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Abstract

We present a fast and efficient method for plotting rigid solids
composed of a large number of voxels. This method is based
on the concept of the contact surface area. The contact surface
area corresponds to the sum of the contact surface areas of
the face-connected voxels of solids. A relation between the
area of the surface enclosing the volume and the contact
surface area is presented. We analyze the minimum and
maximum contact surface areas. Finally, we present a result
solid of the real world

using a binary
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Resumen

Se presenta un método rdpido y eficiente para graficar obje-
tos sélidos y rigdos compuestos por un gran nimero de
voxels. Este método se basa en el concepto del area de super-
ficie de contacto. El drea de superficie de contacto corres-
ponde a la suma de las dreas de las superficies de contacto
de los voxels vecinos de los sdlidos. La relacién entre la
superficie envolvente y la de contacto del volumen es defini-
da. Se analizan las dreas de las superficies de contacto mini-
mas mdximas. Finalmente, se presenta un resultado del mé-

todo usando datos reales de un sdélido binario.

Palabras clave: S6lidos Binarios, Objetos Voxelizados y
Graficacion.

1 Introduction

The study of rigid solids is an important part in com-
puter vision. In the content of this work, we present the
concept of contact surface area for rigid solids composed
of voxels (Bribiesca, 1998). Thus, solids are represented
as 3D arrays of voxels which are marked as filled with
matter. The representation of solids by means of spatial
occupancy arrays can require much storage if resolution
is high, since space requirements increase as the cube
of linear resolution (Ballard and Brown, 1982). Never-
theless, at present with the declining cost of computer
memory and storage devices, explicit spatial occupancy
arrays are often used. An advantage of using this kind
of representation is that slices through objects may be
easily produced.

Several authors have been using different kinds of
representations for solids: rigid solids represented by
their boundaries or enclosing surfaces are shown in Re-
quicha (1980) and Besl and Jain (1985); constructive
solid geometry schemes are presented and analized in
Voelcker and Requicha (1977) and Boyse (1979); gener-
alized cylinders as 3D volumetric primitives are shown
in Soroka (1979), Soroka and Bajcsy (1976), and Brooks
(1983); and superquadrics in Pentland (1986).

Solid objects are normally represented by their en-
closing surfaces, commonly defined as graphics primi-
tives. In this manner, the interior of a solid object is
not explicity represented. On the other hand, solid ob-
ject voxelization has not been sufficiently studied (Fang
and Chen, 2000). Voxelization is mainly used as a pre-
processing step in the current volume graphics process.
The voxelization process needs to be done on-the-fly af-
ter each change of the model for volume rendering and
other volume-related applications. In order to support
dynamic scenes and interactive applications, it is neces-
sary that fast voxelization algorithms be used (Manohar,
1999). This work deals with a fast method for plotting
voxel-based objects.
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This paper is organized as follows. In Section 2 we
give a set of concepts and definitions and present the
contact surface area and its relation to the enclosing
surface area. In Section 3 we give the method here
proposed for plotting rigid solids composed of a large
number of voxels. Section 4 presents some results us-
ing digital elevation models as rigid solids and finally, in
Section 5 we give some conclusions.

2 Concepts and Definitions

In order to introduce our concept of contact surface
area we use volumetric representation for rigid solids
by means of spatial occupancy arrays. Thus, the solids
are represented as 3D arrays of voxels which are marked
as filled with matter. Furthermore, shape is referred as
shape-of-object, and object is considered as a geometric
solid composed of voxels.

In the content of this work, area is a numerical value
expressing 2D extent in a plane, or sometimes it is used
to mean the interior region itself (Karush, 1989). An-
other consideration is the assumption that an entity has
been isolated from the real world. This is called the rigid
solid, and is defined as a result of previous processing.
In this work, the length of all the edges of voxels is con-
sidered equal to one.

In this section, we define the contact surfaces for
rigid solids composed of voxels. Also, we define the re-
lation between the contact surface area and the area
of the surface enclosing the volume. This relation be-
tween the areas of the surfaces can be used in different
polyhedrons, which cover up space. In this case, we
demonstrate the above mentioned using hexahedrons.
In order to introduce our plotting method, a number of
geometrical concepts are defined below:

The area A of the enclosing surface of a rigid solid
composed of a finite number n of voxels, corresponds to
the sum of the areas of the external plane polygons of
the voxels which form the visible faces of the solid.

The contact surface area A, of a rigid solid composed
of a finite number n of voxels, corresponds to the sum
of the areas of the contact surfaces which are common
to two voxels.

The relation between the areas of the enclosing sur-
face and the contact surface. For any binary solid com-
posed of n voxels, the relation between the areas is de-
fined by:

24, + A = aFn, (1)

where A, is the contact surface area, A is the area of
the enclosing surface, a is the area of the face of the
voxel (a = 1 is assumed in the forward examples cor-
responding to figures 1 to 3), and F is the number of
plane polygons or faces of the voxel (Bribiesca, 2000).
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Geometrically, it means that the sum of two times the
contact surface area plus the enclosing surface area is
equal to the total sum of the polygon areas of all the
voxels of the solid. Notice that the above-mentioned
relation is preserved for solids having holes and inner
holes.

By Eq. (1), the contact surface area is:

afn— A
ez )

The contact surface area is mazimized by a digital
cube. In the digital domain, when we are using regular
hexahedrons the contact surface area is maximized to
the form of the used polyhedron. Thus, if the solids are
described using voxels (F' = 6) the contact surface area
is maximized by a digital cube. Fig. 1 shows this: in the
figures 1(a) and (b) we show a digital cube and a digital
sphere composed of 19,683 voxels each one. The cube
root of 19,683 is a positive integer: /19683 = 27, i.e.
19,683 is a perfect cube. The contact surface area for
this digital cube is equal to 56,862 and for this digital
sphere is equal to 56,453. Notice that the maximum
contact surface area belongs to the digital cube. Here
we do not prove this, we only illustrate it.

A=

The minimum contact surface area A, for a solid
composed of n voxels is given by:
Atmin = a(n —1); 3)

this minimum value is attained if each voxel has only one
contact face, for example when the voxels are aligned or
arranged as illustrated in Fig. 2(o).

The mazimum contact surface area A, for a solid
composed of n voxels, where n = m? is a perfect cube,
is easily obtained from Eq. (2):

Acy.., = 3a(m® — m?). @
If n is not a perfect cube, say m? < n < md for some
successive integers m; and m;, then:

3a(mi - mi) < Ac,.. < 3a(m}-m3), (5

and a rough estimate of A is given by

Cman

At pon ~ 3a(n — n)?). (6)

Fig. 2 shows examples of solids composed of 27 vox-
els each one. Notice that the maximum contact surface
area, corresponds to the solid in Fig. 2(a), its value is
54 and may be obtained by Eq. (4). Figures 2(b), (c),
(d),-..,(0) show different examples of solids which have
descending contact surface areas in steps of 2. Thus, for
each solid in Fig. 2 we have: (a) A, = 54 and A = 54;
(b) A; =52 and A = 58; (c) A, = 50 and A = 62; ...
; (0) A; = 26 and A = 110. Notice that the values of
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the contact surface areas of the solids in Fig. 2 are de-
creasing in steps of 2 whereas the values of the enclosing
surface areas are increasing in steps of 4. The minimum
contact surface area belongs to the solid presented in
the Fig. 2(0), its contact surface area is 26, which may
be obtained using the Eq. (3). The contact surface area
decreases linearly.

3 The Proposed Method for Plot-
ting Solids

The enclosing surface area of a solid corresponds to the
sum of the areas of visible faces of the solid. On the
other hand, the contact surfaces correspond to the hid-
den faces of the solid. Therefore, when a solid is plotted
the contact surfaces must be eliminated from the plot-
ting, this decreases the computation greatly. Thus, the
number of hidden faces which must be eliminated of
any plotting is equal to 2A,. Subsequently, the visible
faces of the solid are represented in a standard vector
file format, this produces a wireframe plotting in which
all lines are represented, including those that would be
hidden by faces. To eliminate these hidden lines from
the plotting, the HIDE command is used (which is pro-
grammed in most 3D CAD software). The final effect is
that objects are plotted as opaque solids.

A simple algorithm for eliminating the hidden faces
of a solid S of n voxels is as follows. Assume the vox-
els are unit cubes. Let P be the smallest rectangular
parallelepiped containing S and let the lengths of its
sides be denoted a, 3, and 7. A three-dimensional bi-
nary matrix M of «fB7 elements is used to represent
P and S. The elements of M correspond in the obvi-
ous way to the voxels of P, and an element of M is 1
if and only the corresponding voxel is in S. Each ele-
ment of M is visited once following a natural order and a
bounded number of operations (simple boolean compar-
isons and writings to an ouput file). Thus, the time (and
the space) complexity of the algorithm is O(aBv). The
worst-case complexity is O(n?), it is achieved for solids
like the one shown in Fig. 2(0) when o = 8 = v &~ n/3.
The best-case complexity is O(n), obviously this is the
case when afy = n (i.e. when S = P, as for the cube
shown in Fig. 2(a)). In applications as the one to be
presented in the next section, it is common that each S
fills more than a constant fraction of its corresponding
P, thus af8y < kn holds for the considered family of
solids and the complexity is O(n).

4 Results

In this section, we present an example of digital eleva-
tion models of “El Valle de México”. Those models are
digital representations of the Earth’s surface. Gener-
ally speaking, a digital elevation model is generated as
a uniform rectangular grid organized in profiles. In this
case, the digital elevation models are represented as rigid
solids composed of a large number of voxels (Karabassi
et al., 1999). The digitalization of these models is based
on 1:250,000 scale contours.

Fig. 3 shows the digital elevation model of the vol-
cano “Iztaccihuat]”. This volcano is to the east of “El
Valle de México” and what is shown is the western side
of the mountain. In Fig. 3(a) the volcano is represented
by a 3D mesh of 200 x 200. The elevation data val-
ues of the model presented in this study were increased
to enhance their characteristics. Fig. 3(b) illustrates
the volcano as a rigid solid composed of 960,903 vox-
els, where A = 121,544 and A, = 2,821,937 ((6) gives
Aca. & 2,853,496). Therefore, the number of hid-
den faces which were eliminated is equal to 5,643, 874.
When the volcano has this representation it is possi-
ble to use morphological operators to erode it, simplify
binary solid data, and preserve essential shape charac-
teristics (Bribiesca, 1998). Of course, when we are using
morphological operators all the amount of information
of the binary solid is considered. Notice that in Fig. 3
(c) the volcano Iztaccihuatl represented as a binary solid
was cut across to present its interior without inner faces,
which were eliminated using the proposed method.

5 Conclusions

Using the concept of contact surfaces a fast and effi-
cient method for plotting rigid solids composed of a large
number of polyhedrons, is defined. Suggestions for fur-
ther work: prove the concept of contact surfaces for rigid
solids using different polyhedrons (which cover up space,
for instance non-regular octahedrons), in order to obtain
a better representation and plotting; when we are work-
ing in the digital domain using rigid solids composed of
polyhedrons, demonstrate that the contact surface area
is maximized to the form of the used polyhedron.
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Fiznesil, The contact surface area is maximized by a digital cube: (a) a digital cube composed of 19,683 voxels, its contact surface
area is equal to 56,862; (b) a digital sphere composed of 19,683 voxels, its contact surface area is equal to 56,453.
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Figure 2. Contact surface areas in descending order for different solids composed of 27 voxels aech one: (a) the maximum contact
surface area; (b); (c); (d);...; (o) this example of solid has the minimum contact surface area.
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Figure 3: The digital elevation model of the volcano «Iztaccihuatly: (a) represented by a 3D mesh of 200 x 200 elements; (b)
composed of 960,903 voxels; (¢) the volcano without inner faces.
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