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Abstract

In this study, we are interested on some special kind
of camera movements that ideally take place on a flat
surface and the image projections perpendicular to these
movements. We analyze interpretation of motion for a
camera heading forward, panning around its optical cen-
ter and translating perpendicular to its optical axis. We
present simulations and experiments with real data. Our
results show that it is possible to obtain qualitative infor-
mation about the camera motion’s nature.
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Resumen

En este documento, estudiamos una clase especial de
movimientos de la edmara que idealmente se desarrollan
en una superficie plana y las proyecciones de imagen per-
pendiculares a esos movimientos. De esta forma, anali-
zamos la interpretacion de movimientos de una cdmara
cuando ésta avanza en direccidn de su eje focal, gira
alrededor de su centro dptico y se traslada perpendicu-
lar a su eje focal. Mostramos simuiaciones y experimen-
tos con datos reales. Nuestros resultados muestran que
la aproximacion permite obtener informacién cualitativa
sobre la naturaleza del movimiento de la cdmara.
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1 Introduction

Computer Vision is concerned with the tridimensional
interpretation a scene from a sequence of images. For one
thing, this problem is important because in theory, there
is an infinity number of objects that can produce the
same image, e.g., varying the object size and the distance
from the camera to the object. In particular, we inves-
tigate some uses of projections of individual frames that
are part themselves of an image stream. In a way simi-
lar to images, projections are not unique. Nonetheless, in
this document, we explore some limits where this notion
can be challenged in practice. Projections are well known
compact representations of images[Jain et al., 1995](see
Fig. 4(a) and its projection in Fig. 2(a)). In a compact
image stream the variations of projections of individual
frames are small. Thus providing almost unique charac-
teristics to a particular camera trajectory.

In some cases, camera motion is solved along with
scene structure. Nevertheless, computing structure from
motion has been shown to be an extremely difficult
problem. However, significatively advances have been
done in the area. For instance, Tomasi[Tomasi, 1991]
developed an optimal solution for the case of ortographic
projection. Under perspective projection, extreme care
must be given to computing the intrinsic and extrinsic
camera parameters. Even then, the solution is brittle
and numerically unstable. Today’s state of the art
includes making Euclidean reconstruction from basi-
cally uncalibrated cameras[Kahl and Heyden, 2001].
The two dominant approaches are factorization-
like methods[Zhang and Tomasi, 1999] for weak-
perspective and iterative solutions with Kalman
filtering[Kim et al., 1997]. The former requires solv-
ing sequential matching while the latter involves the
problem of establishing a good initial starting point for
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Figure 1: Imaging object points in flatland. An object with corners p and q is placed in the world. The world
reference system is centered in {W}. A camera, with reference system {C}, has its optical center in x. The camera
focal length is f. The image’s reference system is placed in {I}. The angle @ is the angular difference between {C}
and the image reference system {I'}.We would like to verify how object points are imaged as the camera moves in

its workplace.

bundle adjustment. Duric and Rivlin [Duric et al., 2000]
analyze what happen with the histogram of normal
optical flow when the camera rotates, translates in the
direction of the optical axis, perpendicular to the optica!
axis and around the axis perpendicular to the optical
axis. Since obtaining complete structure from motion
has shown to be difficult and error prone, we claim that
it is worth pursuing trying to gather at least partial
and qualitative information about the nature of camera
motion.

In §2, we study ideal projection of object points for
different types of camera motion. Next, in §3, we present
an scheme to track features along the projected individ-
ual frames in an image stream. Then in §4, we present
some experimental results with both ideal and real data.
Finally, we conclude with some remarks and discussion
about research directions.

2 Imaging in Flatland

We are interested on a special kind of camera move-
ments that ideally take place on a flat surface and
the image projections perpendicular to these move-
ments.  Under these circumstances, the projection

process may be described analytically by the Radon
transform[Kak and Slaney, 1988], given by

Pi(t)= ];J I(z,y)0 (x cosy + ysiny — t) dz dy
(1)

where I(z,y) describes the image, §(z,vy) is a delta func-
tion, z cosy + ysiny — ¢ is a collection of parallel rays
that forms an angle v with the y-axis, and ¢ is a distance
along the projection. From now on, we will focus on the
case where v = (0. Let us consider the situation where a
robot moves while a vision system grabs images with a
very small timestamp difference between frames. In this
section, we review how world points will be imaged in
noise free flatland(see Fig. 1). Unless stated all coordi-
nates are expressed in the world reference system {W}.
Suppose that an object with corners p and q is placed
in the world. A camera, with reference system {C}, has
its optical center in x. The camera focal length is f. Fi-
nally, the image’s reference system is placed in {I}. We
would like to verify how object points are imaged as the
camera moves in its workplace. The line between points
p and x is given by

p+(l—rix=1% (2)
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Figure 2: Features are found in the projection of images. They are chosen among the larger values of Eq. (12). A

threshold is established based on their cumulative sum.

where the points in the segment pX are the points tq for
which 7 € [0,1]. On the other hand, the image plane is
defined by the line

p=[s+x"u (3)

Here u = [cos#,sin6]” is the vector in the direction of
the shortest point from the image plane and both the
camera {C} and the world {W} reference systems; p is
the shortest distance from {W} to the image plane; sis a
point in the image plane; and # is the angular difference
from {C'} and the image reference system {}. Both lines
intersect when s + x = t. That is when r equals

p—xTu

= — (4)

[p—xTu

This point is given in world coordinates. To get the
projection in image coordinates, the following transfor-
mation applies

p' = TLTp" (8)

where T4 refers to a homogenous transform involving
a rotation and a translation such that p4 = T4p® =
RAp®? + t4. Therefore, given a known camera motion,
we have a way to express a feature’s projection. Oth-
erwise stated, when the camera moves perpendicular to
its optical axis, the projection u;(x) of an object point
p = (z,2) is wy(x) = kyz, where by = f/z. When
the camera moves along the direction of its optical axis
is ugs(z) = ko/z, where ko = fx. Finally, when pans
around its optical center it is ug(6) = f cot 6.

3 Motion Tracking

Shi and Tomasi[Shi and Tomasi, 1994] studied the prob-
lem of tracking two-dimensional image features from
frame to frame using a Newton-Raphson type of search.
In our case, the problem is simplified since we track
one dimensional features. The following development
is largely based on Shi and Tomasi for the case of one
dimensional features. Let J(z) and I(z) be two consec-
utive frame projections. The dissimilarity between cor-
responding features separated a distance d can be mea-
sured by

e(d) = fF (J(@ +d) - I(z))*de (6)

where F' is a small interval over which similarity is
sought. The term J(z+d) can be expressed by the linear
terms, neglecting the second and higher order terms, of
its Taylor’s expansion as

J(z +d) ~ J(z) + da‘gf) (7)
Thus,
0J(z+d) _0J(z) (8)
ad T oz
The derivative of €(d) is
de(d a d
-%%1 = 2L (J(z +d) — I(z)) %dx 9)

Replacing J(z + d) and its derivative by their approxi-
mation, we have

%dd) e ZfF (J(:I:) + %E:)d - I{m)) %&f—)dr (10)
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Figure 3: Matching image profile features. In 3(a), 3(b) and 3(c) we found the correspondence for a feature after 7
iterations. In 3(a) the upper line shows the displacement at each iteration. The line below it shows the accumulative
displacement. The final displacement is -4.4875 pixels. In 3(b) we show how the error is decreasing. The final error
is 1.123 millions. In 3(c) we show graphically how both curves converge iteration after iteration to the circled curve.
In 3(d), 3(e) and 3(f) we found the correspondence for another feature after 4 iterations. In 3(d) the upper line shows
the displacement at each iteration. The line below it shows the cumulative displacement. The final displacement is
-2.9648 pixels. In 3(e) we show how the error is decreasing. The final error is 717,370. In 3(f) we show graphically
how both curves converge iteration after iteration. The rightmost curve is the best fit to the circled curve.

The minimum error yields when the derivative of ¢(d)
equals zero. Therefore d can be expressed as

R=ze (11)
where 5
L aJ(x) N
Z JQ (“—az ) & (12)
and
esz(J(x)-r(m))a‘:;(;}dx (13)

The value of z is a good reference about how easy it
is to track a feature. That is, when its value is small
the displacement is large and convergence may be poor.
Contrariwise, when z is large, the iteration tends to con-
verge.
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Since non linear factors become important under most
situations, Eq.(11) has to be replaced by the following
iterative formulation

dyp1 =dy +d (14)

4 Eﬁcperimentai Results

The equations outlined in §2 can be used to get insight
about the projection of object points in flatland under
different types of camera motion. Suppose that there is
an object with points p = [~4,40]7 and q = [4,40]7.
The focal length is one unit. In Fig. 4 there are some
resulting plots. In Fig. 4(b) the center of projection was
moved between [0, 3]7 and [0,30]7 units. The focal axis
coincides with the direction of motion. The imaged ob-
ject size is inversely proportional to the distance between
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Figure 4: Simulation and experiments with real data to analyze the qualitative interpretation of motion for a camera
heading forward, panning around its optical center and translating perpendicular to its optical axis.
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the camera and the object. In Fig. 4(f) we rotated the
camera between 50 and 130 degrees.

The center of projection is fixed at x = [0,3]T. In
this range the variation is almost linear and may be
confused with camera motion perpendicular to the op-
tical axis. In 4(j) the camera moves laterally between
x; = [-3,0]7 and x; = [3,0]7. The focal axis is per-
pendicular to the direction of motion. As reported by
Bolles[Baker and Bolles, 1988], since the image size de-
pends on the distance between the camera and the object
and hence remains constant through the displacement
under a predefined motion, the extended base line may
provide both a way to a robust numerical solution and
simple algorithm for tasks such as occluding boundary
detection, stereo analysis and others.

Given the simulation results, we gather some experi-
mental data. In Fig. 4, we show three dense sequences.
Figure 4(c) corresponds to images of the scene shown in
Fig. 4(a). It shows a sequence of 153 intensity profiles
of a camera heading forward. Physically, the camera ad-
vanced about 120cms. There was not strict control on
the distance between frames. Indeed the variations in
orientations are remarkable. Nevertheless, the camera
had an overall forward trajectory with its optical axis
approximately in its direction of motion. Here, we ob-
serve how the features diverge as the camera gets closer.
Figure 4(g) corresponds to images of the scene shown in
Fig. 4(e). It presents a 82 intensity profiles when the
camera rotates about 90 degrees. Again, the angle be-
tween frames is not equal. Also there is not warranty
that the optical center coincides with the center of ro-
tation. Finally, 4(k) corresponds to images of the scene
shown in Fig. 4(i). It presents a dense sequence of 82
intensity profiles where we imaged in a direction perpen-
dicular to the direction of motion. The camera advanced
about 90cm.

The intensity profile of the image in Fig. 4(a) is shown
in Fig. 2(a). Then in Fig. 2(b), we show the function z
when the size of the window F' is 10 pixels. The values
of the maximum sorted by decreasing order as a per-
centage of the cumulative sum are given in Fig. 2(c). A
good feature tends to be present when there is abrupt
change in the profile intensity values. In the rest of the
experiments, we consider a good feature to those which
cumulative value are below 99% of the sum of the feature
values.

Now, we may attempt to track a feature from line to
line. In Fig. 3, we show a couple features of a given line
and its tracking in the next line. In 3(a), 3(b) and 3(c) we
found the correspondence after 7 iterations. In 3(a) the
upper line shows the displacement at each iteration. The
line below it shows the accumulative displacement. The
final displacement is -4.4875 pixels. In 3(b) we show how

298

the error is decreasing. The final error is 1.123 millions.
In 3(c) we show graphically how both curves converge
iteration after iteration to the circled line. In 3(d), 3(e)
and 3(f) we found the correspondence for feature 1 after 4
iterations. In 3(d) the upper line shows the displacement
at each iteration. The line below it shows the cumulative
displacement. The final displacement is -2.9648 pixels.
In 3(e) we show how the error is decreasing. The final
error is 717,370. In 3(f) we show graphically how both
curves converge iteration after iteration. The rightmost
curve is the best fit to the circled curve. At this point, we
are in the position to track all the selected features from
one frame to the following. Figure 4(d), 4(h) and 4(1)
show the result of tracking through the image stream.
The lines are computed automatically by tracking the
most promising features. These lines show clearly that
it is possible to infer, at least qualitatively, the nature of
camera motion from the projections of individual frames.

Conclusion

In this document, we show that it is possible to quali-
tatively interpret camera motion from the projection of
individual frames in an image stream. This interpreta-
tion is made for the cases where the camera is moving
in the direction of its optical axis, around its optical
center, and perpendicular to its optical axis. Given an
image streams with these type of camera motion, we
presented a tracking scheme to follow features along the
image sequence. It is possible to observe clearly how the
difference from a rotation and a translation perpendicu-
lar to the direction of motion are generate very similar
imaging features. The adds to the common believe that
structure from motion is very sensitive in nature.

In this study, we show that useful information can be
processed efficiently due to the compact representation
of images and the smooth variation of the cumulative
sum between frames. Further work aim to organize the
redundant visual perception, and to quantitatively inter-
pret camera motion, and to use this information to lo-
calize the camera in the workspace to allow visual based
navigation.
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