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Resumen

En este articulo se propone un nuevo modelo de memorias asociativas.
Las herrami temdticas del nueve modelo incluyen dos operaciones
binarias inventadas ex profeso, cuyos operadores fieron bautizados
arbitrariamente con las dos primeras grafigs del alfabeto griego: a y ff.
Las nuevas memorias asociativas aff son de dos tipos y cada uno de ellos
puede operar en dos modos diferentes. La operacion o es util en la fase de
aprendizaje, mientras que la operacidn f da sustemto a la fase de
recuperacion de patrones. Las propiedades algebraicas de las
aperaciones o y i permiten gue las nuevas memorias asociativas afi
exhiban caracteristicas similares a las que son inherentes a las memorias
asociativas  morfoldgicas  binarias, en cuanto a capacidades de
aprendizaje y almacenamiento, tipos y cantidades de ruido a que son
robustas, y las condiciones suficientes para exhibir respuesta perfecta;
adicionalmente, es preciso enfatizar que la densidad aritmética de las
nuevas memorias asociativas es menor que la correspondiente a las
memorias asociativas morfoldgicas. La razdn para tomar como referencia
a las memorias asociativas morfologicas para la creacion de las
memorias aff, consiste en que los autores de las primeras han mostrado
que estas memorias superan en varios aspectos a los modelos conocidos
de memorias asociativas hasta los inicios del tercer milenio. '
Palabras clave: Memoria asociativa, operacion binaria, relacion de orden,
memorias asociativas aff, memorias asociativas morfolggicas.

Abstract

A new model for associative memories is proposed in this paper. The
mathematical tools used in this new model, include two binary operators
designed specifically for the memories developed here. These operators
were arbitrarily named as the first two letters from the Greek alphabet: a
and fi. The new associative memories (ufi) are of two kinds and are able 1o
operate in two different modes. The operator o is useful at the learning
phase, and the operator fi is the basis for the pattern recall phase. The
properties within the algebraic operators o and i, allow the aff memories
to exhibit similar characteristics to the ones inherent to the binary version
of the morphological associative memories, in the sense of> learning
capacity, type and amount of noise against which the memory is robust,
and the sufficient conditions for perfect recall. Moreover, it is important to
point out that the arithmetic density of the proposed memories is smaller
than the arithmetic density exhibited by the morphological ones. The main
reason for taking the morphological associative memories as the reference
point for the genesis of the proposed ones, consist in that the authors of the
first ones have already shown that the morphological associative
memories are superior in some aspects to the known models of associative
memories, up to the beginning of the third millenium.

Keywords: Associative memory, binary operation, order relation, off
associative memories, morphological associative memories.
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1 Introduccion

El tema de las memorias asociativas ha estado vigente,
desde hace varios lustros, dentro de algunas &reas de
investigacion. El proposito fundamental de una memoria
asociativa es recuperar correctamente patrones completos a
partir de patrones de entrada, los cuales pueden estar
alterados con ruido aditivo, sustractivo o combinado: ésta
es la caracteristica mas atractiva de las memorias
asociativas, y constituye un tema abierto de investigacion.
Notables investigadores han abordado el problema de
generar modelos de memorias asociativas (Kohonen, 1972;
Hopfield, 1982), y han logrado resultados de importancia
tal, que algunos de los trabajos pioneros se han convertido
en auténticos clasicos. La capacidad de aprendizaje y
almacenamiento, la eficiencia en la respuesta o
recuperacién de patrones, la rapidez y la inmunidad al
ruido, son topicos de interés entre los investigadores.

La aparicion, desarrollo, aplicaciones y consolidacion de las
memorias asociativas morfologicas (Ritter, Diaz-de-Leon &
Sussner, 1999) marcé un hito en el campo de las memorias
asociativas, en virtud de que superaron en practicamente
todos los aspectos de interés a los modelos conocidos.

En este trabajo se presenta un modelo alternativo a las
memorias asociativas morfologicas, basado en la relacion
de orden usual y en dos operaciones binarias originales
llamadas « y P; la operacion a es util en la fase de
aprendizaje, mientras que la operacion f} da sustento a la
fase de recuperacion de patrones.A este nuevo modelo se le
ha asignado el nombre de memorias asociativas af.

Las nuevas memorias asociativas son similares, y en
algunos casos superiores, a las memorias asociativas
morfologicas en cuanto a capacidad de almacenamiento de
patrones, eficiencia en respuesta e inmunidad al ruido.

Con la creacion de las bases matemdticas y del modelo
completo de las memorias asociativas aff, se ha generado
un producto original de investigacion en la frontera del
conocimiento cientifico; es un producto autéctono que
eventualmente contribuird con su granito de arena a avanzar
en el afin de lograr ese noble propoésito de alcanzar la
independencia cientifica y tecnologica para nuestro pais.
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2 Memorias Asociativas

Por su naturaleza, el problema inherente al funcionamiento de
las memorias asociativas se escinde en dos fases claramente
distinguibles:

1. Fase de aprendizaje (generacion)

2. Fase de recuperacién (operacion)

El proposito fundamental de una memoria asociativa es recu-
perar patrones completos a partir de patrones de entrada que
pueden estar alterados con ruido aditivo, sustractivo o combi-
nado. De acuerdo con esta afirmacion, una memoria asociati-
va M puede formularse como un sistema de entrada y salida,
idea que se esquematiza a continuacion (Hassoun, 1993):

-

El patrén de entrada se representa por un vector columna
denotado por x y el patrén de salida, por un vector columna
denotado por y.

Cada uno de los patrones de entrada forma una asociacidn
con el correspondiente patrén de salida. La notacion para una
asociacion es (x, y); en general, para un nimero entero posi-
tivo k especifico, la asociacién correspondiente serd (x*, y*).
La memoria asociativa M se representa mediante una matriz
cuya componente ij-ésima es m;; (Palm, Schwenker, Som-
mer & Strey, 1997); la matriz M se genera a partir de un con-
junto finito de asociaciones conocidas de antemano: éste es
el conjunto fundamental de asociaciones, o simplemente
conjunto fundamental. Se denota por p la cardinalidad del
conjunto fundamental (p es un nimero entero positivo).

Si j1 es un indice, el conjunto fundamental se representa de la
siguiente manera:

{{x“‘yy}|#:1'2""‘p}
A los patrones que conforman las asociaciones del conjunto
fundamental, se les llama patrones fundamentales.
La naturaleza del conjunto fundamental proporciona un im-
portante criterio para clasificar las memorias asociativas. Si
se cumple que x* = y* Vu € {1,2,..,p}, se dice que
la memoria es autoasociativa; de otro modo, la memoria
es heteroasociativa (Kohonen,1972). Es evidente que para
una memoria heteroasociativa se cumple lo siguiente: Ju €
{1,2,...,p} para el que x* # y*.
Es posible que los patrones fundamentales sean alterados con
diferentes tipos de ruido. Para diferenciar un patrén alterado
del correspondiente patron fundamental, usaremos la tilde en
la parte superior; asi, el patrén X* es una version alterada del
patrén fundamental x*; y el tipo de aiteracién que representa
%* se evidenciara en el contexto especifico donde se use.
Si al presentarle a la memoria M un patrén alterado X* co-
mo entrada (w € {1, 2, ..., p}), M responde con el correspon-
diente patrén fundamental de salida y*, se dice que la recu-
peracidn es per fecta.
Se especifican dos conjuntos A y B ; las componenetes de

los vectores columna que representan a los patrones, tanto de
entrada como de salida, serdn elementos del conjunto A4, y
las entradas de la matriz M seran elementos del conjunto B.
Sean m, n nimeros enteros positivos; se denota por n la di-
mension de los patrones de entrada, y por m la dimension de
los patrones de salida.

Cada vector columna que representa a un patrén de entrada
tiene n componentes cuyos valores pertenecen al conjunto A,
y cada vector columna que representa a un patron de salida
posee m componentes cuyos valores pertenecen al conjunto
A. Es decir:

Xt e Ahyyh e A Vp e {1,2,...p)

La j-ésima componente de un vector columna se indica con la
misma letra del vector, pero sin negrilla, colocando a 7 como
subindice (f € {1,2,....,n} 07 € {1,2,...,m} segin corres-
ponda). La j-ésima componente de un vector columna x* se

representa por

z#

Al usar el superindice t para injclicar el transpuesto de un vec-
tor, se obtienen las siguientes expresiones para los vectores
columna que representan a los patrones fundamentales de en-
trada y de salida, respectivamente:

n
o

o Ty
KPP =g

. e A"

t

L £
o=l k] = € AT

Problema general de las memorias asociativas:

1. Fase de aprendizaje. Encontrar los operadores adecuados
y una manera de generar una matriz M que almacene las
p asociaciones del conjunto fundamental

(64,5, (62,52 s (67, 97))
,donde x* € A" y y* € A™ VYu € {1,2,..,p}
Si dp € {1,2,...,p} tal que x* # y*, la memoria sera
heteroasociativa;sim = nyx* = y*Vu € {1,2,...,p},
la memoria serd autoasociativa.

2. Fase de recuperacion. Hallar los operadores adecuados y
las condiciones suficientes para obtener el patrén funda-
mental de salida y*, cuando se opera la memoria M con
el patron fundamental de entrada x*; lo anterior para to-
dos los elementos del conjunto fundamental y para ambos
modos: autoasociativo y heteroasociativo. Exhibir y car-
acterizar, ademds, el ruido que puede soportar la memoria
en el patrén de entrada X“, para entregar como salida y*.
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3 Herramientas Matematicas

Esta seccion consta de tres partes. En la primera se presentan
las dos operaciones binarias originales «v y S, las cuales sir-
ven de base para construir cuatro operaciones matriciales, que
son presentadas en la segunda parte; finalmente, en la tercera
parte se enfatiza el papel que juegan las relaciones de orden en
este trabajo, al definir los diferentes tipos de ruido que pueden
alterar un patrén binario dado.

3.1 Operaciones Binarias oy 3

Los conjuntos A y B se definen asi:
A={0,1} y B={0,1,2}

La operacion binaria « : A x A — B estd definida en la
siguiente tabla:

|y | alz,y)
010 1
01 0
110 2
111 1

La operacion binaria «e exhibe algunas propiedades algebraicas,
expuestas a continuacion, donde \/ es el operador mdximo y
A\ es el operador minimo:

alz,z) =1

(z S y) = alz,y) < ao(y, z)
(z =y) « oz, z) < aly, 2)
(z <y) < la(z,7) > afz,y)
(zVy),z] = a(z,2) Valy,z)
(zAy), 2= a(z,2) Aaly, 2)
La operacion binaria 5 : B x A — A esta definida en la
siguiente tabla:

(4]

[0 Kl

o]

z |y | Blzy)

00 0

0|21 0

10 0

1]1 1

210 1

I 1

Propiedades algebraicas de la operacion binaria 3:

B(l,z) ==z
Blz,z)=xz Vz e A
(z<y)—B(z,2) < By, 2)
(z <y)— [B(z2) < Blzy)
18 (T/\y)s: =ﬁ(msz)/\.'8(y?z)
Ble, (yVz)=B(z,y)VB(z,2)
ﬁr:(y/\:) :ﬁ(:z:,y)/\ﬁ[:c,s)

Propiedades de la aplicacion combinada de ambas operaciones
ayf:
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Blo(z,y),yl ==
Bla(z,y),z] ==
Bla(z,z),y] =y

Lo anterior significa que 3 es la inversa de « por la derecha y
por la izquierda.

Los conjuntos A y B, las operaciones «v y 3 junto con los
operadores /\ (minimo) y \/ (méximo) usuales, conforman el
sistema algebraico (A, B, o, 8, A\, \/) en el que estan inmer-
sas las nuevas memorias asociativas c/3.

3.2 Operaciones Matriciales U, M,, Ug

y Mg
Se definen las siguientes cuatro operaciones entre matrices:
1. Operacion amax: Ppyxr Wa Qrxn = | S]mxn’ donde
= v a(pik Gr;)
k=1
2. Operacion Amax: Py Wg Qpyn = [ff;] , donde
mxrn
T
= \ Bik, ax;)
k=1
3. Operacion amin: Ppxr Mo Qrxn = [h%]mm, donde

r

hg = N\ alpi, o)
k=1

4. Operacion Smin: Py xr Mg Qrxn = [hﬁ] , donde
KT

h’z = /\ B(pik, qr5)
k=1

k es un entero positivo que puede tomar valores entre 1 y r
inclusive.

Obsérvese la dualidad entre los pares de operaciones U, y Mg,
por un lado, y entre Wg y Mg por el otro.

Restricciones:

e Ninguna de las cuatro operaciones esta definida si 47, k
tales que qx; = 2.

e Las operaciones U, y M, no estan definidas si 3i, 7, k tales
que pix = 20 g = 2.

Estas restricciones aparentan ser causa de potenciales proble-
mas que podrian aparecer al usar las operaciones anteriores;
sin embargo, las nuevas memorias asociativas estan disefadas
de modo que nunca ocurra alglin caso prohibido.

Lema 1. Sean x € A", y € A™; entonces y U, x* es una
matriz de dimensiones m x n, y ademas se cumple que: y U,
x! =y Mgy x°.

El simbolo & representard a las dos operaciones W, y M,
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cuando se opere un vector columna de dimensién m con un
vector fila de dimension n:

YU x! = yHx' =y @, x'
La ij-ésima componente de la matriz y [ x* esta dada por:
y& xt}l.j = a(y;, z;)

Es decir, la ij-ésima componente de la matriz y* & (x*‘)t se
expresa de la siguiente manera:

[y# X (xﬂ)*] = alyl,z4)

Lema 2. Sean x € A" y P una matriz de dimensiones m x n.
La operacion Py, ., Wg x da como resultado un vector colum-
na de dimension m, cuya i-ésima componente tiene la si-
guiente forma: (P xn Ug X), = \/;‘:1 B(pij, ;)

Lema 3. Sean x € A™ y P una matriz de dimensiones m x n.
La operacion P, ., Mg x da como resultado un vector colum-
na de dimension m, cuya i-ésima componente tiene la si-

i3

guiente forma: (Pyxn Mg x); = Aj_; B(pij, 25)

3.3 Relaciones de Orden y Tipos de
Ruido

La relacion de orden usual tiene importancia central al definir
operativamente los tipos de ruido que es posible encontrar en
los patrones de entrada, y en el papel que juegan los oper-
adores \/ y/\ en la generacion y operacion de las memorias

af.

A continuacién se enuncian algunos conceptos respecto de
la relacion de orden entre matrices, considerando a los vec-
tores columna como casos particulares (Moore, 1968; Rosen,
1995). Las componentes de matrices y vectores seran elemen-
tos de uno de los conjuntos 4 o B.

El maximo de dos matrices P y () es otra matriz M que se
representa por M = P\/ @, y cuya ij-ésima entrada se define
como my; = Py V‘i‘ij-

El minimo de dos matrices P y () es otra matriz N que se
representa por N = P A\ (), y cuya ij-ésima entrada se define
como ni; = pi; N gij-

La notacion P < () indica que la matriz P es menor o igual
que la matriz (), y esto se cumple si y sélo si p;; < gi;, ViVj.

P < () indica que la matriz P es estrictamente menor que
la matriz @), y esto se cumple si y solo si p;; < g5, ViVj y
Bi(}.\ ij tales que Py, 5, < Gingo-

Las anteriores consideraciones tienen relevancia en el contex-
to de este trabajo, al considerar los diferentes tipos de ruido
que pueden distorsionar un patrén de entrada dado.

Sean dos vectores columna x! € A" y x2 € A"; se dice
que x! es menor o igual a x? si y sélo si cada una de las
componentes del vector x' es menor o igual a la correspon-
diente componente en el vector x2. Esto se expresa asi:

x! <x? ezl <a?vie {1,2,..,n}

Sean dos vectores columna x! € A™ y x? € A"; se dice
que x' es menor a x? si y sélo si: cada una de las compo-
nentes del vector x' es menor o igual a la correspondien-
te componente en el vector x?, y existe al menos un valor
ip € {1,2,...,n} para el cual se cumple la desigualdad estric-
ta. Simbolicamente, esto se expresa asi:

x1<x2<—»[ z<2?Vvie{1,2,..,n} }

y dip € {1,2,...,n} tal que z} < x?

in n

Para el caso de dos vectores columna y' y y? que pertenecen
al conjunto A™ las definiciones anteriores siguen siendo val-
idas:

y' <y e—yi <iVie{1,2,..,m}
y'<y®— {

y; <yivjie{1,2,..,m} ‘
y3jo € {1,2,...,m} tal que y3, <3,
Ahora, sea x € A™ un patrén fundamental de entrada para
una memoria asociativa a3. El patron x puede ser alterado,

para dar lugar a un vector X, por tres tipos de ruido:

1. Ruido aditive, si x < X. Esto significa que todos los posi-
bles cambios en los valores de las coordenadas de x para
obtener X consisten en colocar un valor 1 donde habia un
valor 0; es decir, la uinica posibilidad de cambio en las co-
ordenadas de x se traduce en: 3¢ € {1,2,...,n} para el
que z; = 0y F; = 1, pero no existe j € {1,2,...,n} para
elquex; = 1yZ; = 0. Addemés: x < X — x; < Ty,
vie {1,2,..,n}

2. Ruido sustractivo, si x > x. Esto significa que todos los
posibles cambios en los valores de las coordenadas de x
para obtener X consisten en colocar un valor 0 donde habia
un valor ; es decir, la Gnica posibilidad de cambio en las
coordenadas de x se traduce en: 3¢ € {1,2,...,n} para
el que z; = 1y Z; = 0, pero no existe j € {1,2,...,n}
parael quez; =0y z; = 1. Ademds: x = X — z; = Ty,
vie {1,2,...,n}

3. Ruido combinado o mezclado, si el ruido es una mezcla
de aditivo con sustractivo. En este caso no es posible es-
tablecer un orden entre el patrén limpio y el ruidoso, dado
que los valores podran ser cambiados aleatoriamente, sin
respetar necesariamente las reglas de los items 1 y 2.

Si el ruido es de 0%, es claro que x = X

03
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4 Las Memorias Asociativas o3
En esta seccion se presenta la obtencion, justificacion tedri-

ca y uso de las nuevas memorias asociativas basadas en las
operaciones binarias originales v v 3.

4.1 Memorias Heteroasociativas o3

Se proponen dos tipos de memorias heteroasociativas a/3: tipo

CASO 2: Patron alterado  Se presenta un patrén binario
X (patron alterado de algtin patron fundamental x*') que es un
vector columna de dimension n, a la memoria heteroasociati-
va aF tipo V' y se realiza la operacion Mg :

Vg X (7)
El resultado de la operacion. anterior es un vector columna

de dimension m, cuya i-ésima componente se expresa de la
siguiente manera:

V y tipo A; se desarrollaran sélo las de tipo V ya que las Ve % A
s fm . 6 i

propiedades de las memorias tipo A se obtienen por dualidad. (¥ 3; 3/=\1 Hi i) ®
Se usard el operador [ el cual tiene la siguiente forma, para V s A =

i # il . — s s
tosindioes i & {1 2} G { Doy 6 (1.2 om)y o Y OB /z\ p\i W= 5 O

B (x* t} = a(y!, 2"
B )] =l %) &

Fase de aprendizaje.

PASO1 Paracada p = 1,2,..
(x*, y*) se construye la matriz

[y @ )]

PASO 2 Se aplica el operador binario mdximo \/ a las ma-
trices obtenidas en el paso 1:

,p, a partir de la pareja

(1

mxn

Ve \/ [ "R (xH) ] 2)
;A_
La entrada ij-ésima esta dada por la siguiente expresion:
P
vij = \/ o, ) (3)
p=l1

Es posible observar que v;; € B, Vi € {1,2,...,m},Vj €
{1,2,...,n}
B

Fase de recuperacion.

CASO 1: Patron fundamental  Se presenta un patrén x“,
conw € {1,2, ...,,p}, a la memoria heteroasociativa a3 tipo
'V y se realiza la operacion fg:

V mg x* 4)
Dado que las dimensiones de la matriz V son mxny x* es un
vector columna de dimension n, el resultado de la operacion

anterior debe ser un vector columna de dimensién m, cuya
i-ésima componente es:

(Vagx*), = N B =) )
=1
n B
(Vagx), = A ﬁ{ {\/ a-(yé‘,x;‘)} x;’} (6)
Jj=1 p=

Lema 4. Sea {(x*,y") | o0 = 1,2,...,p} el conjunto fun-
damental de una memoria heteroasociativa cy3 representada
por V. Si w es un valor arbitrario de indice tal que w €
{1,2,...,p} entonces V Mg x* > y*.

Demostracion.- Sea i € {1, 2, ..., m} arbitraria. La i-ésima
componente del vector V g x“ se expresa asi:

(Vg x*), = N\ Bvij z5)
J=1
pero
»
vij=\/ eyl z})
p=1
por ello:

}

., p}, y esto significa

V 15 ) /\a{[v -;*)},x:f
p=1

Por otro lado, por hipétesis w € {1,2, ..

que:
kg

V et 2) > a@y,=f)

=1
Se realiza la operacion binaria 3, eligiendo los dos miembros
de esta desigualdad como operandos izquierdos, y =% como
operando derecho en ambos casos. Dado que 3 es creciente
por la izquierda, se tiene:

A { \ atwt24))|,

Lp=1

x;’} 2 B oy, 25), 5]

Al tomar el minimo de ambos miembros respecto del indice

o
n [ p i
4 .ﬁ{ a(yl, =)
i=1

Liu=1 J

} > N\ Bt 29),25]

i=1
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Por transitividad de la desigualdad anterior:

52 N\ B o, 22), %)

(Vmg x*
=1
Ademas:
B [o(ye,25), 2] = v¥
esto es:
n
(Vagx<), > A o
i=1

Pero

n
N\ =
i=1
porque y5° no depende de 7, es decir:

(Vg x¥), 2y
Dado que i se escogio de manera arbitraria, se puede afirmar

que la expresion anterior es valida para todos los valores de i,
es decir:

(V@gx*),
Por lo tanto:

> Vie {1,2,..,m}

Vg x¥ = y* Conclusidn.

En virtud de que el valor w es arbitratrio dentro del conjun-
to de indices para los patrones del conjunto fundamental, este
Lema deja en claro que la desigualdad se cumple para todas
las parejas de patrones que son elementos del conjunto funda-
mental, sin imponer condicion alguna.

|

Teorema 1. Sea {(x*,y*) | p = 1,2,..,p} el conjunto
fundamental de una memoria heteroasociativa 3 represen-
tada por V. Si w es un valor de indice arbitrario tal que w €
{1,2,...,p}, y si ademas para cada i € {1,...,m} se cumple
que 35 = jg € {1 .,n}, el cual depende de w y de i, tal
que v, = a(yy, x%, ), entonces la recuperacion V Mg x* es
perfecta; es decir v ﬂg =y,

Demostracion.- Sea 7 € {1, 2,...,m} arbitraria. La i-ésima
componente del vector V g x* se expresa asi:

/\ ﬁ{yu CL‘

pero al mismo tlempo al hacer J = Jjo, se cumple la siguiente

(V ﬂgx

desigualdad: ,f\ Bvij,x%) < Blvij,, x5,), y por transitivi-
j.—

dad se llega a:
{V ff_ﬂﬁ xw)j < -S(y‘ijma:‘;,,)

Ademis, por hipotesis vy;, = a(y;’, =5, ), es decir:

(V mg x* } < ﬁ[ (ye, =% 54 ,.T..;‘-:I
Ademas, se tiene

6 [a(y;".. 3") le,] = yz

fila de la matriz V — y* & (x*

por lo que la desigualdad anterior queda asi:
(Vmgx¥), < v
Dado que i se escogi6 de manera arbitraria, se puede afirmar

que la expresion anterior es vilida para todos los valores de ¢,
por lo que:

(Vg x¥), <y Vie{l,2,..,m}
La expresion anterior se traduce en la siguiente desigualdad
vectorial:
v rﬁ]ﬁ x“ E yw
Pero al cumplirse la hipotesis del Lema 4, se tiene la desigual-
dad en el otro sentido

Vg x* >y
Por lo tanto, se llega a la recuperacion perfecta del patron y*:

Vg x* =y* Conclusion.

Teorema 2 (forma equivalente matricial del Teorema 1).
Si para cada asociacion (x*,y*) del conjunto fundamental
de una memoria heteroasociaiiva a3 'V, se cumple que cada
)t contiene una entrada cero,
entonces la memoria V recupera el conjunto de patrones de
salida fundamentales en forma perfecta.

Demostracion.- Dado que la tesis es igual, es suficiente en-
contrar un enunciado que sea logicamente equivalente a la
hip6tesis del Teorema 1.
Como w es un valor de indice arbitrario tal que w € {1,2, ...
la hip6tesis se puede expresar asi:

Yw € {1,2,..,p} ycadaie {1,...,m},

ajl:l S {1‘ ”-rn} tal que Vij, = a(y;‘",r{:“-’ )

Jo
Pero las siguientes expresiones son validas:

.Ph

t
a(yy,z5,) = [y"’ & (x*) L,-..
Vij, = [V]ij‘.
por ello, la expresion:
vij, = oy, x5,)

es equivalente a
V] = [y 8 )]
que a su vez se puede transformar en
[v]‘ijra - [y‘” X (x"‘")f‘] T
0
y finalmente en la expresion
[V-ymE)] =0
tlo

Por lo anterior podemos obtener una expresion logicamente

i
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equivalente a la hipotesis del Teorema:
Yw € {1,2,..,p} ycadai€ {1,...,m},

o € {L..n} talque [V-y*B(x")] =0
o

La dltima expresion se puede enunciar del siguiente modo

equivalente: para todas las asociaciones del conjunto funda-

mental de la memoria heteroasociativa a3 V, se cumple que

cada fila de la matriz V — y* & (x*)* contiene una entrada

cero.

Ha llegado el momento de atacar un problema trascendental
en el tema de las memorias asociativas: encontrar las condi-
ciones suficientes para que una memoria asociativa (en este
caso para la memoria heteroasociativa o3 tipo V) recupere
patrones de salida fundamentales a partir de patrones de entra-
da distorsionados con ruido, es decir, patrones de entrada no
fundamentales. Dentro de esas condiciones suficientes debe
incluirse la cantidad y los tipos de ruido a los que la memoria
es inmune: aditivo o sustractivo.

Lema 5. Sea {(x*,y*) | 0 = 1,2,...,p} el conjunto fun-
damental de una memoria heteroasociativa o3 representada
por V, y sea X € A™ un patrén alterado que se presenta a
la memoria V como entrada. Si 3w € {1,2,..., p} tal que es
posible obtener el patrén X alterando el patrén fundamental
x*“ con ruido aditivo, entonces V fig X > y“.

Demostracion.- Sea ¢ € {1,2,...,m} arbitraria. La i-ésima
componente del vector V' filg X se expresa asi:

(VMg x); = /\ Blviz. T;)

=1

(10)

Por otro lado, por hipétesis X es una alteracion con ruido adi-
tivo del patrén fundamental x*, y se tiene x“< X ; es decir;
X > x“, lo cual implica que
T2 x5, YIE{1,2,..n)

Se realiza la operacion binaria 3, eligiendo los dos miembros
de esta desigualdad como operandos derechos, y a la ij-ésima
componente v;; de V como operando izquierdo en ambos ca-
sos. Dado que 3 es creciente por la derecha, se tiene:

B (vij, Z;) = Blviz, 25) Vi€ {1,2,...,n})
Al tomar el minimo de ambos miembros respecto del indice
b

™ n
/\ Blvij, z;) > /\ B(vij, z7)
i=1 j=1

Por transitividad de la desigualdad anterior con la expresién
10:

(Vg %); > N\ Bvij,z%)
j=1

Pero g,
A\ Bl a) = (Vg x),
i=1
esto es:
(Vs %), > (VA x<)
Ademas, por Lema 4
(Vg x¥), >y

i

y por transitividad con la expresion anterior:
(Vmg x), >y
Dado que i se escogié de manera arbitraria, se puede afirmar

que la expresion anterior es vélida para todos los valores de 1,
es decir:

(Vmgx), > yy Vie{1,2,..,m}
Por lo tanto:

Vmgx = y* Conclusion.

Teorema 3. Sea {(x*,y*) | p = 1,2,...,p} el conjunto fun-
damental de una memoria heteroasociativa 3 representada
por V, y sea X € A™ un patron alterado con ruido aditivo re-
specto de algtin patrén fundamental x* conw € {1,2,...,p}.
Si se presenta X a la memoria V como entrada, y si ademas
para cada i € {1,...,m} se cumple la condicién de que 3j =
jo € {1,...,n}, el cual depende de w y de i tal que v;;, <
alyy, T, ), entonces la recuperacion V Mg X es perfecta; es
decir VMg x = y*.

Demostracion.- Sea i € {1,2,...,m} arbitraria. La i-ésima
componente del vector V Mg X se expresa asi:

n
(Vg x); = A B(v3;. ;)
J=1
pero al mismo tiempo, al hacer j = jp, se cumple la desigual-
dad:

/\ .B(Vij: EJ) < .B(Vij", a':_‘,"n)

=1
y por transitividad se llega a:

(VMg X); < B(Vijo, Tjo) (11)

Por otro lado, por hipdtesis v;;, < a(y{,Z;,); se realiza la
operacion binaria (3, eligiendo los dos miembros de esta de-
sigualdad como operandos izquierdos, y Z;, como operan-
do derecho en ambos casos. Dado que [ es creciente por la
izquierda (propiedad 33 de la Tabla 3.4), se tiene:

BWijos Tjo) < B al(yf, Zjo ), T
Por transitividad de esta desigualdad con la expresion 11:
(v Mg i),; £ {a(y:r: Eju)? Ej[]!
Ademas:
&) [Q(yf, Eju)ﬂ ‘:fj'n] e y:"
esto es:
(V rﬁ‘ﬂ i}g < yif’
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Dado que 7 se escogio de manera arbitraria, se puede afirmar  Es decir:

que esta expresion es valida para todos los valores de 4, por lo Jo—1 =
que: im1 Blviz, z5)|

(VAp%), <y Vie{l,2..,m} (Vg %), = )\ [B(viso, 0)]
Esta expresion se traduce en la siguiente desigualdad vectori- [/\?z o1 Bviz T }]
al:

Por hipétesis, iy € {1,...,m} para el que v;,;, = 1. Ana-

Vimg x<yY . s
; .. licemos este caso critico:
Por lo tanto, aplicando el Lema 5, se llega a la recuperacion _
o n=1g0, . %
perfecta del patron y*. /\3:1 ! (V‘mj-.a'.?)] :
VAgx=y“  Conclusion. (Vagx), = A [B(Vigj4,0)]
n —_—
[ ] [/\j=m+1 Bvigs, T; }]
Jo—1 = ]
il Vigjs Lj
El Lema 5 y el Teorema 3 indican que las memorias het- V e 5 _ J_IBﬁl( ing %5)
eroasociativas a3 tipo V tienen cierta inmunidad al ruido adi- (VMg x)‘." - /\ . (8(1,0)], B
tivo, y especifican las condiciones que deben cumplirse para /\3'=ju+1 B(vie;. z;5)

que la respuesta sea perfecta en presencia de ruido aditivo. Pero A(1,0) = 0, por lo que la expresién anterior se transfor-

ma en:
De inmediato surge una interrogante: ;qué pasa con el ruido e
sustractivo?. Las memorias o3 tipo V son sensibles a ruido [ i - i:j)] ’
sustractivo; una pequefia cantidad de ruido sustractivo puede (VAgXx), = /\
.y . U 5
tener efectos no deseados en la operacion de este tipo de memo- ' n ( -
; - » e Nizjor1 B(Vioss )
rias, los cuales son caracterizados por el Teorema siguiente:
Por lo tanto:
Teorema 4. Sea {(x*,y") | p = 1,2,...,p} el conjunto (VAgx), =0
i

fundamental de una memoria heteroasociativa o3 represen- B

tada por V, y sea X € A" un patron alterado con ruido sus-  Nota importanie: Sin embargo, dado el jo del Teorema 4, si
tractivo respecto de algin patron fundamental x* con w € Vg AL € 1y, m}, entonces el ruido sustractivo en
{1,2,....p}. Al presentar X a la memoria V como enfrada se |a componente Z ;, no afecta la posible recuperacion perfecta
cumple lo siguiente: para cada jo € {1,...,n} tal que 2% haya del patrén y*. Esto significa que la memorias /3 tipo V son
sido alterado para obtener T, si Jip € {1,...,m} parael que capaces de soportar ciertas cantidades de ruido sustractivo.
Viyjo = 1, entonces (V Mg x); = 0.

Las memorias heteroasociativas o3 tipo A se desarrollan por
dualidad, partiendo de los resultados obtenidos para las memo-
rias heteroasociativas a3 tipo V. Para ello, se realizan los
siguientes cambios:

Demostracion.- Sea x una version distorsionada con ruido
sustractivo del patron fundamental x¥; es decir, X < x¥, lo
cual implica que z; < ¥ Vi € {1,2,...,n}. Dependiendo
del porcentaje de ruido sustractivo con que se ha alterado x*,
puede haber mas de un valor de j, hasta el niimero de bitscon ® Donde haya un operador \/ colocar un /\
valor 1 en x*, para los que se cumple la desigualdad estricta
1_? 2% .IC‘;

Sea jy € {1,...,n} un indice para el que se cumple la de- ® Usar el operador U en lugar del operador Mg
sigualdad estricta: T;, < %, es decir, debe cumplirse que

e Donde haya un operador /\ colocar un \/

zj, = 0ya% = 1. La expresion para la componente ¢ del _ _ _ _
vector recuperado es: Mientras que las memorias heteroasociativas a3 tipo 'V tienen
n cierta inmunidad al ruido aditivo y son sensitivas a ruido sus-
(VmgXx), = /\ Blvij. ;) tractivo, con las memorias heteroasociativas a3 tipo A sucede
=1 precisamente lo contrario: son inmunes a cierta cantidad de

ruido sustractivo, pero sensitivas a ruido aditivo. Una pequena
cantidad de ruido aditivo puede tener efectos no deseados en
la operacion de este tipo de memorias a/3; sin embargo, las

Reescribamos la expresion anterior para tomar en cuenta ex-
plicitamente el valor de jp:

jn—1 | ~ : 2 . X
j:L B(vij, 1;5)} ) memorias 3 tipo A son capaces de soportar ciertas canti-
(V@Agx), = /\ [B¥is0:Tja)] + dades de ruido aditivo.

~ ]
[/\;:iuﬂ B(vij, x; )j
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4.2 Memorias Autoasociativas o3

Si a una memoria heteroasociativa se le impone la condicion
de que y* = x* Vi € {1,2,...,p}, entonces deja de ser het-
eroasociativa y ahora se le denomina memoria autoasociativa.

A continuacion se enlistan algunas caracteristicas de las memo-

rias autoasociativas o3

1. El conjunto fundamental toma la forma {(x*,x*) | p =
1,2,....p}

2. Los patrones fundamentales de entrada y de salida son de
la misma dimensién; denotémosla por n.

3. La memoria es una matriz cuadrada, para ambos tipos, V
yA.Six* € A", entonces V = [vi;],. . YA =[Ai], ..

Al igual como se hizo para las memorias heteroasociativas,
se desarrollardn s6lo las memorias autoasociativas a3 de tipo
'V, ya que las propiedades de las memorias tipo A se obtienen
por dualidad.

Fase de aprendizaje.
PASO 1 Para cada u 1,2,....p, a partir de la pareja
(x*, x") se construye la matriz

[x ® (x4)]

(12)

nxn

PASO 2  Se aplica el operador binario mdximo \/ a las ma-
trices obtenidas en el paso 1:

V= '\7 [x“ = (x“)t]

(13)
w=1
La entrada 7j-ésima de la memoria esta dada asi:
P
vij = \[ ofak,zf) (14)
p=1

Setieneque v € B, Vi € {1,2,..,n},Vj € {1,2,...,n}

Fase de recuperacién.

CASO 1: Patron fundamental  Se presenta un patron x“,
conw € {1,2,....p}, a la memoria autoasociativa a3 tipo V
y se realiza la operacion g :

Vg x* (15)

El resultado de la operacion anterior serd un vector columna
de dimension n.

o

{Vﬁ[ﬁ}(w}% —= ,@(J)ij,il:;-)) (16)
J=1
n P

(Vg x¥), = /\,@{[Va(xf,;c;‘)],x;’} (17
Jj=1 n=1 .

CASO 2: Patron alterado  Se presenta un patron binario
X que es un vector columna de dimensién n, a la memoria
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autoasociativa o/ tipo V' y se realiza la operacion fig :

Vg % (18)

Al igual que en el caso 1, el resultado de la operacion anterior
es un vector columna de dimension n, cuya i-ésima compo-
nente se expresa de la siguiente manera:

(VagR), = N B ;) (19)
j=1
n P
(VigX), = /\ 8 { [\/ a{arf,xfj}] _53'_?} (20)
Jj=1 =l

B
Lema 6. Una memoria autoasociativa o3 tipo 'V tiene tinica-
mente unos en su diagonal principal.

Demostracion.- La ij-ésima entrada de una memoria autoaso-
ciativa a3 tipo V esta dada por
2]
vis = \/ alat,at)
=1
Las entradas de la diagonal principal se obtienen de la expre-
sion anterior, haciendo i = j:

r
vy = v a(zt z!), vie{1,2,..,n} (21)
=1

Pero se tiene que
ey
: a(z;, z;) =1
por lo que la expresion 21 se transforma en:
P

Vi = v(l}

n=1

=1, ¥ie{l,2,..,n}

|

Teorema 5. Una memoria autoasociativa 3 tipo V recu-
pera de manera perfecta el conjunto fundamental completo;
ademas, tiene maxima capacidad de aprendizaje.

Demostracion.- Sea w € {1,2, ..., p} arbitrario. De acuerdo
con el Lema 6, para cada i € {1,...,n} escogida arbitraria-
mente

vgp=1=alzy =)
Es decir, parai € {1,...,n} escogida arbitrariamente, 37, =

i € {1,...,n} que cumple con:

Fijy = u{mw G J'

i1%5,
Por lo tanto, de acuerdo con el Teorema 2:
Vg x* =x*, Ywe{l,2,..p}

Esto significa que la memoria autoasociativa a3 tipo V recu-
pera de manera perfecta el conjunto fundamental completo.

Ademas, en la demostracion de este Teorema, en ningiin mo-
mento aparece restriccion alguna sobre p, que es la cardinali-
dad del conjunto fundamental; esto quiere decir que el conjun-
to fundamental puede crecer tanto como se quiera. La conse-
cuencia directa es que el nimero de patrones que puede apren-
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der una memoria autoasociativa a3 tipo V, con recuperacion
perfecta, es maximo.
|

Teorema 6. Sea {(x*,x") | 0 = 1,2, ..., p} el conjunto fun-
damental de una memoria autoasociativa o3 representada por
V,ysea X € A" un patrén alterado con ruido aditivo re-
specto de algin patrén fundamental x¥ conw € {1,2, ..., p}.
Si se presenta X a la memoria V' como entrada, y si ademas
paracadai € {1,...,n} se cumple la condicion de que J5 =
jo € {1,...,n}, el cual depende de w y de i tal que vy, <
alz?, 7, ), entonces la recuperacion V Mg X es perfecta; es
decir V g X = x¥.

Demostracion.- Por hipdtesis se tiene que y* = x* Vu €
{1.2,...,p} v, por consiguiente, m = n. Al establecer estas
dos condiciones en el Teorema 4, se obtiene el resultado: Vg
S el

El Teorema 6 confirma que las memorias autoasociativas a3
tipo V son inmunes a cierta cantidad de ruido aditivo.

Dado un i € {l,...,n} cualquiera, consideremos las rela-
ciones que hay entre los valores de ¥ y las coordenadas del
vector X, con el fin de analizar brevemente cada uno de los ca-
sos posibles en la fase de recuperacion. Segin la hipotesis del
Teorema 6 la recuperacién del valor «3 se garantiza siempre y
cuando para este valor i se pueda encontrar un jo € {1,...,n}
que cumpla con la desigualdad v;;, < a(z¥,Z;,). Existen
dos casos posibles para el valor de x¥:

1. Siz¥ = 1, es suficiente que alguna de las entradas del pa-
troén X sea cero, para garantizar la recuperacion del valor
x¥. Veamos: si existe jo € {1,...,n} para el cual T, =
0 entonces, de acuerdo con la Tabla 3.1, a(z¥,%;,) =
a(1,0) = 2y estosignifica que v45, < a(z¥, T}, ), porque
el maximo valor posible para v, es precisamente 2, segin
la misma Tabla,

2. Este caso es mds restrictivo. Si ¥ = 0, no basta con en-
contrar una entrada cero en el patrén X. Al hallar el valor
de jo € {l,...,n} para el cual Z;, = 0, se debe pedir
como condicion adicional que vy, # 2, porque (segin
Tabla 3.1) a(z¥.%;,) = a(0,0) = 1 y esto significa que
la desigualdad v;;, < a(zy,T;,) se da siempre y cuan-
do vi;, # 2. Si se llegase a tener carencia de ceros en las
coordenadas del patrén X, la condiciGin para recuperar el
valor de =¥, al tener Z;, = 1, es mas fuerte: v, = 0,
porque (0, 1) = 0.

Las memorias autoasociativas 3 tipo A se desarrollan por
dualidad, partiendo de los resultados obtenidos para las memo-
rias autoasociativas o3 tipo V; para ello, se realizan cambios
similares a los que se indicaron para las memorias heteroaso-
ciativas. También, mientras que las memorias autoasociativas

af tipo V son inmunes a cierta cantidad de ruido aditivo pero
sensibles a ruido sustractivo, con las memorias autoasociati-
vas o tipo A sucede lo contrario. ‘

5 Densidad Aritmética

Una coleccion de operadores 16gicos es funcionalmente com-
pleta si toda proposicién compuesta es logicamente equiva-
lente a una proposicion compuesta que involucre solo a los
operadores de la coleccion (Rosen, 1995).

Es un hecho establecido que los tres operadores logicos de
negacién (=), conjuncién (A) y disyuncion (V) forman una
coleccion funcionalmente completa de operadores logicos:

{~, AV}

Existen colecciones funcionalmente completas que constan de
dos o de un unico operador. Uno de estos operadores es el que
corresponde a la Tabla de verdad de la disyuncion negada: la
conectiva l6gica nor, que denotaremos con el operador |.
Sean z y y dos variables logicas booleanas. El operador | se
define de la siguiente manera:

zly=-(zVy) (22)

Esto significa que la coleccion {|} es funcionalmente com-
pleta, como lo afirma la Proposicion 1.

Proposicion 1. El operador | constituye, por si mismo, una
coleccion funcionalmente completa {|}: si  y y son vari-
ables logicas booleanas, entonces se cumplen las siguientes
equivalencias:

-1 7|
zvy = (xly) | (zly) (23)
zAhy = (zlz) | (yly)

Tanto para las memorias asociativas morfolégicas como para
las memorias asociativas a3 se considera un conjunto funda-
mental de p asociaciones, donde los patrones de entrada tienen
dimension n, y los patrones de salida, dimension m.

Al realizar el calculo del total de operaciones requeridas para
ambas fases en las memorias asociativas morfologicas, se lle-
ga a los siguientes resultados:

La fase de aprendizaje de una memoria asociativa morfologica
requiere de 28mnyp operaciones | y mn(p — 1) operaciones
de orden.

La fase de recuperacion de un patron de salida en una memo-
ria asociativa morfoldgica requiere de 198mmn operaciones |
y m(n — 1) operaciones de orden.

Al realizar el calculo del total de operaciones requeridas para
ambas fases en las memorias asociativas o3, se llega a los
siguientes resultados:
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La fase de aprendizaje de una memoria asociativa a3 requiere
de 28mnp operaciones | y mn(p — 1) operaciones de orden.
La fase de recuperacion de un patrén de salida en una memo-
ria asociativa o requiere de 147mn operaciones | y m(n—1)
operaciones de orden.

A diferencia de lo que sucede con las densidades aritméti-
cas de aprendizaje, las cuales son iguales en ambos tipos de
memorias asociativas, la densidad aritmética de recuperacion
es menor para las memorias asociativas « que la correspon-
diente a las memorias morfolégicas.

Resultado comparativo de la densidad aritmética: La fase
de recuperacion de las memorias asociativas morfologicas re-
quiere de un 34,7 % adicional en el nimero de operaciones
logicas |, respecto de lo que requieren las memorias asociati-
vas af3.

6 Conclusiones

Este trabajo tiene como producto un modelo de memoria aso-
ciativa que utiliza dos operadores binarios originales que, al
combinarlos de ciertas maneras, dan lugar a cuatro opera-
ciones novedosas entre matrices y vectores.

Las memorias asociativas a3 tienen al menos una ventaja so-
bre las morfologicas: la densidad aritmética de las memorias
«f3 es menor. Ademas, exhiben capacidad maxima d= almace-
namiento y aprendizaje: la recuperacion es perfecta para todo
el conjunto fundamental.

Las memorias asociativas ct/3 tipo V son robustas a ruido adi-
tivo pero vulnerables ante ruido sustractivo.

Las memorias asociativas a3 tipo A son robustas a ruido sus-
tractivo pero vulnerables ante ruido aditivo.

Las nuevas memorias carecen de problemas de convergencia
(son memorias asociativas one shot), lo que potencialmente
les permite ser mas rapidas que las memorias que requieren
convergencia.
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