massara, 1991). It is possible to suppose that 
the circuit analysis methods and the optimization 
procedures will be improved later on. Meanwhile, it is 
possible to reformulate the total design problem and 
generalize it to obtain a set of different design strategies 
inside the same optimization procedure. It is clear that a 
finite but a large number of different strategies include more 
possibilities for the selection of one or several design 
strategies that are time-optimal or quasi-time-optimal ones. 
This is especially right if we have infinite number of the 
different design strategies. On the contrary of the traditional 
design strategy, the modified traditional design strategy has 
only one part, because all system parameters are determined 
as independent and the objective function of the 
optimization procedure includes additional penalty 
functions, that describe the model of the physical system. In 
this case the equations of the model of the physical system 
disappear. On the other hand, it is possible to re-determine 
the total design problem, to generalize it, to obtain a set of 
the different design strategies. First of all, we define the 
time-optimal design strategy as the algorithm that achieves 
the optimum point of the objective function of the design 
process at the minimal computer time. The main problem of 
this formulation is the search of the special conditions, 
which need to be satisfied for the optimal algorithm 
construction. 
 The idea of the control theory use, which was 
introduced in (Zemliak, 1999) is developed now for the 
design of the systems that are described by the non-linear 
algebraic equation model. This methodology generalizes the 
design problem and can reduce the total necessary 
computer design time. First of all the evaluation of the 
operations number for different design strategies has been 
done.  The main system of equations that describes the 
general design process is determined. This system includes 
the special control functions, which generalize the design 
process. The time-optimal system design procedure is 
defined as a minimal-time problem of the control theory and 
gives the possibility to use the specific methods of this 
theory. Different examples of the electronic circuit design 
have been solved using the proposed methodology. 
 
2 The Problem Formulation 
 
The design process for any analog system design can be 
defined as the problem of the objective function ( )C X  
minimization for X R N∈   with the system of constraints. It 
is supposed that the minimum of the objective function 

( )C X  achieves all design objects and the constraint 

system is the mathematical model of the physical system. It 
is supposed also, that the system model can be described as 
the system of nonlinear equations: 
 
 ( )g Xj = 0         (1)
      
 j M= 1 2, , . . . ,  
 

The vector  X  can be separated in two parts: ( )X X X= ′ ′′, . 
The vector ′ ∈X RK  can be named as the vector of 
independent variables, where K is the number of 
independent variables, and the vector  ′′ ∈X E M  is the 
vector of dependent variables, where  N K M= + . This 
separation is very conditional, because any variable can be 
defined as independent or dependent parameter. If the 
electronic system is described, it is more traditional and 
natural to define the system elements as independent 
variables and the physical parameters (voltages, currents, 
and so on) as dependent variables, but it is not obligatory.  
 The optimization process for the objective function 

( )C X  minimization for two-step procedure can be defined 
in general case as following vector equation: 
 
 X X t Hs s

s
s+ = + ⋅1        (2) 

 

with constraints (1), where  s  is the iterations number, t s  
is the iteration parameter, t Rs ∈ 1,  H is the direction of the 
objective function  ( )C X  decreasing. The vector H  is the 
function of  ( )C X . This is a typical formulation for the 
constrained optimization problem. This problem can be 
transformed to the unconstrained optimization problem for 
K N M= −  variables. In this case the design problem is 
defined in more traditional form as an unconstrained 
optimization process in the space KR : 
 
 ′ = ′ + ⋅+X X t Hs s

s
s1        (3) 

 
with the system (1) which is solved at each step of the 
optimization procedure. 
 The specific character of the design process at least for 
the electronic systems consists in the fact that it is not 
necessary to fulfill the condition (1) for all steps of the 
optimization process. It is quite enough to fulfill these 
conditions for the final point of the design process. 

The problem (1), (3) can be redefined in form when there 
is no difference between independent and dependent 
variables. All components of the vector X can be defined as 
independent. This is the main idea for the penalty function 
method application.  In this case the vector function  H     is 
the function of the objective function ( )C X  and       the 
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additional penalty function ( )ϕ X :   

( ) ( )( )H f C X Xs s s= ,ϕ . The penalty function structure 
includes all equations of the system (1) and can be defined 
for example as:  
 

 ( ) ( )ϕ
ε

X g Xs
i

s

i

M

=
=
∑1 2

1
        (4) 

 
In this case we define the design problem as the 
unconstrained optimization  (2)  in the space R N   without 
any additional system but for the other type of the objective 
function ( )F X . This function can be defined for example 
as an additive function: 
 
 ( ) ( ) ( )F X C X X= + ϕ . 
 
In this case we achieve the minimum of the initial objective 
function ( )C X  and comply with the system (1) in the final 
point of the optimization process (in the minimal point of the 
function ( )F X  ). This method can be named as modified 
traditional design method and it produces another design 
strategy and another trajectory line in the space  R N . 
 On the other hand, it is possible to generalize the idea of 
the additional penalty function application if to make up the 
penalty function as one part of the system (1) only, and the 
other part of this system is defined as constraints.  In this 
case the penalty function includes first  Z  items only, 

( ) ( )ϕ
ε

X g Xs
i

s

i

Z

=
=

∑1 2

1
 where [ ]Z M∈ 0,  

and  M-Z equations make up one modification of the system 
(1): 
 
  ( )g Xj = 0        (1')
      
 j Z Z M= + +1 2, , . .. ,  
 
 It is clear, that each new value of the parameter  Z  
produces a new design strategy and a new trajectory line. 
This idea can be generalized more (Zemliak, 1999) in case 
when the penalty function ( )ϕ X  includes Z arbitrary 
equations from the system (1). The total number of different 
design strategies is equal to 2 M , if [ ]MZ ,0∈ . All these 
strategies exist inside the same optimization procedure. The 
optimization procedure is realized in the space RK Z+ . The 
number of the dependent variables  M  increases rapidly 
with the system complexity increasing. In this case the 
number of different design strategies increases 
exponentially.  It is clear that these different strategies have 
various computer times because they have different 

operations  number. It is appropriate in this case to define 
the problem of the search of an optimal design strategy that 
has the minimal computer time. Here and further the design 
strategy optimality is defined as the computer time 
minimization.   
 The most general approach can be constructed on the 
basis of the design problem formulation as the problem of 
optimal control (Zemliak 1999, 2001). It is possible to define 
a design strategy by equations (1'), (2) with the variable 
value of the parameter Z during the optimization process. It 
means that we can change the number of independent 
variables and the number of the terms of the penalty 
function at each point of the optimization procedure. It is 
convenient to introduce in consideration a vector of the 
special control functions  ( )MuuuU ,...,, 21=   for this 

aim, where u j ∈ Ω; { }Ω = 0 1; . These control variables are 
introduced artificially to generalize the design process. The 
sense of the control function  u j   is next: the equation 
number  j  is present in the system (1')  and the term  

( )g Xj
2   is removed from the right part of the formula  

(4)  when   u j = 0, and on the contrary, the equation number  
j  is removed from the system  (1')  and is present in the right 
part of the formula  (4)  when  u j = 1.  In this case we have 
the following formulas for the model of the system and for 
the penalty function: 
 
 ( ) ( )1 0− =u g Xj j          (5) 
 
 j M= 1 2, , . .. ,  
 
 

 ( ) ( )ϕ
ε

X u g Xs
j j

s

j

M

= ⋅
=

∑1 2

1
       (6) 

 
 All control variables  u j  are the functions of the current 
point of the optimization process. The vector of the 
directional movement H is the function of the vectors X and 

U in this case: ( )H f X U= , .  The total number of the 
different design strategies, which are produced inside the 
same optimization procedure, is practically infinite. Among 
all of these strategies exist one or few optimal strategies that 
achieve the design objects for the minimum computer time. 
So, the problem of the time-optimal design strategy finding 
is formulated as the typical minimal-time problem of the 
control theory. The main problem of this definition is 
unknown optimal dependencies of all control functions. The 
solution of this problem may be find by some approximate 
methods of the optimal control theory. 
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 There are many well-developed methods of the 
unconstrained optimization for the function of the multiple 
arguments. We need to elect an optimization procedure for 
further evaluation and analysis. Almost all optimization 
methods can be classified on zero order methods, as method 
of dual directions, method of conjugate directions, Hooke-
Jeeves method (Hooke and Jeeves, 1961), simplex method 
and so on; the first order methods as the different variants 
of the gradient method; the second order methods as the 
different variants of the Newton’s method; and the quasi-
Newton methods. These last methods are based on the 
approximation of the matrix of second derivatives and 
include the method of conjugate gradients, Fletcher-Reeves 
method (Fletcher and Reeves, 1961), Davidon-Fletcher-
Powell method (Fletcher and Powell, 1963) and so on.  
 It is convenient to select the gradient method for the 
optimization procedure to simplify a further analysis. This 
method has some defects of the convergence, but serves 
well as the basis for many other algorithms. On the other 
hand, the gradient method with its modifications appears 
practically in all optimization methods, which use the 
objective function derivatives. Finally, the gradient method 
allows revealing the main features of the new design 
problem formulation. 
 It is possible to reformulate the optimization process (2) 
on continuous form by means of following differential 
equation: 
 

 ( )dX
dt

f X U= ,  

 
It means, that the main problem of the design process can 
be formulated as the problem of the integration of this  
system with additional condition (5).  The structure of the 
function  H  for the gradient method is given by: 
 

 ( ) ( )
X

UXFUXfH
∂

∂ ,, −=≡  

 
This function defines the direction of the movement during 
the optimization process. 
 
3 Operations Number Evaluation 
 
3.1  The traditional design strategy  
 
The traditional design strategy includes two systems of 
equations. It is supposed that the optimization procedure 
for the system design process can be defined as the system 
of the ordinary differential  equations  for  the  independent 
variables, for example as: 
 

 ( )dx
dt

b
x

C Xi

i
= − ⋅

δ
δ

         (7) 

  
 i K= 1 2, , .. . ,  
 
where  C(X)    is the objective function of the design problem;  

b  is the iteration parameter; the                operator 
δ

δx i
 hear 

and below means 

( ) ( ) ( )δ
δ

ϕ
∂ϕ

∂
∂ϕ

∂
∂
∂x X

X
x

X
x

x
xi i pp K

K M
p

i
= +

= +

+

∑
1

. To 

simplify the analysis, the gradient method is used as the 
optimization procedure here and below. However, it is not 
important what kind of the optimization method is used. It is 
only necessary to prepare the optimization procedure as the 
system of ordinary differential equations for the independent 
variables. 
 The model of the system is determined as the system of 
constraints. It is supposed also, that this model is described 
as the system of the non-linear algebraic equations: 
 
 ( ) 0=Xg j           (8)
       
  j M= 1 2, , . . . ,  
 
 The operations number for the solution of the system (8) 
by the Newton’s method is equal to  

( )[ ]S M M P MP⋅ + + +3 2 1 ,  where  P  is the average 

operations number for the function  ( )g Xj   calculation;  S  
is the iteration number of  Newton’s method for the system 
(8) solution.  In the case when the quasi-Newton method is 
used it is necessary to change this formula to another:   

( )′ ⋅ +S M P MP2   where  ′S   is the iteration number of 
quasi-Newton method  ( ′S  > S ).  The operations number for 
the one step integration of the system (7)                      by the 
Newton’s method is equal to 

( ) ( ) ( )[ ]K C K K S M M P MP+ ⋅ + + + ⋅ ⋅ + + +1 1 13 2 , where 
C is the operations number for the objective function 
calculation. The total operations number for the solution of 
the problem  (7) - (8), when the Newton’s method is used is 
equal to: 
 

( ) ( )[ ]{ }{ }N L K K C S M M P MP1 1
3 21 1= + + + ⋅ + + +      (9) 

 
where L1   is the total steps number of the optimization 
algorithm. The Newton’s method for the solution of the 
system  (8) was taken into consideration below to evaluate 
the total operations number. The results for the quasi-
Newton method are very similar.  
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3.2  The modified traditional design strategy  
 
The modified traditional strategy is determined as the system 
of optimization procedure equations without any constraints. 
In this case the number of independent variables is equal to 
K+M.  The principal system is given by 
 

 ( )dx
dt

b
x

F Xi

i
= − ⋅

δ
δ

       (10) 

 
 i K M= +1 2, , . . . ,  
 
where  F(X)   is the general objective  function,   

( ) ( ) ( )F X C X g Xj
j

M

= +
=
∑1 2

1ε
. The total operations 

number for the problem (10)  solution is equal to: 
 

( ) ( )[ ]{ }N L K M K M C P M2 2 1 1= + + + + ⋅ + +      (11) 

 
 
3.3  The general design strategy  
 
It is possible to define the general design strategy as the 
strategy which has the variable number of independent 
parameters, that is equal to  K+Z. In this case the following 
two systems are used: 
 
 

 ( )dx
dt

b
x

F Xi

i
= − ⋅

δ
δ

       (12) 

 
 i K Z= +1 2, , . . . ,   
 
 
and 
 
 

 ( ) 0=Xg j         (13)
    
 MZZi ,...,2,1 ++=   
 
    

where    ( ) ( ) ( )XgXCXF
Z

j
j∑

=
+=

1

21
ε

.   In this case 

the  total  operations  number  3N   for  the  solution  of  the 
 systems (12), (13) is equal to: 

 
( ) ( )

( ) ( ) ( ) ( ) ]}}1[

1{1{
23

33

PZMPZMZMS

ZPCZKZKLN

−++−+−⋅

+++++++=

          (14) 
 
This formula is turned to the formula  (9) when Z=0  and is 
turned to the formula (11) when  Z=M.  Analysis of the 
operations number 3N   as the function of  Z  gives the 
conditions for the minimal computer time calculation. This 
general strategy almost has no preference in computer time 
when the system (13) is linear or quasi-linear. In this case the 
iteration number for the Newton’s method   S  is equal to 1 
and the traditional approach is optimal. It is supposed also 
that the iterations number  L3   and  the operations number C  
for the objective function calculation have dependencies 
from the independent variables' number by the following law: 
 
           ( )L L K Z n

3 0= ⋅ + ;      ( )C C K Z m= ⋅ +0  . 
 
These are ordinary assumptions and the principal problem is 
the value of the power  n  and  m.  On the other hand, the 
iterations number  S  for the Newton’s method don’t has 
dependency from the order of the system (13) in the first 
approximation and is equal to constant value S0 . This value 
in practical situation is equal to 4 - 5 to achieve the precision  
δ = −− −10 1010 12 .  The average operations number  P  for 
the function  ( )g Xj  calculation has no dependency from  
Z,  if the electronic circuit is analyzed. This is correct because 
the admittance matrix of the electronic circuit is very sparse. 
It is supposed that this value is constant and equal to  0P .  In 

this case, the formula  (14) for the function ( )ZN 3  
calculation is transformed to: 
 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) )]})1((

]1[1{

00
23

0

0003

PZMPZMZMS

PZZKCZKZKZKLZN mn

−++−+−⋅+

+++⋅++++⋅+⋅=

          (15) 
 
 In accordance with the principal definition of the optimal 
design strategy we can find the optimal strategy by the 
analysis of this formula. We need to find the optimum point  

optZ , where the function ( )ZN 3  has the minimum value. 

If the optimum point  optZ  is equal to  0  it means that the 

traditional strategy is the optimum one.  If the optimum point  
optZ  is equal to M  it means that the modified traditional 

strategy is the optimum one. If  the optimum point  optZ  

belongs to the region  ( 0, M ), it means that one of the 
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intermediate strategies is the optimum one. The derivative of 
the function  ( )ZN3   is given by the formula: 
 
 

mn MKCZKZKZKnLZN )()[1({)()( 0
1

0
'
3 ++++++= −

)]})()1()()(()1( 00
23

00 PZMPZMZMSPZ −++−+−+++

( ) ( ) ( ) ( )30000 [)1(211{ ZMSPZKMKCZKL mn −+++++++++

( ) ( ) 00
2 )1( PZMPZM −++−+  

( ) ( ) ( ) )])1(23(1 00
2 PPZMZMZK ++−+−++−

         (16)
    
To obtain the minimum point as an inside point of this region 
[ 0, M ] it is necessary to provide two conditions for the 
derivative in the boundaries: ( )′ <N3 0 0  and  ( )′ >N M3 0  . 
The derivative  ( )′N3 0  in assumption  that  m = 1, for the 
point  Z = 0  is given by formula: 

 
 

=+++−+++
++++++=
]})1(23[)1(]

)1(()(1)[1{()0(

00
2

000

0
23

000
'
3

PPMMKSPKMP
PMMSMKCnKLN n

 

 

( )
( )

( )

= + +
+

+ +
+

+






















+
+

− +
+

+






















+

+

L K M n
KM

C K M
KM

S
M
K

P
K

P
KM

L K M
P

M
S

P
M

P
M

n

n

0
1 2

2
0

2 0
0 0

0
1 2 0

2 0
0 0

2

1
1 1

1
3

2 1

          (17) 
 
 It is convenient to define an additional parameter   

q
M
K

= . The formula (17) is transformed, when  

M K, → ∞ , to the following formula: 

( ) ( )[ ]′ = + −+N L K M S n qn
3 0

1 2
00 1 3 .  It is necessary 

to provide a special condition for the parameter   n   to fulfill 
the condition ( )′ <N3 0 0 . This condition is given by the 

formula   n
q

< −
3

1.  Parameter  q  for the majority of the 

systems is less than or equal to 1.  In that case we have the 
condition  for the parameter  n  as:   n < +2 ε .   
 On the other hand, the derivative  ( )′N Z3  in the point  
Z=M  has the following form: 
 
 

( ) ( ) ( )′ = + + + + + +
+ + + + − + + =

N M L K M n C K M nM P
K M P S P K M

n
3 0 0 0

0 0 0

1 1 1
1 2 1 1

{( )[ ] ( )
( )( ) ( )}

 

( ) ( )
( )

( )
( )( )

= +
+
+

+ + +
+

+









+ +
+ + +

+
−









+

+

L K M
n

K M
C n

nM P
K M

L K M
K M P

K M
S P

n

n

0
1

0
0

0
1 0

0 0

1
1

1

1 2 1
  

          (18)
      
          
 This formula  is transformed, when M K, → ∞ , to the 
following form: 
 

( ) ( ) ( )
( )( )

′ = + + +
+ + + +

+
−









+N M L K M C n

K M nM P
K M

S Pn
3 0

1
0

0
0 01

1 2 1
 . 

 
 It is supposed that the order  n  is equal to  2. In that case 
the main inequality to provide the condition  ( )′ >N M3 0  is 
given by 
 
 

 ( )3
1 4
1

1 00 0 0 0C
q

q
P S P+

+
+

+ − >  . 

 
 This formula is transformed, when q → 1  and  C P0 0≈  
,  to the following condition: 
 
 

 ( )P S0 055 25 0. .− + >  . 
 
In case when  n = 1    another condition is given by 
 
 

 ( )P S0 04 2 0− + >  . 
 
There is a possibility to obtain the condition  ( )′ >N M3 0   if 
the iteration number  S0  is equal to 4 or 5. Therefore, the 
optimum point  Zopt   is within the region [ 0, M ] in this case.  
This analysis serves as the basis for the subsequent more 
detailed investigation of the general design strategy idea. 
 The optimum point  Zopt  for the problem (12), (13) 
minimizes the necessary computer time for the system design 
and, in general case, has dependency from the electronic 
system size and topology. This optimal point can be fined by 
different methods, for example by ordinary gradient method. 
The optimization of the independent parameters space 
dimension leads to the reduction of the total operation 
number and, therefore, to the reduction of the total computer 
time for the system design. In this work  the problem of the 
optimum order of the space dimension is solved in a more 
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general level by the optimal control theory approach. The 
total computer design time is served as the objective function 
for the time-optimal algorithm search. In that context the 
general design strategy can reduce the total computer time, 
but this strategy is not the most general because we have the 
constant number of the additional independent parameters 
Zopt  during the design process. It is possible to generalize 
more this strategy, if to change the number of the equations 
that are excluded from the system model (and are included to 
the objective function) at any moment of the design process. 
This idea was realized by the optimal control theory 
formulation. 

 
 

4 System Design Time-Optimal 
Problem Formulation 
 
It is possible to determine the problem of any analog system 
design as the problem of optimal control.  The principal 
system of equations can be determined as: 
 

 ( )dx
dt

f X Ui
i= ,         (19)

       
 i N=01, ,...,  
 
and  
    
 ( ) ( )1 0− =u g Xj j        (20) 

 
 j M= 1 2, , . .. ,  
 
where N=K+M; x0  is the additional variable; U  is the vector 
of control variables, ( )U u u u M= 1 2, , . . . , ; 

{ }u j ∈ =Ω Ω; ;0 1 .  

 The functions of the right hand part of the system  (19)  
are determined as: 
 
 

( ) ( ) ( )f X U b
x

C X u g Xi
i

j j
j

M

, = − +






=

∑δ
δ ε

1 2

1
 

 
          (21) 
for    i K= 1 2, ,. . . ,  ,  
 
 
and 

( ) ( ) ( )

( ) ( ){ }

f X U b u
x

C X u g X

u
dt x X

i i K
i

j j
j

M

i K
i i

,

'

= − ⋅ +








+
−

− +

−
=

−

∑δ
δ ε

η

1

1

2

1

  

        (21') 
for     i K K N= + +1 2, ,. . . , , 
 
where  x i

'   is equal to  ( )x t dti − ;   ( )η i X   is the implicit 
function  ( ( )x Xi i= η  )  that is determined by the system  
(20). 
 The sense of the control variables u j  is provided in 
section 2. These variables have the time dependency in 
general case. The equation number  j is removed from (20) 
and the dependent variable xK j+  is transformed to the 
independent when u j =1. This independent parameter is 
defined by the formulas (19), (21'). In this case there is no 
difference between formulas  (21) and (21'), because the 
parameter xK j+  is an ordinary independent parameter. On 
the other hand, the equation (19) with the right part (21') is 

transformed to the identity 
dx
dt

dx
dt

i i= ,  when u j = 0, 

because ( ) ( ) ( )η i i i i iX x x t x t dt dx− = − − =' . It 
means that at this time moment the parameter xi  is the 
dependent one and the current value of this parameter can 
be obtained from the system (20) directly. This 
transformation of the vectors ′X  and ′′X  can be done at 
any time. The function ( )f X U0 ,  is determined as the 
necessary calculation time for one step of the system (19) 
integration.  The additional variable x0  is determined as the 
total computer time  T  for the system design. In this case we 
determine the problem of the time-optimal system design as 
the classical minimal-time problem of the optimal control.  In 
that context the aim of the optimal control is to take each 
function ( )f X Ui ,   to zero for the final time tfin , 

( ) ( )( )f X t U ti fin fin, = 0  and to minimize the total 

computer time x0 . By this formulation the general design 
strategy of the previous section is the particular case only.  
It is possible to re-determine this general design strategy as 
a method with the fixed values of all control functions  u j  . 
The total number of the different design strategies, which is 
produced by the general design strategy, is equal to 2 M . 
On the contrary, the idea which defined the design process 
by means of equations (19)-(21) generates an infinite 
number of different design strategies. Each design strategy 
has its own trajectory in space R N . It is clear, that the time 
comparison of the different trajectories is adequate only in 
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case when the final trajectory point is the same. On the 
other hand, the objective function  C(X)  has a set of local 
minimal points, because the design problem is a non-linear 
problem in general. It is necessary to put the additional 
simple conditions to achieve the same point of the objective 
function for the different design strategies. However, the 
non-simple problem is not a specific feature of new design 
problem formulation. We have this type of problem always 
when we begin the design process from different start 
points. It is supposed below that the simple conditions are 
provided. 
 To minimize the total design computer time it is necessary 
to find the optimal behavior of the control functions u j  

during the design process. The functions ( )f X Ui ,  are not 
continued as the temporal functions in finite number of the 
time points because the control functions u j  have 
discontinuities. The minimal-time problem for the system (19) 
with the non-continued or non-smoothed functions (21),(21') 
can be solved most adequately by means of Pontryagin’s 
maximum principle (Pontryagin et al., 1962). For the classical 
Pontryagin’s form of the optimal control problem formulation 
it is necessary to define the conjugate system for the 
additional functions ψ i : 
  

 
( )d

d t
f X U

x
i l

il

N

l
ψ ∂

∂
ψ= − ⋅

=
∑ ,

0

     (22) 

 
 i N= 0 1, ,. .. ,      
 
Hamiltonian is determined as : 
 

 ( ) ( )H X U f X Ui i
i

N

, , ,Ψ =
=
∑ψ

0
      (23) 

 
This function has supreme value during the optimal 
trajectory with the Pontryagin’s maximum principle:   
 

 
( ) ( )M X H X U

u
, sup , ,Ψ Ψ

Ω
=

∈
      (24)  

  
 The main problem of the maximum principle application in 
that formulation is unknown vector  Ψ0   of the initial values 
of the functions ψ i . This problem has adequate solution 

only for the linear functions ( )f X Ui , , for example in 
(Neustadt, 1960). For the nonlinear case the direct application 
of the Pontryagin’s maximum principle is very problematical. 
There are some iterative algorithms (Rosen, 1966; Tabak, and 
Kuo, 1969; Krylov and Chernousko, 1972; Fedorenko, 1978; 
Slotine and Li, 1991; Sepulchre et al., 1997) for the 
approximate solution of the problem (19)-(24). These 

algorithms are based on the boundary problem solution for 
( )12 +× N  order equations system (19), (22). The iteration 

process for the numerical integration of this system includes 
consecutive iterations of Cauchy problem solution.  
 
5 Examples 
 
Some simple electronic circuits have been analyzed to 
demonstrate this system design approach based on the 
optimal control theory. All examples were divided in two 
groups. The circuits of the first group are passive nonlinear 
and the circuits of the second group are active nonlinear 
ones with transistors. The passive circuits have various 
nodal numbers from 1 to 5, ])5,1[( ∈M . Two examples of 
the transistor circuits have three and five nodes 
respectively. The design process has been realized on DC 
mode for all circuits. The detailed analysis of the passive 
electronic circuits for  M = 3, 4, 5 is presented below in 
sections 5.1.1 – 5.1.3. The active circuit analysis is presented 
in sections 5.2.1, 5.2.2. The objective function ( )C X  has 
been determined as the sum of the squared differences 
between beforehand-defined values and current values of 
the nodal voltages for some nodes with additional 
inequalities for some circuit elements. It is supposed also 
that the additional physical constraints for the passive 
element are provided. All these elements are positive. To 
obtain this property it is convenient to change all 
admittance values   yi   to  xi

2 . 
 
5.1 Passive nonlinear circuits 
 
5.1.1 Example 1  
In Fig. 1 there is a circuit that has four independent variables 
(K=4) as admittance  y y y y1 2 3 4, , ,   and three dependent 
variables (M=3) as nodal voltages  V V V1 2 3, ,   at the nodes 1, 
2, 3.  
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Figure 1. Circuit topology for 4 independent and 3 
dependent parameters. 
The non-linear elements are defined as  y a b Vn n n1 1 1 1

2= +  ,   
y a b Vn n n2 2 2 2

2= + . The non-linearity parameters  

21 , nn bb   are equal to 1.0.  We define the components of 

the vector X  by the formulas 1
2
1 yx = , 2

2
2 yx = , 3

2
3 yx = , 

4
2
4 yx = , 15 Vx = , 26 Vx = , 37 Vx = . In this case we 

have the system of seven differential equations as the 
optimization algorithm: 
 

( )UXF
x

b
dt
dx

i

i ,
δ
δ−=     

 
i = 1,2,3,4 
 

( ) ( ) ( ) ( ){ }dx
dt

b u
x

F X U
u
dt

x t dt Xi
i

i

i
i i= − ⋅ ⋅ +

−
− − +−

−
4

41δ
δ

η,  

 
i = 5,6,7 
 
where   

( ) ( ) ( )F X U C X u g x x x x x x xj
j

j, , , , , , ,= +
=
∑1

1

3
2

1 2 3 4 5 6 7ε
.  

The model of the electronic system has three nonlinear 
algebraic equations in accordance with the nodal method.  
 

( ) ( ) ( )g X x x a b x x a b x x xn n n n1 1
2

2
2

1 1 6
2

5 1 1 6
2

6 1
2 0≡ + + + − + − =  

 
( ) ( ) ( )

( )
g X a b x x x a b x a b x x

a b x x
n n n n n n

n n

2 1 1 6
2

5 3
2

1 1 6
2

2 2 7
2

6

2 2 7
2

7 0

≡− + + + + + +

− + =
 

 
( ) ( ) ( )g X a b x x x a b x xn n n n3 2 2 7

2
6 4

2
2 2 7

2
7 0≡ − + + + + =  

 
It is supposed that the input voltage is equal to 1. This 
system is transformed in accordance with our approach to 
the following system: 
 
( ) ( ) 0,,,,,,1 7654321 =− xxxxxxxgu jj , 

 
j = 1,2,3. 
 
The results of the analysis of the complete set of the design 
strategies with the fixed value of the control functions are 
given in Table 1. There are eight different strategies in this 
case. The first line of the table corresponds to the traditional 
design strategy. The last line corresponds to the modified 

traditional strategy. The other lines correspond to the 
intermediate strategies. 

 
Table 1.  Complete set of the design strategies for   Example 
1. 
 
The total computer design time for the traditional design 
strategy in this case is equal to 0.21 sec. This is the optimal 
strategy among all the strategies, which were obtained with 
the fixed values of the control functions. However, this 
strategy is not optimal in general. It is necessary to find the 
optimal strategy by means of additional optimization 
procedure. Data of the time-optimal and some quasi-optimal 
strategies are given in Table 2.  

 
Table 2. Data of the optimum and quasi-optimum strategies 
for Example 2. 
 
The strategy 4 is the optimum one and has the minimum 
computer design time that is equal to  0.115 sec.  This 
strategy has two switching points and has the time gain 1.83 
with respect to the traditional design strategy. The optimum 
behavior of the control functions  u u u1 2 3, ,   during the total 
design process is shown in Fig. 2. 

  

N  Vector of the control Switching Iterations Total design
functions U ( u1, u2, u3 ) points number time  (sec)

1              ( 1 1 0 ); ( 0 0 0 ) 100 412 0.177
2 ( 1 1 0 ); ( 0 0 0 ); ( 1 1 1 )    100;  360 378 0.151
3              ( 1 1 1 ); ( 0 0 0 ) 180 416 0.142
4 ( 1 1 1 ); ( 0 0 0 ); ( 1 1 1 )    180;  364 384 0.115

N  Vector of the control Iterations Total design
functions U ( u1, u2, u3 ) number time  (sec)

1            ( 0 0 0 ) 394 0.21
2            ( 0 0 1 ) 9426 2.31
3            ( 0 1 0 ) 3038 0.77
4            ( 0 1 1 ) 8040 0.93
5            ( 1 0 0 ) 2178 0.66
6            ( 1 0 1 ) 6909 1.27
7            ( 1 1 0 ) 2810 0.44
8            ( 1 1 1 ) 8360 0.71

59

            One Approach to the Time-Optimal Strategy Formulation for Analog Circuit Design



Figure 2. Optimum dependencies of the control functions   
u u u1 2 3, ,   for Example 1. 
5.1.2  Example 2 
In Fig. 3  there is a circuit that has five independent variables 
as admittance y y y y y1 2 3 4 5, , , ,   (K=5) and four dependent 
variables as nodal voltages  V V V V1 2 3 4, , ,   (M=4) at the 
nodes 1, 2, 3, 4. 
   

 
Figure 3.  Circuit topology for 5 independent and 4  
dependent parameters. 
 
Non-linear elements have dependencies by the law: 

( )y a b V Vn n n1 1 1 1 2
2

= + ⋅ − , ( )y a b V Vn n n2 2 2 2 3
2

= + ⋅ − .  
Non-linearity parameters b bn n1 2,  are equal to 1.0. The 
equations system of the optimization procedure and the 
model system equations have nine and four equations 
respectively. The results of the analysis of the complete set 
of the design strategies with the fixed value of the control 
functions are given in Table 3.  
 

 
Table 3. Complete set of the design strategies for     
Example 2. 
There are 16 different strategies in this case. It is interesting 
that among all of these strategies there are two strategies that 
have the design time less than the traditional design strategy. 
The strategy 8 has a design time that equals to 0.55 sec, but 
this strategy is not the optimal one either. The optimal 
trajectory was find by the special optimization procedure. 
The data of the optimal and some quasi-optimal strategies are 
given in Table 4.   

 
Table 4. Data of the optimum and quasi-optimum design 
strategies for Example 2. 
 
 All strategies of this table have computer design time lesser 
than the best strategy  8  from Table 3. The strategy 7 is the 
optimum one. It has two switching points and has the 
minimal computer design time that is equal to 0.1347 sec.  
This strategy has the time gain 5.64 with respect to the 
traditional design strategy.  
 The optimum behavior of the control functions  
u u u u1 2 3 4, , ,   during the total design process is shown in  
Fig. 4.   
 

 
 
Figure 4. Optimum dependencies of the control functions   
u u u u1 2 3 4, , ,   for Example 2. 
 
These time dependencies define the minimal-time design 
procedure. These data show that it  is impossible to determine 

N  Vector of the control Switching Iterations Total design
functions U ( u1, u2, u3, u4 ) points number time  (sec)

1                 ( 0 1 1 1 ); ( 0 0 0 0 ) 150 346 0.2416
2                 ( 1 1 1 1 ); ( 0 0 0 0 ) 400 550 0.2066
3                 ( 0 1 1 1 ); ( 1 0 0 0 ) 150 355 0.1977
4                 ( 1 1 1 1 ); ( 1 0 0 0 ) 450 600 0.1735
5 ( 0 1 1 1 ); ( 0 0 0 0 ); ( 1 1 1 1 )     150;   274 298 0.1683
6 ( 0 1 1 1 ); ( 1 0 0 0 ); ( 1 1 1 1 )     150;   277 309 0.1393
7 ( 1 1 1 1 ); ( 0 0 0 0 ); ( 1 1 1 1 )     400;   480 498 0.1347

N  Vector of the control Iterations Total design
functions U ( u1, u2, u3, u4 ) number time  (sec)

1            ( 0 0 0 0 ) 677 0.76
2            ( 0 0 0 1 ) 7412 5.01
3            ( 0 0 1 0 ) 1483 1.21
4            ( 0 0 1 1 ) 6434 2.31
5            ( 0 1 0 0 ) 1641 1.32
6            ( 0 1 0 1 ) 5785 2.03
7            ( 0 1 1 0 ) 2446 0.77
8            ( 0 1 1 1 ) 2426 0.55
9            ( 1 0 0 0 ) 742 0.61

10            ( 1 0 0 1 ) 5666 1.97
11            ( 1 0 1 0 ) 2205 0.77
12            ( 1 0 1 1 ) 5062 1.32
13            ( 1 1 0 0 ) 7563 2.42
14            ( 1 1 0 1 ) 24542 5.55
15            ( 1 1 1 0 ) 9244 1.42
16            ( 1 1 1 1 ) 6799 0.77
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the optimal behavior of the control functions without the 
special optimization procedure or the maximum principle.  
5.1.3  Example 3  
 
In Fig. 5  there is a circuit that has six independent variables 
as admittance y y y y y y1 2 3 4 5 6, , , , ,   (K=6) and  five dependent 
variables as nodal voltages  V V V V V1 2 3 4 5, , , ,   (M=5) at the 
nodes 1, 2, 3, 4, 5.  
 
 

 
Figure 5.  Circuit topology for  6  independent and  5  
dependent parameters. 
 
Non-linear circuit elements have dependencies: 

( )2
23111 VVbay nnn −⋅+= , ( )y a b V Vn n n2 2 2 4 2

2
= + ⋅ − . 

Non-linearity parameters b bn n1 2,  are equal to 1.0. The 
system of the optimization procedure equations and the 
system of the model's equations have eleven and five 
equations respectively. 
 The results of the analysis of the complete set of the 
design strategies with the fixed value of the control functions 
are given in Table 5. 
 There are 32 different strategies in this case. There are 
three strategies among 32 different strategies that have the 
design time lesser than the traditional design strategy.  The 
strategy 31 has the minimal design time that equals to 21.92 
sec, but as for the previous examples this strategy is not 
optimal one either. The optimum trajectory was find by the 
special optimization procedure. Data of the optimum and 
some quasi-optimum strategies are given in Table 6.   
 All strategies of this table have computer design time 
lesser than the best strategy  31 from Table 5. The strategy 
number  9  is the optimal one. It has two switching points and 
has the minimal computer design time that is equal to 0.93 
sec.  This strategy has the time gain  32.4  with respect to the 
traditional design strategy. 
 
 

 
 

Table 5. Complete set of the design strategies for     
Example 3. 
 
 
 

Table 6. Data of the optimum and quasi-optimum design 
strategies for Example 3. 

N  Vector of the control Iterations Total design
functions U ( u1, u2, u3, u4, u5 ) number time  (sec)

1            ( 0 0 0 0 0 ) 10165 30.11
2            ( 0 0 0 0 1 ) 28243 62.41
3            ( 0 0 0 1 0 ) 8134 22.68
4            ( 0 0 0 1 1 ) 201726 411.23
5            ( 0 0 1 0 0 ) 77216 218.27
6            ( 0 0 1 0 1 ) 340542 697.07
7            ( 0 0 1 1 0 ) 88238 177.68
8            ( 0 0 1 1 1 ) 408846 588.31
9            ( 0 1 0 0 0 ) 45726 155.71

10            ( 0 1 0 0 1 ) 270022 543.32
11            ( 0 1 0 1 0 ) 80502 161.43
12            ( 0 1 0 1 1 ) 561374 802.57
13            ( 0 1 1 0 0 ) 88747 218.71
14            ( 0 1 1 0 1 ) 493311 711.61
15            ( 0 1 1 1 0 ) 86338 52.18
16            ( 0 1 1 1 1 ) 568146 281.28
17            ( 1 0 0 0 0 ) 12146 26.81
18            ( 1 0 0 0 1 ) 82965 134.19
19            ( 1 0 0 1 0 ) 43318 87.27
20            ( 1 0 0 1 1 ) 251760 363.17
21            ( 1 0 1 0 0 ) 71611 145.77
22            ( 1 0 1 0 1 ) 355271 512.29
23            ( 1 0 1 1 0 ) 75043 106.78
24            ( 1 0 1 1 1 ) 401304 398.37
25            ( 1 1 0 0 0 ) 70004 170.65
26            ( 1 1 0 0 1 ) 392508 557.27
27            ( 1 1 0 1 0 ) 84754 121.17
28            ( 1 1 0 1 1 ) 564871 564.03
29            ( 1 1 1 0 0 ) 81863 140.94
30            ( 1 1 1 0 1 ) 471463 468.41
31            ( 1 1 1 1 0 ) 44249 21.92
32            ( 1 1 1 1 1 ) 634196 120.06

N  Vector of the control Switching Iterations Total design
functions U ( u1, u2, u3, u4, u5 ) points number time  (sec)

1                    ( 0 0 1 1 0 ); ( 0 0 0 0 0 ) 60 6510 19.22
2 ( 0 0 0 1 0 ); ( 0 0 0 0 0 ); ( 1 1 1 1 1 )      31;   5981 6047 17.74
3                    ( 0 1 0 1 0 ); ( 0 0 0 0 0 ) 75 5510 16.25
4 ( 0 0 1 1 0 ); ( 0 0 0 0 0 ); ( 1 1 1 1 1 )      60;   5180 5236 15.32
5                    ( 0 1 1 1 0 ); ( 0 0 0 0 0 ) 85 4463 13.07
6 ( 0 1 0 1 0 ); ( 0 0 0 0 0 ); ( 1 1 1 1 1 )      75;   4170 4230 12.36
7 ( 0 1 1 1 0 ); ( 0 0 0 0 0 ); ( 1 1 1 1 1 )      85;   3115 3185 9.06
8                    ( 1 1 1 1 0 ); ( 0 0 0 0 0 ) 117 1748 4.88
9 ( 1 1 1 1 0 ); ( 0 0 0 0 0 ); ( 1 1 1 1 1 )    117;     403 467 0.93
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 The optimum behavior of the control functions  
u u u u u1 2 3 4 5, , , ,   during the design process is shown in 
Fig. 6.  
 

 
Figure 6. Optimum dependencies of the control functions   
u u u u u1 2 3 4 5, , , ,    for Example 3. 
  
 The optimum time dependencies of the control functions  
u j   for all examples have no any definite law and have been 
obtained by the special optimization procedure. 
 The results of all analyzed examples are the proof of that 
fact: the traditional design approach is not time-optimal. The 
comparison of these examples gives an important conclusion: 
the potential time gain that can be obtained by the above-
described methodology increases when the system 
complexity grows. The computer time gain of the optimum 
design strategy with respect to the traditional design 
strategy as the function of the dependent parameters' number  
M  is presented in Fig. 7. The time gain increases very fast 
with  M  increasing. 

 
 
 Figure 7. Computer time gain of the optimal design 
strategy. 

5.2 Active nonlinear circuits 
 
In Fig. 8  there is a circuit of the transistor amplifier that 
consists of two transistor cells.  

 
Figure 8. Circuit topology for two-cell transistor amplifier. 
 
The one and two transistor cell circuits were analyzed 
separately. In the first case the circuit includes three nodes 
only (M=3). The second circuit includes two transistor cells 
and has five nodes (M=5). The design process has been 
realized on DC mode for both circuits. The Ebers-Moll static 
model of the transistor has been used. The objective function 

( )C X  has been determined as the sum of the squared 
differences between beforehand-defined values and current 
values of the voltages for the transistor junctions.  
 
5.2.1 Example 4 
The one cell circuit has three independent variables as 
admittance 321 ,, yyy  (K=3) and three dependent variables 

as nodal voltages 321 ,, VVV  (M=3). The results of the 
analysis of the complete set of the design strategies with the 
fixed value of the control functions and the optimal strategy 
are given in Table 7. The optimal strategy has two switching 
points and has time gain 16.2 with respect to the traditional 
design strategy. 

 
Table 7. Data of the one transistor cell circuit analysis. 

N  Vector of the control Iterations Switching Total design
functions U ( u1, u2, u3 ) number points time  (sec)

1            ( 0 0 0 ) 17748  45.15
2            ( 0 0 1 ) 59621  103.71
3            ( 0 1 0 ) 150136  282.53
4            ( 0 1 1 ) 67486  101.45
5            ( 1 0 0 ) 33770  56.58
6            ( 1 0 1 ) 7942  11.91
7            ( 1 1 0 ) 17623  25.93
8            ( 1 1 1 ) 37272  19.88
9 ( 1 1 0 );( 1 0 1 ); ( 1 1 1 ) 4280     540;  541 2.79
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5.2.2 Example 5 
The two transistor cell circuit has five independent variables 
as admittance 54321 ,,,, yyyyy   (K=5) and  five dependent 

variables as nodal voltages 54321 ,,,, VVVVV  (M=5). The 
results of the analysis of the traditional design strategy, 
modified traditional strategy, some intermediate strategies 
with the fixed value of the control functions and the optimal 
design strategy are given in Table 8. 

 
Table 8. Data of the two-transistor cell circuit analysis. 
 

The optimal strategy has time gain 77.4 with respect to 
the traditional design strategy. This result confirms the rule, 
that the total computer time gain of the time-optimal design 
strategy increases when the complexity of the circuit 
increases. The comparison of the results for passive and 
active circuits shows that the computer time gain is larger 
for the active circuits because of more complexity in this last 
case. More operations number is required for the active 
circuits due to the exponential dependencies of nonlinear 
elements and owing to this a larger iteration number for all 
iteration processes. 

The results of all analyzed examples show that the 
potential computer time gain of the time-optimal design 
strategy increases when the size and complexity of the 
circuit increase. This potential possibility exists due to 
practical infinite number of the different design strategies, 
which are included into the new design problem formulation. 
An additional optimization procedure is used for all 
analyzed examples, to construct the time-optimal trajectory. 
This  practice serves well to prove the potential superiority 
of new approach, but it is not acceptable as the constructive 
searching method. The potential advantage is realized only 
in case when the current point of the design process moves 

along the optimal trajectory. For this case we need to 
construct the optimal algorithm systematically. This problem 
is open until the moment, but it is possible to search the 
solution for this problem on the basis of the approximate 
methods of the optimal control theory.  
 The above described approach serves as the theoretic 
foundation for the time-optimal design algorithm searching 
and promises to improve the design process characteristics 
when the optimal design algorithm will be constructed. 
 
6 Conclusion 
 
The traditional approach for the analog circuit design is not 
time-optimal. The problem of the optimum algorithm 
construction can be solved more adequately on the basis of 
the optimal control theory application. The time-optimal 
design algorithm is formulated as the minimal-time problem 
of the control theory. In this case it is necessary to elect one 
optimal trajectory from the quasi-infinite number of the 
different design strategies which are produced. The 
maximum principle can serve in this case as the basis for the 
election of the optimal dependencies of the control 
functions. This approach reduces considerably the total 
computer time for the system design. Analysis of the 
different electronic systems gives the possibility to 
conclude that the potential computer time gain of the time-
optimal strategy increases when the size and complexity of 
the system increase. However, the problem of the time-
optimal algorithm real construction is open. The above-
described approach gives the possibility to find this 
algorithm as the approximate solution of the typical problem 
of the optimal control theory. 
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