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Resumen

Presentamos un algoritmo novedoso para el cdlculo de flujo
dptico basado en la suma de diferencias al cuadrado de pun-
tos correspondientes, con un término de relajacion que per-
mite eliminar observaciones erréneas. Este algoritmo sola-
mente necesita irformacion de un par de cuadros y es robus-
to en presencia de ruido. Se presenta también su aplicacion
enregistro de imdgenes cerebrales de resonancia magnética,
con informacion de atlas cerebrales para realizar la segmen-

tacién cerebro / no-cerebro de un espécimen dado.

Palabras Clave: Flujo Optico FO, Registro de Imagenes Rl e
Imégenes de Resonancia Magnética IRM.

Abstract

We present a new algorithm for computing the optical Flow
which is based in the sum of squared difference between two
points and we add a rest condition in order to eliminate
outliers. This algorithm only needs a couple o frames and is
very robust in presence of noise. We present his application
in the register task of Magnetic Resonance Images of human
heads with brain atlas in order to do the head segmentation
in brain and no brain.

Keywords: Optical Flow OF, Image Registration IR and
Magnetic Resonance Images MRI.

Introduccion

El campo de movimiento representa el movimiento real de un
objeto que se desplaza en un escenario tridimensional. Pro-
yectado sobre un plano, obtenemos un conjunto de vectores
de velocidad para cada punto, correspondiente al movimien-
to de la imagen que se observa. Esta es la cantidad que nos
interesa determinar en una secuencia de imagenes. El flujo
optico (FO) se define como el movimiento aparente de un
patron de brillo; esto es lo que realmente observamos cuando
un objeto se desplaza, pero también se puede deber al cambio
en la condiciones de iluminacién del escenario, por lo que el
flujo Optico y el campo de movimiento son iguales solo si el
objeto no cambia su irradiancia en el plano de la imagen, mien-
tras se mueve sobre la escena.

El flujo éptico es un campo vectorial bidimensional, que
calcularemos para una secuencia de imagenes (por ejemplo
una secuencia de video). En la literatura existen muchos mé-
todos para calcular el flujo optico, los cuales pueden ser cla-
sificadas en tres grupos principalmente: aquellos basados en
derivadas; aquellos basados en energia espaciotemporal y fi-
nalmente los basados en suma de diferencias al cuadrado (SSD
Sum of Squared Differences).\ En este articulo revisaremos
algunos de estos métodos para finalmente hacer nuestra pro-
puesta para calcular el flujo optico. Una revision mas com-
pleta de métodos para calculo de FO puede encontrarse en
[Barron et al., 1994].

Métodos Basados en Derivadas

En la literatura tenemos algunos métodos basados en prime-
ras derivadas ([Fennema & Thompson, 1979], [Nagel, 1983],
y [Horn, 1986]) y otros basados en segundas derivadas ([Nagel,
1987], [Tretiak & Pastor, 1984}y [Uras et al., 1988]). Ambos
intentan dar un modelo para el calculo del FO y en general
utilizan la serie de Taylor; el planteamiento es: Dada una se-
cuencia de imagenes g={g/,g2,...gN}definiremos a gn(xi,yi)
como el valor de tono de gris del i-esimo punto ri=[ xi,yi]T
dentro del dominio L, a tiempo ¢=n. La hipdtesis es conside-
rar que la iluminacién del escenario permanece constante y
que el cambio del tono de gris se debe al movimiento aparen-
te de los objetos, por lo cual, permanece constante para
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el punto r; desplazado por un vector Vi = [w, vi]T.
Gn(ri + Vi) = gny1(r)

Consideramos que las imégenes fueron muestreadas
con periodo T'; en una, secuencia de video el valor tipi-
co del periodo de muestreo es de 1 /30 seg., por lo
que, considerar que el desplazamiento de los objetos
es pequeno es una hipétesis valida. Bajo estas consi-
deraciones aplicar la expansién en serie de Taylor para
linearizar g, es viable y asf obtener una ecuacién dada
por

In(7i) + Dagn(i)u; + Dygn(r:)v; + €

= On+1 (7’1’)

donde e; representa el error de truncamiento el cual
despreciaremos y D,, D, y D; son los operadores de
derivacién con respecto a z, y y t. Reduciendo obte-
nemos una ecuacién lineal dada por.

Dygn(ri)ui + Dygn(ri)vi + Dign(rs) =0 (1)

Esta ecuacién es llamada la ecuacién restrictiva pa-
ra flujo 6ptico, ya que impone una restriccién a las
componentes u; y v; de dicho vector. Si trazamos la
ecuacién (1) en un espacio con ejes u; ¥y v;, existe un
nimero infinito de soluciones para el flujo 6éptico del
¢ —esimo punto, sobre la lfnea recta correspondiente a
la ecuacién restrictiva, es decir tenemos un sistema, de
ecuaciones mal planteado ya que tenemos una ecua-
cién y dos variables a determinar para cada punto de
la imagen.

Restriccién de suavidad de Horn.

En [Horn, 1986] se propone un término que penaliza la
magnitud del gradiente del vector de desplazamiento
|VV;|, restriccién de suavidad que permite tener un
sistema bien planteado y dar una solucién tnica, a la
ecuacién restrictiva (1). Utiliza la ecuacién restrictiva,
como criterio de error; si un punto cumple con esta
ecuacién su contribucién al error global sera nula y el
problema del calculo del FQ, lo traduce en minimizar
una ecuacién de energfa dada como la suma de los
errores al cuadrado para todos los puntos de la imagen
més un término de suavidad:

UWV)=XY_(Vga(ri) - Vi+ Dugn (r:))’  (2)
t€L

1 2
+Z Z |VVi]
el
donde Vg, es el gradiente espacial de la imagen y A
es el pardmetro de regularizacién que permite cambiar
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las condiciones de suavidad del campo vectorial dado
por u y v, asf pues si A = 0 tendremos un campo extre-
madamente suave (una constante) y por el contrario
si A >> 0 el FO serd consistente con la ecuacién res-
trictiva. La ecuacién de energfa dada por (2), es una
funcién unimodal, ya que, nuestro criterio de error es
cuadrético.

El sistema de ecuaciones a resolver, serd del doble
del tamafio de la imagen. La solucién directa es im-
posible para las dimensiones de una imagen tipo y
en su lugar se propone solucionar utilizando un es-
quema iterativo como es el método de Gauss-Seidel
[Kelley, 1995];

u§k+1) _ %(k)

_ Dygr (7’1')%@ + Dygn (7'1‘) 5516) + Dign (Ti)
L4 X [(Daga (r)* + (Dygn (r0))?]

oD — o)

Dygn (7'11)

_Dwgn (rs) ﬂgk) + Dygn (Ti)ﬁgk) + Dign (14)
14X [(Dagn (r))? + (Dygn ()]

Dygn (r3)

(3)
donde "dgk) y 52’“) son el promedio de los 4 vecinos del
1 — estmo punto en la iteracién k.

Algoritmos basados en agrupamiento.

Considerando que todas las particulas de un objeto
se mueven con el mismo patrén de velocidad (condi-
cién de cuerpo rigido), podemos verificar que mas de
un pixel de nuestra imagen cumplird con la misma
ecuacién restrictiva ([Fennema & Thompson, 1979],
[Schunck, 1989] y [Nesi et al., 1995]). Nuestra tarea
consiste en graficar la ecuacién restrictiva sobre un
plano cuyos ejes son las componentes del vector de
flujo dptico u y v. Los grupos (cluster) los encontra-
remos contando para cada punto [u;,v;] del plano de
velocidad el nimero de ecuaciones que lo intersectan.
Los grupos que escogemos son aquellos con el mayor
nimero de intersecciones. La solucién para estos méto-
dos estard limitada a translaciones y dependers de la
discretizacién que se haga del espacio de velocidades.

Métodos basados en Energia espacio-
temporal.

Introduciendo el dominio espacio tiempo, tenemos la
ventaja de analizar el movimiento usando la transfor-
mada de Fourier, en un espacio de frecuencia &, w. Co-
mo ejemplo consideremos una secuencia de imégenes
en la cual todo se mueve a velocidad constante, de
modo que una secuencia f(r,t) puede ser escrita como

f(’f‘, t) = gn('r + Vt)
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la transformada de Fourier para esta ecuacién eg
1
Fk,w) = —3 //gn(r + Vit)e *re~vtdrdt
(27(') tJr

haciendo el cambio de variable =7 + V¢

(21)3 / {/gn(?)e_k?d?} ekVto—ut gt
7 t T

(k) ekVte—wtdt
"~ @)
donde G, (k) es la transformada de Fourier de g,(7)

y el término e*V? tiene como transformada de Fourier
6 (kV —w). Asf que

Fk,w) =

F(k,w) =

Gn (k)6 (kV — w) (4)

De la ecuacién 4 podemos concluir que el espectro de
energfa de una secuencia de imédgenes que se desplaza
con una velocidad constante, se concentra en una lfnea
recta dada por KV — w.

En trabajos como [Adelson & Bergen, 1986],
[Barman et al., 1991], [Bigun et al., 1991],
[Haglund, 1992], [Heeger, 1987] y [Jahne, 1987,
se hace uso de una familia de filtros de energfa
espaciotemporales para determinar patrones de
movimiento en secuencias de imdgenes basados en
esta idea. En particular [Heeger, 1987] utiliza un
conjunto de 12 filtros de Gabor entonados en dife-
rentes frecuencias con el propésito de cubrir todo el
espectro de frecuencias. Estos métodos no pueden
utilizar un nimero reducido de marcos, ya que limita
la discretizacién del dominio de la frecuencia.

Sistema basado en SSD.

La Suma de diferencias al cuadrado (SSD), la pode-
mos definir como una medida de proximidad entre dos
imdgenes consecutivas de una secuencia de video, en
una expresién de la forma:

Dl (ri+Vi)—g2 () (5)

iel

S8D(u,v) =

En la siguientes subsecciones daremos detalles de al-
gunos algoritmos del estado del arte basados en esta
ecuacién y en la seccién presentaremos nuestro algo-
ritmo, basado también en SSD.

Meétodos basados en correspondencia de regio-
1es.

Los  métodos basados ~ en
cia [Anadan, 1989),

[Glazer et al., 1983], [Little et al., 1988] y
[Little & Verri, 1989], localmente encuentran el
vector de desplazamiento V' = [u,v] entre dos

corresponden-
[Burt et al., 1983,

imdgenes g; y go para una cierta posicién r = [z,v]
minimizando la funcién SSD

SSD(V) =Y " w(s) x [g1 (r +8) = g2 (r + s + V)]
seWw

donde w(s) es la funcién de pesos. En esta funcién
SSD, la suma es llevada a cabo es una ventana de
tamafio (2k + 1)? centrada en r = [z,y] y s son los
puntos dentro de w.

Muchos métodos basados en corresponden(na reali-
zan una bisqueda de un vector de desplazamiento
[«,v] en un conjunto finito de pares y seleccionan aquel
par que minimice la funcién SSD. Este método no
tendrd problemas con derivadas pero la exactitud del
método esta limitada por la discretizacién del espacio
de busqueda.

Minimos cuadrados
Este método es aplicado por [Lucas & Kanade, 1981]
y [Tomasi & Kanade, 1991]. El problema consiste en

encontrar el desplazamiento V=
el residuo

[@,7] que minimiza

Z {gn (”'i + ‘7> ~ Gn+1 (Ti)]z

14

donde W, (W C L) es una pequeiia ventana de la ima-~
gen, centrada en el punto para el cual deseamos calcu-
lar el FO. Aplican expansién en serie de Taylor y ob-
tienen un sistema sobredeterminado

Dzgy, (7'1) Dygn (7'1) . ~Dqg, (7'1)
D:t.gn (TZ) Dygn (7"2) |:"u,\:| — _Dtgn (7’2)
Dagn (rm) Dyg (i) ~Dign (r:)

en forma matricial
GV =e

cuya solucién es la solucién de minimos cuadrados da-
do por
V=676 GTe (6)
Debido al problema de la apertura, cuando se quie-
re realizar el seguimiento de un objeto (Traking),
no todos los puntos son buenos candidatos. En
[Shi & Tomasi, 1994] proponen utilizar la informacién
de la matriz [GTG], conocida también como tensor de
estructura para determinar los mejores puntos para
realizar seguimiento. Llaman a A1 y Ay los eigenvalo-
res de [GTG’] y consideran que un punto'es candidato
a representar una caracterfstica para seguimiento si
min [A1, Ag] > A¢, donde A, es un umbral, de acuerdo
con esto, las esquinas de los objetos en movimiento son
buenos puntos para realizar seguimiento.
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Existirdn algunos casos donde la hipétesis de tras-
lacién pura no es suficiente. En tal caso plantean una
transformacién afin que tiene la capacidad de manejar
escalamiento, cizallamiento, rotacién, etc. modifican-
do los pardmetros de una matriz A y traslacién en un
vector V' en un sistema de la forma

Z [gn (Ari + V) — n41 ('ri)]z

iEW

como se presenta en [Tommasini et al., 1998].

La solucién de minimos cuadrados tiene el incon-
veniente de ser sensible a los datos atipicos (ou-
tlier). Una manera de resolver el sistema plan-
teado por (6) sin tener problemas con datos atfpi-
cos es utilizar métodos como “El mfnimo de la me-
diana de los cuadrados” (Least Median of Squa-
res Regression ver [Rousseeuw, 1984] ) como propone
[Bab-Hadiashar & Suter, 1996].

SSD-Spline

En [Szeliski & Coughlan, 1994] utilizan la funcién SSD
y un modelo bidimensional de interpolacién (spline)
para representar el flujo 6ptico, la funcién resultan-
te la minimizan utilizando el algoritmo de Levenberg-
Marquardt [Scales, 1984]. En este esquema solo es ne-
cesario resolver para un subconjunto de pixeles a los
que denominan puntos de control y la solucién sobre
los demds puntos se calcula utilizando funciones de in-
terpolacién.

SSD-BR

En [Lai & Vemuri, 1998] adicionan un término de re-
gularizacién, a la ecuacién (5), sobre la magnitud
del gradiente del vector de velocidad |VV;| (como en
[Horn, 1986]) y una heurfstica para normalizar las de-
rivadas de la imagen respecto al vector de velocidad,

dada por:
1

(G, +C,+9 ()

donde .

Goi = é [391 (ri +V5) + 0go (Ti)}

6az,~ 3371‘

a . -1 [391 (ri+ Vi) | Oge ("'i)]
wte2 Oyi Oy;
v ¢ es una constante para evitar gradientes inconsis-
tentes. Consideran que el factor de normalizacién (7)
es constante en cada iteracién y lo actualizan con los
valores de (u;,v;) de la iteracién anterior. Finalmente
llegan a un sistema de ecuaciones dado por

1 g1 (ri + Vi) — g2 (r:)
D G+ G+

U = Ug — Dug1 (Ti + V;) (8)
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Lot Vi) —ga(re)
4 G +G2i+c

vy =T; — w91 (ri + V3)

donde D, = Biui y D, = a%i . Dicho sistema lo
resuelven utilizando Gradiente Conjugado no-lineal
[Gill et al., 1981]. En {Lai & Vemuri, 1998] muestran
experimentalmente, que este algoritmo supera a todos
los algoritmos analisados en [Barron et al., 1994].

Algoritmo SSD-ARC.

Tener precisién en el calculo de las derivadas numéri-
cas resulta imposible debido al ruido o porque se tiene
un pequefic ndmero de marcos, y utilizar la expansién
en serie de Taylor limita a resolver desplazamientos
pequefios. En estos casos los métodos basados en de-
rivadas son inapropiados y es natural pensar en un
método basado en correspondencia de regiones. Pero
si lo que queremos es un método que calcule el flujo
6ptico en toda la imagen, resulta impractico limitar a
una ventana y a un conjunto finito de valores.

Por otro lado los algoritmos basados en Agrupa-
miento resuelven dnicamente translaciones y su preci-
si6n esta limitada por la discretizacién del espacio de
bisqueda, al igual que los algoritmos basados en Ener-
gia espaciotemporal requeriran de mds de dos marcos
de la secuencia.

En general los algoritmos SSD son sensibles a ruido;
el método de [Lai & Vemuri, 1998] es el estado del arte
en algoritmos de FO, ya que la heurfstica que propone
lo hace robusto, sin embargo, esta heuristica dificulta
su interpretacién y no esta basado en la minimizacién
de una funcién de energfa.

En este trabajo proponemos un nuevo algoritmo ro-
busto al ruido, que resuelve grandes desplazamiento,
utiliza informacién de solo un par de marcos y estd
basado en la minimizacién de una funcién de energfa.

En nuestro enfoque hacemos una analogfa fisica de
la ecuacién (5), suponiendo que representa la energia
potencial almacenada en un conjunto de resortes, don-
de la longitud del resorte representa el error entre dos
iméagenes g1 (r; +V;) v g2 (ri) para un desplazamien-
to Vi = [us,v], y una constante del resorte igual a
dos. Nuestro propésito es minimizar la energia total
del sistema dada como la suma de la energfa de cada
resorte. Cuando tenemos ruido, la contribucién de un
solo punto a la energfa global puede ser muy grande,
as{ que, nos interesa tener un indicador para relajar
la condicién del resorte y/o eliminar su contribucién
al error global. Para determinar qué puntos queremos
eliminar proponemos usar como criterio una funcién
basada en la magnitud del gradiente de las imdgenes,
ya que esta actda como detector de bordes y ruido.

Asf pues para el calculo del FO, proponemos utili-
zar una funcién de energia basada en un sistema de
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resortes con condicién de reposo adaptable (ARC por
la siglas en inglés Adaptive Rest Condition), esta idea
esta basada en [Rivera & Marroquin, 2000].

La forma mas general de la funcién de energfa SSD-
ARC es:

Ussp-arc(Vsl) = Y [E(V;) = LH(V)?  (9)

i€l
Ap 2 2
7 Z|VV;| -Hf'zli
ieL i€L
con
H(V:) = Vg1 (r: + Vi)
y

E (Yz‘) = g1 (ri + Vi) — g2 (rs)

donde E(V;) es el término de error y depende del vec-
tor de desplazamiento V; y el producto de las funciones
H(V;) y l; es la condicién de reposo del resorte, y es
puesta de esta manera (como el producto I;H) para
tener la posibilidad de controlarla con un pardmetro
de regularizacién p. La constante de regularizacién del
gradiente %4“—‘, es puesta asf para simplificar la formu-
lacién final.

Nos interesa encontrar los valores de V; y [; que mini-
micen la funcién de energfa Ussp_4rc(V,1). Comen-
cemos por minimizarla con respecto a ;. Derivando e
igualando a cero obtenemos:

[E(Vi) = LH(V)] [-H (Vi) + pli = 0

despejando obtenemos una formula cerrada para I; da-
da por

. _ BOAH(V)

Y ont+HA(V:)

Ahora minimizamos con respecto a V;. Derivando e
igualando a cero obtenemos:

[E(Vi) - LH(V))[VE(V;) — LVH(V;)]

A
= 2 -V
JEN;

sustituyendo el valor de I; en la expresién anterior

[E(VO (1 ~ ﬁ% )] : (10)
[VE(W) ~ (%)g%) VH(Vi)]
= —-ApV; + AV |

donde V; es el promedio de los V; para todos los 7 en
la vecindad de 1.

Es importante notar en este momento que el pri-
mer término de la ecuacién (10), puede ser minimi-
zado cuando encontramos los valores de V; que ha-
cen pequefio a E(V;) pero si existe ruido en la im4ge-
nes g, no serd posible lograrlo. Note que la funcién
(1 - %) toma valores dentro del intervalo [0, 1]
lo cual la convierte en una aproximacién a una funcién
indicadora, que por supuesto debe tener informacién
de los lugares con alto error. Tendremos error en luga-
res con ruido y bordes ocluidos por lo que proponemos
una funcién H(V;) basada en la magnitud del gradien-
te. No es deseable que todas las observaciones sean
eliminadas en puntos con gradiente alto por lo que
serd importante el pardmetro de regularizacién u pa-
ra controlar las observaciones que deseamos descartar.
Para solucionar el sistema de ecuaciones utilizamos la
iteracién de Richardson (ver [Kelley, 1995]) para final-
mente tener un esquema iterativo dado por:

(k)
‘/i(k+1) :‘—/Ek) _ 1 E(V; )(k VE(V;(’V)) (11)
A+ HAV)
2

A A

+X 7 VH (V;( ))
[u +H 2(‘/}(k))]

Note que las ecuaciones (8) y (11) son muy similares,
pero a diferencia de método de [Lai & Vemuri, 1998]
nuestras ecuaciones tienen un término que corrige el
campo vectorial utilizando informacién de la magnitud
del gradiente de la imagen H(V;).

Convergencia

Para mejorar la convergencia del SSD-ARC, propone-
mos dos estrategias, una basada en el conocido espacio
de escalas y otra-que proponemos y denominamos es-
pacio de escalas paramétrico.

Espacio de Escalas.

Dado la nolinearidad de la funcién SSD se hizo una mo-
dificacién al algoritmo SSD-ARC para trabajar en el
espacio de escalas (ver [Romeny, 1994}, [Jahne, 1997]).
Para ilustrar como funciona el espacio de escalas ima-
ginemos que el tamafio de una imagen es 2K x 2X y
definamos f(¥) = g,,. La representacion de () en un
nivel grueso f5—1) es definido por un operador de re-
duccién el cual submuestrea la imagen suavizada con
un filtro pasa bajas en la escala K. Tendremos que
en la escala K — 1 la magnitud de los desplazamien-
tos es la. mitad de la magnitud de los desplazamientos
en la escala K, condicién que nos permite mejorar el
desempenio del algoritmo SSD-ARC ya que en cierto
nivel K —m los desplazamientos serdn pequefios y cer-
canos al valor inicial de “no movimiento”. En la figura
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Figura™1: Pirdmides Gaussianas de las' dos imégenes
que se desean registrar. '

1 ilustramos como se lleva a cabo el submuestreo de
la imagen de fino a grueso, 1o que en la literatura se
conoce como pirdmide gaussiana.

Los pasos a seguir para aplicar este esquema, son:

1- Damos un valor inicial para el
FO V&-m) = (0 y submuestreamos la
imagen en una cierta escala m.

2.- Calculamos el FO en la escala m utilizan-
do SSD-ARC

3.- Calculamos el valor inicial de FO en la
escala m — 1 utilizando funciones de interpo-
lacién N ; (p. e. funciones bilineales)

U,EK_m+1) =2 ZNi,ju§K_m)
J

ugK—m—I-l) — ZZNi,jU§K—m)

2

Vi e LE-m+) v vj e [(K-m)

4.- Hacemos m = m—1 y submuestreamos la
imagen en esta escala.

5.- Si m = 0 terminamos, si no regresamos a
2.

Espacio de escalas paramétrico.

Otra posibilidad para calcular el FO es determinar un
modelo de baja complejidad, por ejemplo una trans-
formacién affn [Hearn & Baker, 1997]. El modelo afin
permite modelar translaciones, rotaciones, escalamien-
tos, cizallamiento y combinaciones de estos para dar
modelos de movimiento mas complejos. El objetivo
de utilizar una transformacién afin es modelar el FO
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en toda la imagen. Para encontrar el modelo afin, re-
plantemos la suma de diferencias al cuadrado en una
ecuacién de energfa dada por:

Unip(8) = 3 g1 (M:) — ga(ro)?

i€L

(12)

donde 6 es el vector de pardmetros del modelo affn
(seis variables) y M; la matriz de coordenadas la cual
esta dada por
. TiYi 1000
M = [O 00z;y; 1

Para calcular el valor de 8 que minimiza la ecua-
cién (12) utilizamos el algoritmo de Gauss-Newton
[Dennis & Schnabel, 1996] para el cual necesitamos
dar las expresiones del gradiente y del Hessiano

VU; (6) = [g1(M;6) — ga(rs)] [MT Vg1 (M;6)]

V2U; (6) = [Vg1 (M;6)]" M;MT Vg, (M;6)

y la solucién se realiza en un esquema iterativo dado
por

-1
gk+D = (b _ lz v2Ui(0(’°>)] > vUi(e™)

i€l i€l

De pruebas numéricas, concluimos que el cédlculo del
FO utilizando un Modelo Paramétrico (MP) es mas ro-
busto ante la presencia de ruido que el SSD-ARC. Es-
to sugiere replantear el esquema multiescala planteado
en la seccién , para pasar a un nuevo esquema donde
vayamos de pocos pardmetros a muchos pardmetros,
lo cual definimos como espacio de escalas paramétri-
co. El esquema es muy sencillo: primero calculamos
el FO utilizando un modelo afin reducido (translacién
pura), luego calculamos el FO con modelo affn, para
finalmente refinar con el algoritmo SSD-ARC. El pro-
p6sito es aprovechar lo robusto del MP y acelerar la
convergencia ya que el MP consume menos tiempo que
el SSD-ARC.

El esquema multiescala seguird siendo valido en el
caso particular de FO, pero en un trabajo de registro
resulta mas inteligente aplicar esta nueva propuesta a
la cual llamaremos SSD-ARC*. En la seccién , dare-
mos algunos ejemplos de aplicacién de este algoritmo
y en concreto los pasos son:

1.- Determinamos los pardmetros de transla-
cién (8., 6,) del modelo affn.

2.- Damos como valores inicialeé a un modelo
affn, un vector {1,0,0,,0,1,8,] y calculamos
el modelo affn completo [Ag, 61, 62,83, 04,05].
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3.~ Finalmente refinamos con SSD-ARC ini-
cializando el algoritmo utilizando el vector de
pardmetros del modelo afin para calcular un
campo vectorial V(®)

WO T1-6y 6 1w L [6e

O | 83 1-64] |y 05
Aplicacién del SSD-ARC* al célculo de
FO.

Para probar el desempeiio del SSD-ARC, creamos un
par sintético a partir de una imagen con una textura
y en una pequena drea de 30 x 30 pixeles se aplico un
desplazamiento de [0.3,0.3] (figura 2a). Los métodos
que comparamos son SSD-ARC (propuesto), SSD-BR,
por ser el que da los mejores resultados hasta la fe-
cha, y Horn que es uno de los métodos cldsicos. Los
pardmetros utilizados son

Horn SSD-ARC* | SSD-BR
A =100 A=12 A=12
w =300 c¢ =300

los cuales fueron estimados empiricamente para obte-
ner el mejor desempenio posible en cada caso.

La solucién para el flujo 6ptico, utilizando el méto-
do de Horn, SSD-ARC y SSD-BR lo podemos ver en
la figura 2 (b), (¢) y (d) respectivamente. El cuadro
que se ve en las figuras corresponde al drea donde se
aplico el desplazamiento, fuera de el no hay desplaza-
miento alguno. Note que la solucién de Horn no se
limita al drea desplazada, mientras que las soluciones
del SSD-ARC y SSD-BR si estdn limitadas al cuadro
de movimiento y son muy similares.

En la tabla 1 podemos ver el promedio del
error angular (ver [Fleet, 1992], [Barron et al., 1994]
y [Lai & Vemuri, 1998]), para los métodos motivo
de andlisis, note que el algoritmo SSD-ARC* pre-
senta el valor mds bajo de error angular.- En
[Lai & Vemuri, 1998] describen el algoritmo SSD-BR
v lo comparan contra los métodos del estado del arte
citados en el trabajo de [Barron et al., 1994], ahi mis-
mo, hacen notar que este tiene el mejor desempefo.
Consideramos que al comparar contra el método SSD-
BR y ver que tenemos resultados similares la, compa-
racién contra todos los algoritmos es innecesaria.

Un ejemplo con secuencias reales es el de la secuencia
estdndar del Taxi de Hamburgo, de la cual tomamos
los marcos el 14 y el 15, ya que la solucién es calculada
sobre un par de imdgenes. Los pardmetros utilizados
fueron A = 12, u = 300 y 2 escalas. En la figura 3
tenemos en (a) y (b) los marcos 14 y 15 de la secuencia,
en (c) el FO obtenido con el algoritmo SSD-ARC y en
(d) la magnitud del FO.

G B C) N

Figura™2: (a) Par sintético, (b) Solucién utilizando
Horn, (c) Solucién con SSD-ARC y (d) Solucién utili-
zando SSD-BR.

error desviacién
Método promedio | estandar
Horn 1.708005° 3.723422°
SSD-BR 0.758651° 2.004121°
SSD-ARC* | 0.731253° 1.832659°

Tabla 1: Error promedio para los métodos de Horn,
SSD-BR. y SSD-ARC*
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Algoritmo Error Desviacién
angular | Estdndar
SSD-BR 2.381517 | 2.667920
SSD-ARC 2.740798 | 2.985091
SSD ARC* | 2.544793 | 2.966862

Tabla 2: Error angular promedio para la secuencia del
arbol divergente

Figura™3: Taxi de Hamburg. (a y b) Marcos 14 y 15
de la secuencia, (c) campo vectorial de Flujo Optico y
(d) Magnitud del FO.

Otras secuencia estdndares con las que probamos
nuestro algoritmo fueron: la del Arbol divergente (fi-
gura 4), Parque Yosemite (figura 5, } y el jardin de
la Flores (figura 6) (la dos primeras secuencias son
sintéticas y la ultima es real). Para cada una de ellas
tenemos en en las figuras (a) y (b) dos cuadros de la se-
cuencia motivo del anélisis anilisis a los que llamamos
origen y destino respectivamente, en (c) la reconstruc-
cién utilizando la imagen origen y el campo vectorial
de FO y en (d) la direccién del campo vectorial FO
y/o la magnitud de este. En todas estas secuencias se
utilizaron los siguientes pardmetros A = 20, 4 = 300 y
3 escalas. Note que todas las recostrucciones (figuras
4-(c), 5-(c) y 6-(c)) utilizando las imédgenes origen y el
campo vectorial de FO son de muy buena calidad.

Para la secuencia del arbol divergente, dado que te-
nemos el campo vectorial de flujo éptico, calculamos
el error angular promedio y la desviacién estdndar pa-
ra el algoritmo SSD-BR, SSD-ARC y SSD-ARC* los
cuales se presentan en la tabla 2.

220

Figura™4: Arbol divergente. (a y b) Marcos 20 y 21
de la secuencia, (c) Reconstruccion del Marco 21 uti-
lizando la informacién del marco 20 y el campo de FO
calculado con SSD-ARC y (d) Campo Vectorial de FO
calculado.

Figura™5: Secuencia del Parque Yosemite. (a 'y b)
Marcos 9 y 10 de la secuencia, (¢) Reconstruccion del
Marco 10 utilizando la informacién del marco 9 y el
campo de FO calculado con SSD-ARC y (d) Campo
Vectorial de FO calculado.
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Figura™6: Secuencia del Jardin de Flores.
Marcos 5 y 6 de la secuencia, (c) Reconstruccion del
Marco 6 utilizando la informacién del marco 5 y el
campo de FO calculado con SSD-ARC y (d) Magnitud
del Campo Vectorial de FO.

(ayb)

Aplicacién del SSD-ARC* a Registro de
Imdgenes.

El problema del registro es similar al problema de flujo
éptico cuando se dispone de un solo par de marcos de
la secuencia, pero a diferencia de este, cuando se re-
gistran imdgenes las deformaciones son mds grandes.
Las imégenes que nos interesan corresponden a, tejidos
humanos y son obtenidas con equipos de Resonancia
Magnética (RM). La captura del par de imdgenes se
realiza a intervalos de tiempo que son mucho mayores
que el tiempo entre pares de marcos de una secuencia,
de video; incluso, en muchas ocaciones se trata de re-
gistrar imagenes de cerebros de diferentes individuos.
Por lo tanto, necesitamos un algoritmo que sea robusto
al ruido e inhomogeneidades producidas por el equipo
de RM, que estime deformaciones grandes y que ma-
neje solo pares de imdgenes.

El problema de registro consiste en encontrar una
transformacién- punto a punto, que nos permita su-
perponer éptimamente la imagen origen en la imagen
destino. Implfcitamente esta transformacién nos da el
FO entre ambas imdgenes, de ahf que consideremos
que ambos problemas son similares. Dado lo robusto
del algoritmo SSD-ARC* y que es capaz de trabajar
unicamente con un par de cuadros, utilizaremos este
para realizar la tarea de registro.

Ejemplo con imagen sintética.

Para evaluar el desempefio de los algoritmos de registro
SSD-ARC*, SSD-BR y SSD-Spline, y los algoritmos de
registro parameétrico con modelo afin (RP-A) y trans-

Figura™7: Par sintético. A la izquierda tenemos la.
imagen origen (cuadro) y a la derecha la imagen des-
tino (circulo).

|_Algoritmo | Tiempo por iteracién | iteraciones |

SSD-Spline 51.3 mseg. 400
SSD-BR 19.2 mseg. 1200
SSD-ARC 19.1 mseg. 1200
RP-A 17.6 mseg. 50
RP-T 11.7 mseg. 50

‘Tabla 3: Tiempos de ejecucién comparativos para di-
ferentes algortimos de registro

lacién (RP-T), creamos un par sintético que podemos
ver en la figura 7.

Dado que se trata de una imagen binaria, como me-
dida de comparacién no utilizaremos la suma de las
diferencias al cuadrado sino una medida de calidad de
puntos registrados, la formula para dicho célculo es

_|RNS|
"~ |RUS|

R={ri | g2(ri) =C} yS={si | gm(r:) =C}
donde g2 es la imagen destino, g,, es la imagen cal-
culada (a partir de gy y V) y C es un atributo (en
este caso, nivel de gris). Note que el indice toma va-
lores entre cero y uno, cero cuando los conjuntos son
disjuntos y uno cuando son iguales.

Comparamos el desempefio de los algoritmos men-
cionados cuando se adiciona ruido Gaussiano con me-
dia cero y desviacién estdndar variable N (0,0). En
la figura 8 podemos ver la gréfica del indice de pun-
tos registrados contra el nivel de ruido representado
por la desviacién estdndar o (o = 0 significa imége-
nes sin ruido). Note que el algoritmo SSD-ARC* tiene
un mejor comportamiento que los métodos motivo de
la comparacién especialmente en presencia de ruido.
Los tiempos de ejecucién para estos algoritmos, en una,
computadora Pentium III a 760 MHz los podemos ver
en la tabla 3.

I

Ejemplo con imdgenes reales.

Tenemos un par de imdgenes correspondientes a un
corte de una imagen de resonancia magnética, del ce-
rebro de una rata con hidrocefalia. En la figura 9-(a)

21



F. Calder6n Solorio, J. L. Marroquin Zaleta: Un Nuevo Algoritmo para el Célculo de Flujo Optico y su Aplicacién al Registro ...

~&- SS0-spline AN

L & RPA N
3 -5~ RP-T
— 5SD-ARCT -
- SS0-BR 3

m 20 30 40 50 B0 ?‘U 80 a0 100
sigma (ruido)

Figura™8: Indice comparativo de segmentacién contra
nivel de ruido.

(imagen origen) vemos el cerebro inflamado y en la fi-
gura 9-(c) (imagen destino) la imagen del cerebro en
condicién normal para el mismo animal. El experimen-
to consistié en realizar el registro de estas dos imégenes
(figs. ay c) utilizando el algoritmo SSD-ARC* con los
siguientes pardmetros A = 1y u = 3000.

Enla figura 9-(b) vemos la imagen origen deformada.
con el FO calculado con SSD-ARC* y en la figura 9-(f)
el error de registro, el cual resulta de sumar las dife-
rencias al cuadrado entre las figuras 9-(b) y 9-(c). El
campo de deformaciones puede utilizarse para estudiar
el patrén de inflamacién del cerebro de la rata, por lo
cual, decidimos presentarlo en forma de reticula para
mayor comprensién. En las figuras 9-(d) y 9-(e) tene-
mos una reticula de referencia y esta misma reticula
deformada con el FO calculado.

Este experimento de registro se repitié pero adicio-
nando ruido Gaussiano con media cero y desviacién
estandar 50. Los resultados del registro los podemos
ver en la figura 10 y la descripcién de la imdgenes es
similar a la figura 9.

También realizamos un experimento de registro de
una imagen de resonancia magnética (MRI) de una
cabeza humana (a la que demominamos especimen)
y una imagen estdndar (atlas o patrén), la cual, esta
disponible en [http: /www.fil.ion.ucl.ac.uk/spm]. En la
figura 11 podemos ver un corte axial de la cabeza con
los resultados del registro (los pardmetros utilizados
son A = 1y pu = 3000). En la figura 11-(a) tenemos
la, imagen patrén, en la figura 11-(b) la imagen patrén
deformado, en 11-(c) la cabeza del espécimen destino,
en las imdgenes 11-(d) y (e) la reticula de referencia
y el campo de deformaciones aplicado a esta, y final-
mente en 11-(f) el error de registro.

Podemos utilizar el campo vectorial de deformacio-
nes para realizar el “pelado” automdtico del cerebro,
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Figura™9: Ejemplo con cerebro de rata. (a) Imagen
origen, (b) imagen destino, (c) reconstruccién utili-
zando la imagen origen y el campo de FO calculado
con SSD-ARC*, (d) reticula de referencia, (e) reticu-
la deformada utilizando el FO calculado y (f) error al
restar las imdgenes (a) y (c)

Figura™10: Ejemplo con cerebro de rata, adicionando
ruido con media cero y desviacién estdndar 50. (a)
Imagen origen, (b) imagen destino, (c) reconstruccién
utilizando la imagen origen y el campo de FO calculado
con SSD-ARCH*, (d) retfcula de referencia, (e) reticula
deformada utilizando el FO calculado y (f) error al
restar las imdgenes (a) y (c).
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Figura™11: Ejemplo con cerebro humano. (a) Imagen
atlas cerebral (origen), (b) atlas cerebral deformado,
(c) especimen a registrar (destino) (d) retfcula de re-
ferencia, (e) reticula deformada utilizando el FO cal-
culado y (f) error al restar las imdgenes (b) y (c).

es decir, separar el cerebro de la estructura 6sea, piel,
grasa, etc. En la figura 12-(a) tenemos la cabeza pa-
trén donde se marcaron manualmente las fronteras de
la mascara (fig. 12-(c)) que indica la posicién del ce-
rebro. La mascara para el espécimen (fig. 12-(d)) es
calculada a partir del campo de deformaciones obteni-
do del registro entre las dos cabezas. Finalmente en la
figura (b) podemos ver las fronteras de esta mascara
sobre el espécimen; note como los bordes de la mascara,
empatan muy bien con los detalles del cerebro.

Las ecuaciones (11) correspondientes al algoritmo
SSD-ARC, fueron puestas en forma vectorial para me-
jor comprensién y facilitar la implementacién de éste
en cualquier espacio n-dimensional. En el caso particu-
lar de registro de MRI de cabezas humanas se imple-
mento el algoritmo en tres dimensiones y en las figuras
solo se muestra un corte axial.

Conclusiones.

Hemos presentado un nuevo algoritmo para el célculo
del flujo Optico basado en SSD con una condicién de
reposo adaptable. De las pruebas numéricas realizadas
con imdgenes sintéticas e imdgenes reales se puede ver
lo robusto del método ya que se utilizaron los mismos
pardmetros A y u en presencia de ruido.

En las pruebas lo comparamos con los algoritmos
SSD-BR. y SSD-spline, los cuales son considerados los
mejores del estado del arte para el cdlculo de FO.

(c) (d)

-

Figura™12: Segmentacién del cerebro utilizando la
mascara, del cerebro patron. (a) Frontera entre cerebro
¥ no cerebro para el atlas, (b) Frontera entre cerebro
y no cerebro calculada para el espécimen, (c) mdscara
para indicar la posicién del cerebro en el atlas, y (d)
Mascara. obtenida a partir de (c¢) y el campo de FO
calculado con SSD-ARC*.

Propusimos al SSD-ARC como algoritmio de registro
y la introduccién del espacio de escalas espacial y pa-
ramétrico dieron finalmente un algoritmo muy robusto
al que Damamos SSD-ARC*.

Es importante hacer notar que el algoritmo SSD-BR
es similar al SSD-ARC, sin embargo, el SSD-BR ests,
basado en una heurfstica mientras el SSD-ARC esta
basado totalmente en la minimizacién de una funcién
de energfa, lo cual permite en principio, utilizar algo-
ritmos de minimizacién mds eficientes computacional-
mente.

Estamos satisfechos con los resultados obtenidos pe-
ro la restriccién de suavidad unicamente nos permite
calcular campos vectoriales suaves, condicién que li-
mita el tipo de flujos dpticos que podemos analizar.
En investigaciones futuras trataremos de encontrar un
nuevo enfoque y/o restriccién que nos permita resolver
campos de deformaciones que no sean necesariamente
suaves.
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