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Resumen

En este articulo se propone un nuevo modelo de memorias asociativas.
Las herramientas matemáticas del nuevo modelo incluyen dos operaciones
binarias inventadas ex profeso, cuyos operadores fueron bautizados
arbitrariamente con las dos primeras gra(z(1sderalfabeto griego: a y fJ.
Las nuevas memoriCÍS..asociativasafJson de dos tipos y cada uno de ellos
puede operar en dos modos diferentes. La operación" es útí/ en lafase de
aprendizaje, mientras que la operación fJ da sustento a la fase de
recuperación de patrones. Las propiedades algebraicas de las
operaciones" y fJ permiten que las nuevas memorias asociativas afJ
exhiban características simí/ares a las que son inherentes a las memorias
asociativas morfológicas binarias, en cuanto a capacidades de
aprendizqje y almacenamiento, tipos y cantidade3 de ruido a que son
robustas. y las condiciones suficientes para exhibir respuesta perfecta;
adicionalmente, es preciso enfatizar que la densidad aritmética de las
nuevas memorias asociativas es menor que la correspondiente a las
memorias asociativas morfológicas. La razón para tornarcorno referencia
a las memorias asociativas morfológicas para la creación de las
memorias afJ, consiste en que los autores de las primeras han mostrado
que estas memorias superan en varios aspectos a los modelos conocidos
de memorias asociativas hasta los inicios del tercer mí/enio.
Palabras clave: Memoria asociativa, operación binaria, relación de orden,
memorias asociativas a~, memorias asociativas morfológicas.

Abstract

A new model for associative memories is proposed in this paper. The
mathematical tools used in this new model, include two binary operators
designed specifically for the memories developed here. These operators
were arbitrarí/y named as the .first two letters from the Greek alphabet: a
and fJ. The new associative memories (afJ)are oftwo kinds and are able to
operate in two different modes. The operator a is useful at the learning
phase, and the operator fJ is the basis for the pattern recall phase. The
properties within the algebraic operators a and fJ, allow the afJ memories
to exhibir simí/ar characteristics to the ones inherent to the binary version
01 the morphological associative memories, in the sense of learning
capacity, type and amount 01 noise against which the memory is robust,
and the s",Olcient conditions lor perfect recall. Moreover. it is important to
point out that the arithmetic density 01 the proposed memories is smaller
than the arithmetic density exhibited by the morphological ones. The main
reason lor taking the morphological associative memories as the relerence
pointfor the genesis olthe proposed ones, consist in that the authors ofthe
first ones have aiready shown that the morphological associative
memories are superior in some aspects to the known models of associative
memories, up to.the beginning olthe third míllenium.
Keywords: Associative memory, binary operation, order relation, a~
associative memories, morphological associative memorioso
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1 /Introducción

El tema de las memorias asociativas ha estado vigente,
desde hace varios lustros, dentro de algunas áreas de
investigación. El propósito fundamental de una memoria
asociativa es recuperar correctamente patrones completos a
partir de patrones de entrada, los cuales pueden estar
alterados con ruido aditivo, sustractivo o combinado: ésta
es la característica más atractiva de las memorias
asociativas, y constituye un tema abierto de investigación.
Notables investigadores han abordado el problema de
generar modelos de memorias asociativas (Kohonen, 1972;
Hopfield, 1982), y han logrado resultados de importancia
tal, que algunos de los trabajos pioneros se han convertido
en auténticos clásicos. La capacidad de aprendizaje y
almacenamiento, la eficiencia en la respuesta o
recuperación de patrones, la rapidez y la inmunidad al
ruido, son tópicos de interés entre los investigadores.
La aparición, desarrollo, aplicaciones y consolidación de las
memorias asociativas morfológicas (Ritter, Diaz-de-Leon &
Sussner, 1999) marcó un hito en el campo de las memorias
asociativas, en virtud de que superaron en prácticamente
todos los aspectos de interés a los modelos conocidos.
En este trabajo se presenta un modelo alternativo a las
memorias asociativas morfológicas, basado en la relación
de orden usual y en dos operaciones binarias originales
llamadas a y ~; la operación a es útil en la fase de
aprendizaje, mientras que la operación ~ da sustento a la
fase de recuperación de patrones.A este nuevo modelo se le
ha asignado el nombre de memorias asociativas all.
Las nuevas memorias asociativas son similares, y en
algunos casos superiores, a las memorias asociativas
morfológicas en cuanto a capacidad de almacenamiento de
patrones, eficiencia en respuesta e inmunidad al ruido.
Con la creación de las bases matemáticas y del modelo
completo de las memorias asociativas all, se ha generado
un producto original de investigación en la frontera del
conocimiento científico; es un producto autóctono que
eventualmente contribuirá con su granito de arena a avanzar
en el afán de lograr ese noble propósito de alcanzar la
independencia científica y tecnológica para nuestro país.
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2 Memorias Asociativas
Por su naturaleza, el problema inherente al funcionamiento de
las memorias asociativas se escinde en dos fases claramente
distinguibles:

1. Fase de aprendizaje (generación)

2. Fase de recuperación (operación)

El propósito fundamental de una memoria asociativa es recu-
perar patrones completos a partir de patrones de entrada que
pueden estar alterados con ruido aditivo, sustractivo o combi-
nado. De acuerdo con esta afirmación,una memorÍa asociati-
va M puede formularse como un sistema de entrada y salida,
idea que se esquematiza a continuación (Hassoun, 1993):

x + ~ + y
El patrón de 'entrada se representa por un vector columna
denotado por x y el patrón de salida, por un vector columna
denotado por y.
Cada uno de los patrones de entrada forma una asociación
con el correspondiente patrón de salida. La notación para una
asociación es (x, y); en general, para un número entero posi-
tivo k específico, la asociación correspondiente será (xk, yk).
La memoria asociativa M se representa mediante una matriz
cuya componente ij-ésima es mij (Palm, Schwenker, Som-
mer & Strey, 1997); la matriz M se genera a partir de un con-
junto finito de asociaciones conocidas de antemano:' éste es
el conjunto fundamental de asociaciones, o simplemente
conjunto fundamental. Se denota por p la cardinalidad del
conjunto fundamental (p es un número entero positivo).
Si J.Les un índice, el conjunto fundamental se representa de la
siguiente manera:

{(xIL,yIL)I¡.¡=1,2,oo.,p}

A los patrones que conforman las asociaciones del conjunto
fundamental, se les llama patrones fundamentales.
La naturaleza del conjunto fundamental proporciona un im-
portante criterio para clasificar las memorias asociativas. Si
se cumple que XIL = yIL \f¡.¡ E {l, 2, oo.,p},se dice que
la memoria es autoasociativa; de otro modo, la memoria
es heteroasociativa (Kohonen,1972). Es evidente que para
una memoriaheteroasociativase cumplelo siguiente::J¡.¡E
{l, 2,oo.,p}para el que XIL=1-yIL.
Es posible que los patrones fundamentales sean alterados con
diferentes tipos de ruido. Para diferenciar un patrón alterado
del correspondiente patrón fundamental, usaremos la tilde en
la parte superior; así, el patrón Xk es una versión alterada del
patrón fundamental xk; y el tipo de alteración que representa
Xk se evidenciará en el contexto específico donde se use.
Si al presentarle a la memoria M un patrón alterado XWco-
moentrada(w E {l, 2, oo.,p}), M respondeconel correspon-
diente patrón fundamental de salida yW,se dice que la recu-
peración es per fecta.
Se especifican dos conjuntos A y B ; las componenetes de

los vectores columna que representan a los patrones, tanto de
entrada como de salida, serán elementos del conjunto A, y
las entradas de la matriz M serán elementos del conjunto B.
Sean m, n números enteros positivos; se denota por n la di-
mensión de los patrones de entrada, y por m la dimensión de
los patrones de salida.
Cadavectorcolumnaque representaa un patrón de entrada
tiene n componentes cuyos valores pertenecen al conjunto A,
y cada vector columna que representa a un patrón de salida
posee m componentes cuyos valores pertenecen al conjunto
A. Es decir:

XIL E An y yIL E Am \f¡.¡ E {l, 2, oo.,p}

La j -ésima componente de un vector columna se indica con la
misma letra del vector, pero sin negrilla, colocando a j como
subíndice(j E {1,2,oo.,n}oj E {1,2,oo.,m} según corres-
ponda). La j-ésima componente de un vector columna xIL se
representa por

x'j
Al usar el superíndice t para indicar el transpuesto de un vec-
tor, se obtienen las siguientes expresiones para los vectores
columna que representan a los patrones fundamentales de en-
trada y de salida, respectivamente:

XIL= (xi,x~, oo.,x~)t =

(~;)
E An

(

Yi

)

IL

IL- IL IL ILt- Y2 m

y - (Yl' Y2, .oo,Ym) - Y~ E A

Problema general de las memorias asociativas:

1. Fase de aprendizaje. Encontrar los operadores adecuados
y una manera de generar una matriz M que almacene las
p asociaciones del conjunto fundamental

{(xl,yl), (X2,y2), .oo,(xP,yP)}

,dondexlL E An y yIL E Am \f¡.¡ E {1,2,.oo,p}.
Si:J¡.¡ E {1,2, oo.,p} tal que xIL =1-yIL, la memoria será
heteroasociativa; si m = n y XIL= yIL \f¡.¡ E {l, 2, oo.,p},
la memoria será autoasociativa.

2. Fase de recuperación. Hallar los operadores adecuados y
las condiciones suficientes para obtener el patrón funda-
mental de salida yIL,cuando se opera la memoria M con
el patrón fundamental de entrada xIL; lo anterior para to-
dos los elementos del conjunto fundamental y para ambos
modos: autoasociativo y heteroasociativo. Exhibir y car-
acterizar, además, el ruido que puede soportar la memoria
en el patrón de entrada xw, para entregar como salida yW.
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3 Herramientas Matemáticas
Esta sección consta de tres partes. En la primera se presentan
las dos operaciones binarias originales a y (3,las cuales sir-
ven de base para construir cuatro operaciones matriciales, que
son presentadas en la segunda parte; finalmente, en la tercera
parte se enfatiza el papel quejuegan las relaciones de orden en
este trabajo, al definir los diferentes tipos de ruido que pueden
alterar un patrón binario dado.

, 3.1 Operaciones Binarias a y (3

Los conjuntos A y B se definen así:

(3!a(x,y),y] = x
(3[a(x,y),x]=x
(3[a(x,x),y]=y

Loanteriorsignificaque(3es la inversade a por la derechay
por la izquierda.

Los conjuntos A y B, las operaciones a y (3junto con los
operadores /\ (mínimo) y V (máximo) usuales, conforman el
sistema algebraico (A, B, a, (3,/\, V) en el que están inmer-
sas las nuevas memorias asociativas a(3.

3.2 Operaciones Matriciales l!:!Ja,@a, l!:!J(3
y @(3

A = {O,1} Y B = {O,1, 2} Se definen las siguientes cuatro operaciones entre matrices:

La operaciónbinariaa : A x A ---+ B está definida en la 1. Operación amax: Pmxr!!!J",Qrxn = [J;<j]mxn'dondesiguiente tabla:
r

!;'j = Va(Pik,qkj)
k=l

2. Operación (3max: Pmxr!!!Jf3 Qrxn = [ft ]
, donde

mXn

La operación binaria a exhibe algunas propiedades algebraicas,
expuestas a continu~ción, donde Ves el operador máximo y
/\ es el operadormínimo: .

3. Operación amin: Pmxr rñI",Qrxn = [hij]mxn' donde

r

ft = V (3(Pik,qkj)
k=l

La operación binaria (3 : B x A ---+ A está definida en la
siguiente tabla:

Propiedades algebraicas de la operación binaria (3:

r

hij = 1\a(pik, qkj)
k=l

4. Operación (3min: Pmxr rñlf3Qrxn = [h~j ] , dondemXn
r

hf3 = 1\(3(Pik,qkj)'J
k=l

k es un entero positivo que puede tomar valores entre 1 y r
inclusive.
Obsérvese la dualidad entr~ los pares de operaciones !!!J",y rñI",

por un lado, y entre!!!Jf3 y rñlf3por el otro.
Restricciones:. Ninguna de las cuatro operaciones está definida si ::Ij,k

tales que qkj = 2.

. Las operaciones!!!J", YrñI",no están definidas si ::Ií,j, k tales

que Pik = 2 o qkj = 2. .
Estas restricciones aparentan ser causa de potenciales proble-
mas que podrían aparecer al usar las operaciones anteriores;
sin embargo, las nuevas memorias asociativas están diseñadas
de modo que nunca ocurra algún caso prohibido.

Lema 1. Sean x E An, y E Am; entonces y!!!J",xt es una
matriz de dimensiones m x n, y además se cumple que: y !!!J",
xt = y rñI",xt.Propiedades de la aplicación combinada de ambas operaciones

a y (3: El símbolo ~ representará a las dos operaciones !!!J",Y rñI",
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x y a(x,y)
O O 1
O 1 O
1 O 2
1 1 1

a(x,x)=1
(x::; y)..... a(x,y)::; a(y,x)
(x < y)..... [a(x,z) < a(y,z)]
(x::; y)..... [a(z,x) a(z,y)]
a [(xV y) , z] = a(x, z) V a(y, z)
a [(x/\ y) , z] = a(x, z) /\ a(y, z)

x y (3(x,y)
O O O
O 1 O
1 O O
1 1 1
2 O 1
2 1 1

(3(I,x) = x
(3(x,x) = x Vx E A
(x::; y) ---+ [(3(x,z) ::;(3(y,z)]
(x < y) ---+ [(3(z,x) < (3(z,y)]
(3[(x V y) , z] = (3(x, z) V (3(y, z)
(3[(x /\y), z] = (3(x, z) /\(3 (y, z)
(3[x, (y V z)] = (3(x, y) V (3(x, z)
(3[x, (y /\ z)] = fJ (x, y) /\(3 (x, z)
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cuando se opere un vector columna de dimensión m con un
vector fila de dimensión n:

y l!!J",xt = y ~ xt = y rñ1",xt

La ij-ésima componente de la matriz y ~ xt está dada por:

[y~xtLj =a(Yi,Xj)

Es decir, la ij-ésima componente de la matriz yl" ~ (xl")t se
expresa de la siguiente manera:

[yl" ~ (xl")tj = a(yt,x'j)

Lema 2. Sean x E An y P una matriz de dimensiones m x n.
La operación P mXn l!!J,ex da como resultado un vector colum-
na de dimensión m, cuya i-ésima componente tiene la si-
guienteforma:(P mXn l!!J,ex)i = V7=1(3(Pij,Xj)
Lema 3. Sean x E A n y P una matriz de dimensiones m x n.
LaoperaciónP m Xn rñ1,ex dacomoresultadounvectorcolum-
na de dimensión m, cuya i-ésima componente tiene la si-
guiente forma: (Pmxn rñ1,e x)i = /\7=1 (3(Pij,Xj)

3.3 Relaciones de Orden y Tipos de
Ruido

La relación de orden usual tiene importancia central al definir
operativamente los tipos de ruido que es posible encontrar en
los patrones de entrada, y en el papel que juegan los oper-
adores V y /\ en la generación y operación de las memorias
a(3.

A continuación se enuncian algunos conceptos respecto de
la relación de orden entre matrices, considerando a los vec-
tores columna como casos particulares (Moore, 1968;Rosen,
1995). Las componentes de matrices y vectores serán elemen-
tos de uno de los conjuntos A o B.

El máximo de dos matrices P y Q es otra matriz M que se
representa por M = P VQ, y cuya ij-ésima entrada se define
como mij = Pij Vqij.

El mínimo de dos matrices P y Q es otra matriz N que se
representa por N = P /\ Q, y cuya ij-ésima entrada se define

como nij = Pij /\ qij.

La notación P ::; Q indica que la matriz P es menor o igual
que la matriz Q, y esto se cumple si y sólo si Pij ::; %' ViVj.

P < Q indica que la matriz P es estrictamente menor que
la matriz Q, y esto se cumple si y sólo si Pij ::; %' VNj Y
:Jio,jo tales que Piojo < qi(,jo'

Las anteriores consideraciones tienen relevancia en el contex-
to de este trabajo, al considerar los diferentes tipos de ruido
que pueden distorsionar un patrón de entrada dado.

Sean dos vectores columna Xl E An y X2 E An; se dice
que xl es menor o igual a x2 si y sólo si cada una de las
componentes del vector Xl es menor o igual a la correspon-
diente componente en el vector X2. Esto se expresa así:

xl:::;; x2 + + xi:::;; x;Vi E {1,2, ...,n}

Sean dos vectores columna xl E An y x2 E An; se dice
que Xl es menor a X2 si y sólo si: cada una de las compo-
nentes del vector Xl es menor o igual a la correspondien-
te componente en el vector x2, y existe al menos un valor
io E {l, 2, ..., n} para el cual se cumple la desigualdad estric-
ta. Simbólicamente, esto se expresa así:

1 2

[

xt ::;xTVi E {l, 2, ...,n}
]x < X + + y :Jio E {l, 2, ..., n} tal que xio < xTo

Para el caso de dos vectores columna y1 y y2 que pertenecen
al conjuntoAm las definicionesanterioressiguensiendovál-
idas:

y1 :::;;y2 + +y] :::;;y] Vj E {l, 2, ..., m}
12

[

yJ:::;;yJVjE{1,2,...,m}
]

y <y + +. 1 2
y:JJo E {1,2, ...,m} tal queYjo < Yjo

Ahora, sea x E An un patrón fundamental de entrada para
una memoria asociativa a(3. El patrón x puede ser alterado,
para dar lugar a un vector X,por tres tipos de ruido:

1. Ruido aditivo, si x ::; x. Esto significa que todos los posi-
bles cambios en los valores de las coordenadas de x para
obtener x consisten en colocar un valor 1 donde había un
valor O;es decir, la única posibilidad de cambio en las co-
ordenadas de x se traduce en: :J i E {l, 2, ..., n} para el
que Xi = OYXi = l,peronoexistej E {1,2,...,n}para
el que Xj = 1 y Xj = O. Además: x:::;; x -> Xi :::;;Xi,
Vi E {1,2,...,n}

2. Ruido sustractivo, si x ~ x. Esto significa que todos los
posibles cambios en los valores de las coordenadas de x
para obtener x consisten en colocar un valor Odonde había
un valor 1; es decir, la única posibilidad de cambio en las
coordenadas de x se traduce en: :J i E {l, 2, ..., n} para
el que Xi = lYXi = O,peronoexistej E {1,2,...,n}
para el que Xj = OYXj = 1. Además: x ~ x -> Xi ~ Xi,
Vi E {1,2,...,n}

3. Ruido combinado o mezclado, si el ruido es una mezcla
de aditivo con sustractivo. En este caso no es posible es-
tablecer un orden entre el patrón limpio y el ruidoso, dado
que los valores podrán ser cambiados aleatoriamente, sin
respetar necesariamente las reglas de los items 1 y 2.

Si el ruido es de 0%, es claro que x = x
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PASO 2 Se aplica el operador binario máximo Va las ma-
trices obtenidas en el paso 1: Demostración.- Sea i E {1, 2, ..., m} arbitraria. La i-ésima

p

[ ]
componente del vector V 1ñ1¡3x'" se expresa así:

V = V y" ¡g¡(x,,)t
,,=1

4 Las Memorias Asociativas a(3
En esta sección se presenta la obtención, justificación teóri-
ca y uso de las nuevas memorias asociativas basadas en las
operaciones binarias originales a y (3.

4.1 Memorias Heteroasociativas a(3

Se proponen dos tipos de memorias heteroasociativas a(3:tipo
V y tipo A; se desarrollarán sólo las de tipo V ya que las
propiedades de las memorias tipo A se obtienen por dualidad.

Se usará el operador ¡g¡el cual tiene la siguiente forma, para
los índices J.LE {1, 2, ..., p}, i E {1, 2, ..., m}, y j E {1, 2, ..., n}:

[y,,¡g¡(x,,)t ] =a(y",x")
ij 'J .

Fase de aprendizaje.

PASO 1 Para cada J.L= 1,2, ...,p, a partir de la pareja
(x", y") se construye la matriz

[y" ¡g¡(x,,)t]mxn\/

u,

La entrada ij-ésima está dada por la siguiente expresión:
p

Vij = Va(y;,xj)
,,=1

Es posible observar que Vij E B, Vi E {1, 2, ..., m}, Vj E
{1,2,...,n}.

CASO 2: Patrón alterado Se presenta un patrón binario

x (patrón alterado de algún patrón fundamental x"') que es un
vector columna de dimensión n, a la memoria heteroasociati-
va a(3 tipo V y se realiza la operación 1ñ1¡3 :

V 1ñ1¡3x (7)

El resultado de la operación. anterior es un vector columna
de dimensión m, cuya i-ésima componente se expresa de la
siguiente manera:

n

(VIñ1¡3 x)i 1\(3(I/ij,Xj)
j=1

(8)

(V 1ñ1¡3x)i - A(3 {[ V a(y;,xj)
]

,Xi
}J=1 ,,=1

(9)

Lema 4. Sea {(x", y") I J.L= 1,2, ...,p} el conjunto fun-
damental de una memoria heteroasociativa a(3 representada

(1) por V. Si w es un valor arbitrario de índice tal que w E
{1,2, ..'.,p} entoncesVIñ1¡3x"'::::y"'.

(2) n

(V 1ñ1¡3X"')i = 1\(3(Vij, x'j)
j=1

pero

(3)
P

Vij = Va(y;, xj)
,,=1

por ello:

(V 1ñ1¡3x"')i =j6(3{ ["Yla(y;,xj)] ,x'j}

Fase de recuperación. Por otro lado, por hipótesis w E {1, 2, ..., p}, y esto significa

CASO 1: Patrón fundamental Se presenta un patrón x"', que: p

conw E {1,2,...,p},alamemoriaheteroasociativaa(3tipo Va(y;,xj) ::::a(yi,x'j)
V y se realiza la operación 1ñ1¡3: ,,=1

V lñ1x'" (4) Se realiza la operación binaria (3,eligiendo los dos miembros
.. ¡3. '" de esta desigualdad como operandos izquierdos, y x'j como

Dado que las dlmens~ones~~la matnz V son mxn y x es~n operando derecho en ambos casos. Dado que (3 es creciente
vector columna de dlmenslOn n, el resultado de la operaclOn por la izquierda se tiene:
anterior debe ser un vector columna de dimensión m, cuya '
i-ésimacomponentees:

n

(V 1ñ1¡3X"')i 1\(3(Vij,x'j)
j=1

(V 1ñ1¡3x"')i
j0/ {["Yla(y;,xj)],Xj}
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(3{["Yl a(y;,xj)] ,x'j}:::: (3[a(Yi,x'j),x'j]
(5) Al tomar el mínimo de ambos miembros respecto del índice

J:

(6) j01(3 {["Yl a(y;,xj)] ,x'j}::::lj/ [a(Yi,x'j),x'j]
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Por transitividad de la desigualdad anterior:
n

(V fñ1pXW)i ~ 1\(3[a(Yi,xj),xj]
j=l

Además:

(3 [a(Yi, xj), xj] = Yi
esto es:

n

(Vfñ1pXW)i ~ 1\Yi
j=l

Pero
n

1\Yi = Yi
j=l

porque Yi no depende de j, es decir:

(V fñ1pxW)i ~ Yi
Dado que i se escogió de manera arbitraria, se puede afirmar
que la expresión anterior es válida para todos los valores de i,
es decir:

(Vfñ1pxW)i~yi Vi E {1,2,...,m}
Por lo tanto:

V fñ1,aXW~ yW Conclusión.
En virtud de que el valor w es arbitratrio dentro del conjun-
to de índices para los patrones del conjunto fundamental, este
Lema deja en claro que la desigualdad se cumple para todas
las parejas de patrones que son elementos del conjunto funda-
mental, sin imponer condición alguna.
11

Teorema 1. Sea {(XIL,ylL) I /-i = 1,2,...,p} el conjunto
fundamental de una memoria heteroasociativa a(3 represen-
tada por V. Si w es un valor de índice arbitrario tal que w E
{l, 2, ...,p}, Ysi además para cada i E {l, ..., m} se cumple
que 3j = jo E {l, ...,n}, el cual depende de w y de i, tal
que Vijo = a(Yi, xjo)' entonces la recuperación V fñ1,aXW es
perfecta; es decir V fñ1pXW = yW.

Demostración.- Sea i E {l, 2, ..., m} arbitraria. La i-ésima
componente del vector V fñ1,aXW se expresa así:

n

(V fñ1,axW)i = 1\(3(Vij, xj)
j=l

pero al mismo tiempo, al hacer j = jo, se cumple la siguiente
n

desigualdad: 1\ (3(Vij,xj) ::; (3(Vijo,xjo)' y por transitivi-
j=l

dad se llega a:

(Vfñ1PXW)i::;(3(Vijo,xjo)

Además, por hipótesis v ijo = a(Yi, xjo)' es decir:

(V fñ1,aXW)i::; (3 [a(Yi,xjo),xjo]

Además, se tiene

(3[a(Yi,x~J,xjo] =Yi

por 10que la desigualdad anterior queda así:

(V fñ1,aXW)i ::;Yi
Dado que i se escogió de manera arbitraria, se puede afirmar
que la expresión anterior es válida para todos los valores de i,
por lo que:

(Vfñ1pxW)i::;yi Vi E {1,2,...,m}

La expresión anterior se traduce en la siguiente desigualdad
vectorial:

V fñ1,aXW ::; yW

Pero al cumplirse la hipótesis del Lema 4, se tiene la desigual-
dad en el otro sentido

Vfñ1pxW ~ yW

Por lo tanto, se llega a la recuperación perfecta del patrón yw:

V fñ1pXW= yW Conclusión.
11

Teorema 2 (forma equivalente matricial del Teorema 1).
Si para cada asociación (XW,yW) del conjunto fundamental
de una memoria heteroasociaÜva a(3 V, se cumple que cada
filade la matrizV - yWIZI(XW)tcontiene una entrada cero,
entonces la memoria V recupera el conjunto de patrones de
salida fundamentales en forma perfecta.

Demostración.- Dado que la tesis es igual, es suficiente en-
contrar un enunciado que sea lógicamente equivalente a la
hipótesis del Teorema 1.
Comow es un valor de índice arbitrario tal que w E {l, 2, ..., p},
la hipótesis se puede expresar así:

Vw E {1,2,...,p}ycadaiE{1,...,m},

3jo E {l,...,n}talquevijo=a(Yi,xjo)

Pero las siguientes expresiones son válidas:

a(yi,x~») = [yW IZI (XW)t ]..
'Jo

por ello, la expresión:
Vijo=[V ] "

'Jo

Vijo = a(yi, x~,)

es equivalente a

[VLjo = [yW IZI (XW)t ]..
'Jo

que a su vez se puede transformar en

[V ].. - [yW IZI (XW)t ] = O
'Jo ..

'Jo

Yfinalmente en la expresión

[V - yW IZI(XW)t ].. = O
'Jo

Por 10 anterior podemos obtener una expresión lógicamente
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equivalente a la hipótesis del Teorema:

Vw E {1,2,oo.,p}ycadaíE{1,oo.,m},

3jo E {l,oo.,n} tal que [V-Y"'fZI(x"')t ].. =0
'Jo

La última expresión se puede enunciar del siguiente modo
equivalente: para todas las asociaciones del conjunto funda-
mental de la memoria heteroasociativa af3 V, se cumple que
cada fila de la matriz V - y'" fZI(x",)t contiene una entrada
cero.
.

Ha llegado el momento de atacar un problema trascendental
en el tema de las memorias asociativas: encontrar las condi-
ciones suficientes para que una memoria asociativa (en este
caso para la memoria heteroasociativa af3 tipo V) recupere
patrones de salida fundamentales a partir de patrones de entra-

da distorsionados con ruido, es decir, patrones de entrada no .
fundamentales. Dentro de esas condiciones suficientes debe
incluirse la cantidad y los tipos de ruido a los que la memoria
es inmune: aditivo o sustractivo.

Lema 5. Sea {(il-', yl-') I f-l = 1,2, ...,p} el conjunto fun-
damental de una memoria heteroasociativa af3 representada
por V, y sea x E An un patrón alterado que se presenta a
la memoria V como entrada. Si 3w E {l, 2, .oo,p} tal que es
posible obtener el patrón xalterando el patrón fundamental
x'" con ruido aditivo, entonces V ffiI(3x 2':y"'.

Demostración.- Sea í E {l, 2, .oo,m} arbitraria. La í-ésima
componente del vector V ffiI(3xse expresa así:

n

(V ffiI(3x)i = 1\f3(Vij, Xj)
j=l

Por otro lado, por hipótesis x es una alteración con ruido adi-
tivo del patrón fundamental x"', y se tiene x"'::; x ; es decir:
x 2':x"', lo cual implica que

Xj2':x'j, VjE{1,2,...,n}

Se realiza la operación binaria 13,eligiendo los dos miembros
de esta desigualdad como operandos derechos, y a la íj-ésima
componente Vij de V como operando izquierdo en ambos ca-
sos. Dado que 13es creciente por la derecha, se tiene:

f3(Vij,Xj)2':f3(Vij,X'j) VjE{1,2,oo.,n})

Al tomar el mínimo de ambos miembros respecto del índice
j:

n n

1\f3(Vij, Xj) 2': 1\f3(Vij, x'j)
j=l j=l

Por transitividad de la desigualdad anterior con la expresión
10:

n

(V ffiI(3x)i 2': 1\f3(Vij,X'j)
j=l

306

Pero
n

1\f3(Vij,x'j) = (V ffiI(3X"')i
j=l

esto es:

(V ffiI(3X)i 2': (V ffiI(3X"')i
Además, por Lema 4

(V ffiI¡3x"')i 2':y~

y por transitividad "Conla expresión anterior:

(V ffiI¡3X)i 2':y~
Dado que í se escogió de manera arbitraria, se puede afirmar
que la expresión anterior es válida para todos los valores de í,
es decir:

(VffiI(3X)i2':Y~ VíE{1,2,.oo,m}
Por lo tanto:

V ffiI(3x 2': y'" Conclusión.

Teorema 3. Sea {(xl-',yl-') I f-l= 1,2,oo.,p} el conjunto fun-
damental de una memoria heteroasociativa af3 representada
por V, y sea x E An un patrón alterado con ruido aditivo re-
specto de algún patrón fundamental x'" con w E {l, 2, ...,p}.
Si se presenta xa la memoria V como entrada, y si además
para cada i E {l, .oo,m} se cumple la condición de que 3j =
jo E {l, oo.,n}, el cual depende de w y de i tal que Vijo ::;
a(y~, Xjo), entonces la recuperación V ffiI¡3xes perfecta; es
decir V ffiI(3x= y"'.

Demostración.- Sea i E {l, 2, oo.,m} arbitraria. La í-ésima
componente del vector V ffiI(3xse expresa así:

(lO)

n

(VffiI~X)i= I\f3(Vij,Xj)
j=l

pero al mismo tiempo, al hacer j = Yo,se cumple la desigual-
dad:

n

1\f3(Vij,Xj)::; f3(Vijo,Xjo)
j=l

y por transitividad se llega a:

(V ffiI¡3X)i ::; f3(Vijo,Xjo) (11)

Por otro lado, por hipótesis Vijo ::; a(y'f,xjo); se realiza la
operación binaria 13,eligiendo los dos miembros de esta de-

sigualdad como operandos izquierdos, y Xjo como operan-
do derecho en ambos casos. Dado que 13es creciente por la
izquierda (propiedad 133de la Tabla 3.4), se tiene:

f3(Vijo,Xjo)::; f3[a(y~,xjo),Xjo]

Por transitividad de esta desigualdad con la expresión 11:

(VffiI¡3x)i::; f3[a(y~,xjo),Xjo]

Además:

13[a(y~, Xjo), Xjo] = y~
esto es:

(V ffiI¡3X)i ::; y~
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Dado que i se escogió de manera arbitraria, se puede afirmar Es decir:
que esta expresión es válida para todos los valores de i, por lo
que:

(VIñ1¡3 X)i:; yf Vi E {1,2, ...,m}
Esta expresión se traduce en la siguiente desigualdad vectori-
al:

V 1ñ1¡3x :; yW
Por lo tanto, aplicando el Lema 5, se llega a la recuperación

perfecta del patrón yW.

V 1ñ1¡3x = yW Conclusión.

.

El Lema 5 y el Teorema3 indican que las memorias het-
eroasociativas a(3 tipo V tienen cierta inmunidad al ruido adi-
tivo, y especifican las condiciones que deben cumplirse para
que la respuesta seaperfecta en presencia de ruido aditivo.

De inmediatosurgeuna interrogante:¿quépasacon el ruido
sustractivo? Las memorias a(3 tipo V son sensibles a ruido
sustractivo; una pequeña cantidad de ruido sustractivo puede
tener efectos no deseados en la operación de este tipo de memo-
rias, los cuales son caracterizados por el Teorema siguiente:

Teorema 4. Sea {(xi', yi') I f.L= 1,2, ...,p} el conjunto
fundamental de una memoria heteroasociativa a(3 represen-

tada por V, y sea x E An un patrón alterado con ruido sus-
tractivo respecto de algún patrón fundamental XWcon 0J E
{1, 2, ...,p}. Al presentar xa la memoria V como entrada se

cumple lo siguiente: para cada jo E {1, ..., n} tal que x~, haya
sido alterado para obtener Xj,p si ::Iio E {1, ..., m} para el que

Viojo= 1, entonces (V 1ñ1¡3 x)io = O.

Demostración.- Sea x una versión distorsionada con ruido
sustractivo del patrón fundamental xw; es decir, x :; xw, lo
cual implicaque Xj :; xj Vj E {1,2, ...,n}. Dependiendo
del porcentaje de ruido sustractivo con que se ha alterado xw,
puede haber más de un valor de j, hasta el número de bits con
valor 1 en xw, para los que se cumple la desigualdad estricta
Xj < xj.
Sea jo E {1, ..., n} un índice para el que se cumple la de-
sigualdadestricta:Xjo < x~,; es decir,debecumplirseque
Xjo = OYx~, = 1. La expresiónpara la componentei del
vector recuperado es:

n

(V 1ñ1¡350i = 1\ (3(Vij, Xj)
j=l

Reescribamos la expresión anterior para tomar en cuenta ex-

plícitamente el valor de jo:

{

[Ajo-l (3(
~

)]

}

I\j=l Vij,Xj,

(V 1ñ1¡3x)i = 1\ l(3(vij", Xjo)]~.
[I\j=jo+l (3(Vij, xJ)]

[Ajo-l (3(
~

)]

}

I\j=l Vij, Xj ,

[(3(Vijo,O)],

[l\j=jo+1 (3(Vij, Xj)]

Por hipótesis, ::Iio E {1, ..., m} para el que l/iojo = 1. Ana-
licemos este ca~o crítico:

(V @p xl, ~ !\ {

{
[I\;~~l (3(Vioj,Xj)] ,

}
1\ [(3(Viojo,O)],

[l\j"=jO+1 (3(Vioj, Xj)]

{

[Ajo-l (3(
~

)]

}

I\j=l Vioj,Xj ,
1\ [(3(1,O)],

[l\j=jO+1 (3(Vioj, Xj)]

Pero (3(1, O) = O,por lo que la expresión anterior se transfor-
maen:

(V 1ñ1¡3 x)io

(VIñ1¡3X)iO

(V@, in," ~ 1\ {
Por lo tanto:

[AjO-l (3(
~

)]

}

I\j=l Vioj,Xj ,
O,

[l\j=jO+1(3(ViOj,Xj)]

(VIñ1¡3X)io=O.
Nota importante: Sin embargo, dado el jo del Teorema 4, si
Vijo =J 1, Vi E {1, ..., m}, entonces el ruido sustractivo en
la componente Xjono afecta la posible recuperación perfecta
del patrón yW.Esto significa que la memorias a(3 tipo V son
capaces de soportar ciertas cantidades de ruido sustractivo.

Las memorias heteroasociativas a(3 tipo A se desarrollan por
dualidad, partiendo de los resultados obtenidos para las memo-
rias heteroasociativasa(3 tipo V. Para ello, se realizanlos
siguientes cambios:. Donde haya un operador Vcolocar un 1\. Donde haya un operador 1\ colocar un V. Usar el operador 1!iI¡3en lugar del operador 1ñ1¡3

Mientras que las memorias heteroasociativas a(3 tipo V tienen
cierta inmunidad al ruido aditivo y son sensitivas a ruido sus-
tractivo, con las memorias heteroasociativas a(3 tipo A sucede

precisamente lo contrario: son inmunes a cierta cantidad de
ruido sustractivo, pero sensitivas a ruido aditivo. Una pequeña
cantidad de ruido aditivo puede tener efectos no deseados en
la operaciónde este tipo de memoriasa(3; sin embargo,las
memorias a(3 tipo A son capaces de soportar ciertas canti-
dades de ruido aditivo.
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4.2 Memorias Autoasociativas a(3

Si a mía memoria heteroasociativa se le impone la condición
de que y" = x" V/-lE {l, 2, ...,p}, entonces deja de ser het-
eroasociativa y ahora se le denomina memoria autoasociativa.

A continuación se enlistan algunas características de las memo-
rias autoasociativas a¡3:

1. El conjunto fundamental toma la forma {(x", x") I /-l=
1,2, ...,p}

¡

2. Los patrones fundamentales de entrada y de salida son de
la misma dimensión; denotémosla por n.

autoasociativa a¡3 tipo V y se realiza la operación rñ1¡'J :

V rñ1¡'J se (18)
Al igual que en el caso 1, el resultado de la operación anterior
es un vector columna de dimensión n, cuya i-ésima compo-
nente se expresa de la siguiente manera:

n

(Vrñ1¡'Jse)i 1\¡3(Vij,Xj)
j=l

(19)

(Vrñ1¡'Jse)i
j0/ {["Y1a(x;,Xj)],Xj} (20)

3. La memoria es una matriz cuadrada, para ambos tipos, V 11
y A. Si x" E An entonces V = [V' . ] YA = [A ] Lema 6. Una memoria autoasociativa a¡3 tipo V tiene única-, 'J nXn 'J nXn

mente unos en su diagonal principal.
Al igual como se hizo para las memorias heteroasociativas,
se desarrollarán sólo las memorias autoasociativas a¡3 de tipo
V, ya que las propiedades de las memorias tipo A se obtienen
por dualidad.

Fase de aprendizaje.

PASO 1 Para cada /-l = 1,2, ...,p, a partir de la pareja
(x" ,x") se construye la matriz

[x" l2J(x,,)t]nXn

PASO 2 Se aplica el operador binario máximo Va las ma-
trices obtenidas en el paso 1:

p

V = V [xiL l2J(x,,)t]
,,=1

La entrada ij-ésima de la memoria está dada así:
p

v.. = Va (x" x" )'J " J
,,=1

Se tiene que Vij E B, Vi E {l, 2, ...,n}, Vj E {l, 2, ...,n}

Fase de recuperación.

CASO 1: Patrón fundamental Sepresenta un patrón x"',
conw E {l, 2, ...,p}, a la memoria autoasociativa a¡3 tipo V
y se realizala operaciónrñ1¡'J:

V rñ1¡3x'" (15)

El resultado de la operación anterior será un vector columna
de dimensión n.

n

(V rñ1¡'JX"')i 1\¡3(Vij,xj)
j=l

(V rñ1¡'Jx"')i l~/{["Y1 a(x;,Xj)] ,Xj} (17)

CASO 2: Patrón alterado Se presenta un patrón binario
se que es un vector columna de dimensión n, a la memoria
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(12)

Demostración.-La ij-ésima entrada de una memoria autoaso-
ciativa a¡3 tipo V está dada por

p

Vij = Va(x;,xj)
,,=1

Las entradas de la diagonal principal se obtienen de la expre-
sión anterior, haciendo i = j:

p

I/ii = Va(x;,xn, Vi E {1,2, ...,n}
,,=1

Pero se tiene que

(21)

a(x;,xn = 1
por lo que la expresión 21 se transforma en:

(13) p

I/ii= V(l)=l, Vi E {1,2,...,n}
,,=1

(14)
11

Teorema 5. Una memoria autoasociativa a¡3 tipo V recu-
pera de manera perfecta el conjunto fundamental completo;
además, tiene máxima capacidad de aprendizaje.

Demostración.- Seaw E {l, 2, ...,p} arbitrario.De acuerdo
con el Lema6, para cada i E {l, ...,n} escogidaarbitraria-
mente

Vii = 1 = a(x~,x~)

Es decir, para i E {l, ..., n} escogida arbitrariamente, :Jjl)=
i E {l, ..., n} que cumple con:

Vijn = a(x~,x~J

(16)

Por lo tanto, de acuerdo con el Teorema 2:

Vrñ1¡'Jx"'=x"', VWE{1,2,...,p}

Esto significa que la memoria autoasociativa a¡3 tipo V recu-
pera de manera perfecta el conjunto fundamental completo.
Además, en la demostración de este Teorema, en ningún mo-
mento aparece restricción alguna sobre p, que es la cardinali-
dad del conjunto fundamental; esto quiere decir que el conjun-
to fundamental puede crecer tanto como se quiera. La conse-
cuencia directa es que el número depatrones que puede apren-
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der una memoria autoasociativa a/3 tipo V, con recuperación a/3 tipo V son inmunes a cierta cantidad de ruido aditivo pero
perfecta, es máximo. sensibles a ruido sustractivo, con las memorias aut<;>asociati-
. vas a/3 tipo A sucede lo contrario. "

Teorema 6. Sea {(xl', xl') I f.L= 1,2, ...,p} el conjunto fun-
damental de una memoria autoasociativa a/3 representada por
V, y sea x E An un patrón alterado con ruido aditivo re-
specto de algún patrón fundamental x'" con w E {1, 2, ...,p}.
Si se presenta xa la memoria V como entrada, y si además
para cada i E {1, ..., n} se cumple la condición de que:3j =
jo E {1, ...,n}, el cual depende de w y de i tal que Vijo :::;
a(xi, Xjo)' entonces la recuperación V rñ1~xes perfecta; es
decir V rñ1¡3x= x"'.

Demostración.- Por hipótesis se tiene que yl' = xl' y f.LE
{l, 2, ...,p} y, por consiguiente, m = n. Al establecer estas
dos condiciones en el Teorema 4, se obtiene el resultado: Vrñ1~
x=x"'.
.
El Teorema 6 confirma que las memorias autoasociativas a/3
tipo V son inmunes a cierta cantidad de ruido aditivo.

Dado un i E {l,...,n} cualquiera, consideremos las rela-
ciones que hay entre los valores de xi y las coordenadas del
vector x, con el fin de analizar brevemente cada uno de los ca-
sos posibles en la fase de recuperación. Según la hipótesis del
Teorema 6 la recuperación del valor xi se garantiza siempre y
cuando para este valor i se pueda encontrar un jo E {1, ..., n}
que cumpla con la desigualdad Vijo :::;a(xi,xjo). Existen
dos casos posibles para el valor de xi:

l. Si xi = 1, es suficiente que alguna de las entradas del pa-
trón x sea cero, para garantizar la recuperación del valor
xi. Veamos: si existe jo E {1, ...,n} para el cual Xjo =
O entonces, de acuerdo con la Tabla 3.1, a(xi,xjo) =
a(l,O) = 2yestosignificaquevijo:::; a(xi,xjo),porque
el máximo valor posible para Vijoes precisamente 2, según
la misma Tabla.

2. Este caso es más restrictivo. Si xi = O,no basta con en-
contrar una entrada cero en el patrón X. Al hallar el valor
de jo E {1, ..., n} para el cual Xjo = O, se debe pedir
como condición adicional que Vijo 1=-2, porque (según
Tabla 3.1) a(xi, Xjo) = a(O, O) = 1 y esto significa que
la desigualdad Vijo :::;a(xi, Xjo) se da siempre y cuan-
do v ij() 1=-2. Si se llegase a tener carencia de ceros en las
coordenadas del patrón x, la condición para recuperar el
valor de xi, al tener Xj() = 1, es más fuerte: Vijo = O,
porque a(O, 1) = O.

Las memorias autoasociativas a/3 tipo A se desarrollan por
dualidad, partiendo de los resultados obtenidos para las memo-
rias autoasociativas a/3 tipo V; para ello, se realizan cambios
similares a los que se indicaron para las memorias heteroaso-
ciativas. También, mientras que las memorias autoasociativas

5 Densidad Aritmética
Una colección de operadores lógicos esfuncionalmente com-
pleta si toda proposición compuesta es lógicamente equiva-
lente a una proposición compuesta que involucre sólo a los
operadores de la colección (Rosen, 1995).
Es un hecho establecido que los tres operadores lógicos de
negación (,), conjunción (/\) y disyunción (V) forman una
colección funcionalmente completa de operadores lógicos:

{,,/\,V}

Existen colecciones funcionalmente completas que constan de
dos o de un único operador.Uno de estos operadores es el que
corresponde a la Tabla de verdad de la disyunción negada: la
conectiva lógica nOT,que denotaremos con el operador l.
Sean x y y dos variables lógicas booleanas. El operador 1se
define de la siguiente manera:

xlY=,(xVy) (22)

Esto significa que la colección {1} es funcionalmente com-
pleta, como lo afirma la Proposición l.

Proposición 1. El operador 1 constituye, por sí mismo, una
colección funcionalmente completa {l}: si x y y son vari-
ables lógicas booleanas, entonceS se cumplen las siguientes
equivalencias:

,x xlx

(xly) 1 (xly)
(xlx) 1 (yly)

(23)xVy

x/\y

Tanto para las memorias asociativas morfológicas como para
las memorias asociativas a/3 se considera un conjunto funda-
mental dep asociaciones, donde los patrones de entrada tienen
dimensión n, y los patrones de salida, dimensión m.

Al realizar el cálculo del total de operaciones requeridas para
ambas fases en las memorias asociativas morfológicas, se lle-
ga a los siguientes resultados:
La fase de aprendizaje de una memoria asociativa morfológica
requiere de 28mnp operaciones 1y mn(p - 1) operaciones
de orden.
La fase de recuperación de un patrón de salida en una memo-
ria asociativa morfológica requiere de 198mn operaciones 1
y m(n - 1) operaciones de orden.

Al realizar el cálculo del total de operaciones requeridas para
ambas fases en las memorias asociativas a/3, se llega a los
siguientes resultados:
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La fase de aprendizaje de una memoria asociativa DI]requiere
de 28mnp operaciones 1y mn(p - 1) operaciones de orden.
La fase de recuperación de un patrón de salida en una memo-
ria asociativa aj3 requiere de 147mn operaciones 1y m( n-1)
operaciones de orden.

A diferencia de lo que sucede con las densidades aritméti-
cas de aprendizaje, las cuales son iguales en ambos tipos de
memorias asociativas, la densidad aritmética de recuperación
es menor para las memorias asociativas aj3 que la correspon-
diente a las memorias morfológicas.

Resultado comparativo de la densidad aritmética: La fase
de recuperación de las memorias asociativas morfológicas re-
quiere de un 34,7% adicional en el número de operaciones
lógicas 1. respecto de lo que requieren las memorias asociati-
vas aj3.

6 Conclusiones
Este trabajo tiene como producto un modelo de memoria aso-
ciativa que utiliza dos operadores binarios originales que, al
combinarlos de ciertas maneras, dan lugar a cuatro opera-
ciones novedosas entre matrices y vectores.
Las memorias asociativas aj3 tienen al menos una ventaja so-
bre las morfológicas: la densidad aritmética de las memorias
aj3 es menor. Además, exhiben capacidad máxima d;: almace-
namiento y aprendizaje: la recuperación es perfecta para todo
el conjunto fundamental.
Las memorias asociativas aj3 tipo V son robustas a ruido adi-
tivo pero vulnerables ante ruido sustractivo.
Las memorias asociativas aj3 tipo A son robustas a ruido sus-
tractivo pero vulnerables ante ruido aditivo.
Las nuevas memorias carecen de problemas de convergencia
(son memorias asociativas one shot), lo que potencialmente
les permite ser más rápidas que las memorias que requieren
convergencia.
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