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1 Introd uction

Wepresent afast and ejjicient methodfor plotting rigidsolids
composed of a large number of voxels. This method is based
on theconcept ofthe contact surface area. Thecontact surface
area corresponds to the sum of the contact surface areas of
the face-connected voxels of solids. A relation between the
area of the surface enclosing the volume and the contact
surface area is presented. We analyze the minimum and
maximum contact surface areas. Final/y, we present a result
using a binary solid of the real world.
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Resumen

Se presenta un método rápido y eficiente para graficar obje-
tos sólidos y rígdos compuestos por un gran número de
voxels. Este método se basa en el concepto del área de super-
ficie de contacto. El área de superficie de contacto corres-

ponde a la suma de las áreas de las superficies de contacto
de los voxels vecinos de los sólidos. La relación entre la

superficie envolvente y la de contacto del volumen es defini-
da. Se analizan las áreas de las superficies de contacto míni-
mas máximas. Finalmente, se presenta un resultado del mé-

todo usando datos reales de un sólido binario.

Palabras clave: Sólidos Binaiios, Objetos Voxelizados y
Graficación.

The study of rigid solids is an important part in com-
puter vision. In the content of this work, we present the
concept of contact surface area for rigid solids composed
of voxels (Bribiesca, 1998). Thus, solids are represented
as 3D arrays of voxels which are marked as filled with
matter. The representation ofsolids by means of spatial
occupancy arrays can require much storage if resolution
is high, since space requirements increase as the cube
of linear resolution (Ballard and Brown, 1982). Never-
theless, at present with the declining cost of computer
memory and storage devices, explicit spatial occupancy
arrays are often used. An advantage of using this kind
of representation is that slices through objects may be
easily produced.

Several authors have been using different kinds of
representations for solids: rigid solids represented by
their boundaries or enclosing surfaces are shown in Re-
quicha (1980) and Besl and Jain (1985); constructive
salid geometry schemes are presented and analized in
Voelcker and Requicha (1977) and Boyse (1979); gener-
alized cylinders as 3D volumetric primitives are shown
in Soroka (1979), Soroka and Bajcsy (1976), and Brooks
(1983); and superquadrics in Pentland (1986).

Salid objects are normally represented by their en-
closing surfaces, commonly defined as graphics primi-
tives. In this manner, the interior of a salid objectis
not explicity represented. On the other hand, salid ob-
ject voxelization has not been sufficiently studied (Fang
and Chen, 2000). Voxelization is mainly used as a pre-
processing step in the current volume graphics process.
The voxelization process needs to be done on-the-fly af-
ter each change of the model for volume rendering and
other volume-related applications. In arder to support
dynamic scenes and interactive applications, it is neces-
sary that fast voxelization algorithms be used (Manohar,
1999). This work deals with a fast method for plotting
voxel-based objects.
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This paper is organized as followso In Section 2 we
give a set of concepts and definitions and present the
contact surface afea and its relation to the enclosing
surface areao In Section 3 we give the methodhere
proposed for plotting rigid solids composed of a large
number of voxelso Section 4 presents some results us-
ing digital elevation models as rigid solids and finally, in
Section 5 we give some conclusionso

2 Concepts and Definitions

In arder to introduce our concept of contact surface
afea we use volumetric representation for rigid solids
by means of spatial occupancy arrayso Thus, the solids
are represented as 3D arrays of voxels which are marked
as filled with mattero Furthermore, shape is referred as
shape-of-object, and object is considered as a geometric
salid composed of voxelso

In the content of this work, arca is a numerical value
expressing 2D extent in aplane, or sometimes it is used
to IDean the interior region itself (Karush, 1989)0 An-
other consideration is the assumption that an entity has
been isolated from the real worldo This is called the rigid
solid, and is defined as a result of previous processingo
In this work, the length of all the edges of voxels is con-
sidered equal to oneo

In this section, we define the contact surfaces for
rigid solids composed of voxelso Also, we define the re-
lation between the contact surface afea and the afea
of the surface enclosing the volume. This relation be-
tween the afeas of the surfaces can be used in different
polyhedrons, which cover up spaceo In this case, we
demonstrate the above mentioned using hexahedronso
In arder to introduce our plotting method, a number of
geometrical concepts are defined below:

The arca A 01 the enclosing surlace of a rigid salid
composed of a finite number n of voxels, corresponds to
the sum of the afeas of the external plane polygons of
the voxels which forro the visible faces of the solido

The contact surface arca Ac of a rigid salid composed
of a finite number n of voxels, corresponds to the sum
of the afeas of the contact surfaces which are common
to two voxels.

The relation between the arcas 01 the enclosing sur-
lace and the contact surlace. For any binary salid com-
posed of n voxels, the relation between the afeas is de-
fined by:

2Ac + A = aFn, (1)

where Ac is the contact surface afea, A is the afea of
the enclosing surface, a is the afea of the face of the
voxel (a = 1 is assumed in the forward examples cor-
responding to figures 1 to 3), and F is the number of
plane polygons or faces of the voxel (Bribiesca, 2000)0
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Geometrically, it means that the sum of twú times the
contact surface afea plus the enclosing surface afea is
equal to the total sum of the polygon afeas of all the
voxels of the solido Notice that the above-mentioned
relation is preserved for solids having holes and inner
holeso

By Eqo (1), the contact surface afea is:

A - aFn - A
c - ~2 o

(2)

The contact surlace arca is maximized by a digital
cube. In the digital domain, when we are using regular
hexahedrons the contact surface afea is maximized to
the forro of the used polyhedron. Thus, if the solids are
described using voxels (F = 6) the contact surface afea
is maximized by a digital cube. Figo 1 shows this: in the
figures l(a) and (b) we show a digital cube and a digital
sphere composed of 19,683 voxels each oneo The cube
root of 19,683 is a positive integer: .q'19683 = 27, Le.
19,683 is a perfect cubeo The contact surface afea for
this digital cube is equal to 56,862 and for this digital
sphere is equal to 56,4530 Notice that the maximum
contact surface afea belongs to the digital cubeo Here
we do not prove this, we only illustrate ito

The mínimum contact surlacearcaACminfor a salid
composed of n voxels is given by:

ACmin = a(n - 1); (3)

this minimum value is attained if each voxel has only one
contact face, for example when the voxels are aligned or
arranged as illustrated in Fig. 2(0)0

The maximum contact surlace arca Acma~ for a salid

composed of n voxels, where n = m3 is a perfect cube,
is easily obtained from Eqo (2):

Acma~= 3a(m3 - m2)0 (4)

If n is not a perfect cube, say mr < n < m~ for some
successive integers mI and mI, then:

3a(mr - mi) < Acma~ < 3a(m~ - mD, (5)

and a rough estimate of Acma~ is given by

Acma~ ~ 3a(n - {.In)2)0 (6)

Figo 2 shQWSexamples of solids composed of 27 vox-
els each oneo Notice that the maximum contact surface
afea corresponds to the salid in Fig. 2(a), its value is
54 and may be obtained by Eqo (4)0 Figures 2(b), (c),
(d),o..,(o) show different examples of solids which have
descending contact surface afeas in steps of 20 Thus, for
each salid in Figo 2 we have: (a) Ac = 54 and A = 54;
(b) Ac = 52 and A = 58; (c) Ac = 50 and A = 62; 000

; (o) Ac = 26 aqd A = 1100 Notice that the values of
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A simple algorithm for eliminating the hidden faces
of a salid S of n voxels is as follows. Assume the vox-
els are unit cubes. Let P be the smallest rectangular

parallelepiped containing S and let the lengths of its 5
sides be denoted a, fJ, and 'Y. A three-dimensional bi-
nary matrix M of afJ"r elements is used to represent
P and S. The elements of M correspond in the obvi-
ous way to the voxels of P, and an element of M is 1
if and only the corresponding voxel is in S. Each ele-
ment of lv[ is visited once following a natural arder and a
bounded number of operations (simple boolean compar-
isons and writings to an ouput file). Thus, the time (and
the space) complexity of the algorithm is O(afJ'Y)' The
worst-case complexity is O(n3), it is achieved for solids
like the one shown in Fig. 2(0) when a = fJ = 'Y~ n/3.
The best-case complexity is O(n), obviously this is the
case when afJ'Y = n (Le. when S = P, as for the cube

shown in Fig. 2(a)). In applications as the one to be A k 1
presented in the next section, it is common that each S e now edgements
fills more than a constant fraction of its corresponding
P, thus afJ'Y :::; kn holds for the consídered family of
solids and the complexity is O(n).

the contact surface afeas of the solids in Fig. 2 are de-
creasing in steps of 2 whereas the values ofthe endosing
surface afeas are increasing in steps of 4. The mínimum
contact surface afea belongs to the salid presented in
the Fig. 2(0), its contact surface afea is 26, which may
be obtained using the Eq. (3). The contact surface afea
decreases linearly.

3 The ProposedMethod for Plot-
ting Solids

The endosing surface afea of a salid corresponds to the
sum of the afeas of visible faces of the solido On the
other hand, the contact surfaces correspond to the hid-
den faces of the solido Therefore, when a salid is plotted
the contact surfaces must be eliminated from the plot-
ting, this decreases the computation greatly. Thus, the
number of hidden faces which must be eliminated of
any plotting is equal to 2Ac. Subsequently, the visible
faces of the salid are represented in a standard vector
file format, this produces a wireframe plotting in which
all Hiles are represented, induding those that would be
hidden by faces. To eliminate these hidden Hiles from
the plotting, the HIDE command is used (which is pro-
grammed in most 3D CAD software). The final efIect is
that objects are plotted as opaque solids.

4 Results

In this section, we present an example of digital eleva-
tion models of "El Valle de México". Those models are
digital representations of the Earth's surface. Gener-
ally speaking, a digital elevation model is generated as
a uniform rectangular grid organízed in profiles. In this
case, the digital elevation models are represented as rigid
solids composed of a large number of voxels (Karabassi
et al., 1999). The digitalization of these models is based
on 1:250,000 scale contours.

Fig. 3 shows the digital elevation model of the vol-
cano "Iztaccíhuatl". This volcano is to the east of "El
Valle de México" and what is shown is the western sirle
ofthe mountain. In Fig. 3(a) the volcano is represented
by a 3D mesh of 200 x 200. The elevation data val-
ues of the model presented in this study were increased
to enhance their characteristics. Fig. 3(b) illustrates
the volcano as a rigid salid composed of 960,903 vox-
els, where A = 121,544 and Ac = 2,821,937 ((6) gives
Ac"",z ~ 2,853,496). Therefore, the number of hid-
den faces which were eliminated is equal to 5,643,874.
When the volcano has this representation it is possi-
ble to use morphological operators to erode it, simplify
binary salid data, and preserve essential shape charac-
teristics (Bribiesca, 1998). Of course, when we are using
morphological operators all the amount of information
of the binary salid is considered. Notice that in Fig. 3
(c) the volcano Iztaccíhuatl represented as a binary salid
was cut across to present its interior without inner faces,
which were eliminated using the proposed method.

Conc1usions

Using the concept of contact surfaces a fast and effi-
cient method for plotting rigid solids composed of a large
number of polyhedrons, is defined. Suggestions for fur-
ther work: prove the concept of contact surfaces for rigid
solids using difIerent polyhedrons (which cover up space,
for instance non-regular octahedrons) , in arder to obtain
a better representation and plotting; when we are work-
ing in the digital domain using rigid solids composed of
polyhedrons, demonstrate that the contact surface afea
is maximized to the forro of the used polyhedron.

This work was in part supported by the REDIl CONA-
CYT. Digital elevation model data used in this study
were provided by INEGI. We thank the anonymous ref-
erees for their valuable comments.
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Figure 1. The contact surface afea is maximized by a digital cube: (a) a digital cube composed of 19,683 voxels, its contact surface
afea is equal to 56,862; (b) a digital sphere composed of 19,683 voxels, its contact surface afea is equal to 56,453.
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Figure 2. Contact surface afeas in descending order for different solids composed of27 voxels aech Que: (a) the maximum contact
surface afea; (b); (e); (d);...; (o) this example ofsolid has fue minimum contact surface afea.
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(a)

(b)

(e)

Figure 3: The digital elevation model ofthe vo1cano «Iztaccihuat1»: (a) represented by a 3D mesh of200 x 200 elements; (b)

composed of960,903 voxels; (c) the vo1cano without inner faces.
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