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Abstract. The introduction of cloud based microservices 
architectures has made the process of designing 
applications more complex. Such designs include 
numerous degrees of dependencies - starting with 
hardware and ending with the distribution of pods, a 
fundamental component of a service. Though 
microservice based architectures function independently 
and provides a lot of flexibility in terms of scalability, 
maintenance and debugging, in case of any failure, a 
large number of anomalies are detected due to complex 
and interdependent microservices, raising alerts across 
numerous operational teams. Tracing down the root 
cause and finally closing down the anomalies via 
correlating them is quite challenging and time taking for 
the present industry ecosystem. The proposed model - 
trACE discusses how to correlate alerts or anomalies 
from all the subsystems and trace down to the true root 
cause in a systematic manner, thereby improving the 
Mean Time to Resolve (MTTR) parameter. This 
facilitates the effectiveness and systematic functioning 
of different operation teams, allowing them to respond to 
the anomalies faster and thus bringing up the 
performance and uptime of such subsystems. On 
experimentation, it was found that trACE achieved an 
average cost of (in terms of time) 1.18 seconds on 
prepared dataset and 4.47 seconds when applied on 

end-to-end real time environment. When tested on a 
microservice benchmark running on Amazon Web 
Services (AWS) with Kubernetes cluster, trACE 
achieved a Mean Average Precision (MAP) of 98% 
which is an improvement of 1% to 34% over the state of 
the art as well as other baseline methods. 

Keywords. Root cause analysis, cloud infrastructure, 
Kubernetes, mean time to resolve (MTTR), 
micro services. 

1 Introduction 

With the adoption of microservice architecture, a 
major paradigm shift has been observed in the way 
applications are managed traditionally in 
monolithic architecture. Here, each service is 
considered as an independently deployable 
component those perform a specific function. 

In a well-designed microservice based 
architecture each service is designed to manage 
its own data. 

Because of the implementation of independent 
components, a lot of flexibility has been observed 
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in feature addition/removal, maintenance and 
debugging [13]. 

With all these advantages, microservice based 
architecture also comes with a lot of challenges 
especially from monitoring point of view. Because 
of their highly dynamic nature, large volume of 
multivariate and multi-dimensional data is 
generated which is almost impossible to be 
handled using traditional forms of monitoring. 

So, in case any fault arises, due to the large 
number of correlated components, the fault can be 
replicated on multiple endpoints and finding the 
source of error becomes too difficult [12]. 

In a large scale production environment, the 
performance is monitored using Service Level 
Objectives (SLO) and Service Level Indicators 
(SLI) where SLO acts as a statement of desired 
performance and SLI acts as a measurement of 
performance [8]. Whenever there is any fault in the 
system, there is a possibility of multiple anomalies 
getting detected due to the large number of 
correlated, interdependent components and the 
complexities in modern day 
infrastructure deployments. 

In such a scenario finding or closing down to the 
exact root cause of the fault/problem by correlating 
the detected anomalies has become one of the 
primary requirements of engineering. In recent 
years, faster root cause analysis has become a 
major research area as it will help in better MTTR. 

1.1 Motivation 

In order to ensure a smooth functionality along with 
a high uptime, looking into the performance issues, 
tracing down to the root cause and pin pointing the 
origination of the problem must be done in an 
urgent basis [1]. However, a very less number of 
works have been done till date to find the root 
cause analysis on a complex production 
infrastructure due to the following challenges: 

Inter-linked and inter-dependent services: A 
large number of interdependent services can be 
available in a typical microservice based 
architecture. Thus, in case of failure or degradation 
of one of these services can have a cascading 
effect on other dependent services resulting in 
anomalies in multiple services which creates a 
complex situation to track the root cause. 

Availability of large number of monitoring 
metrics: In order to take care of the performance 
related issues, large number of monitoring metrics 
is used. It generates a huge overhead for the root 
cause analysis purpose as lots of parameters and 
logs are generated. 

Support for multiple languages: Services 
deployed in a microservice based architecture can 
be developed using multiple technology stacks and 
various programming languages which makes it 
difficult to correlate the errors as each languages 
and technology have their own way of 
reporting problems. 

Microservices get frequently updated: To cater 
to the needs of the customers (based on their 
feedbacks) updates for microservice are released 
very frequently. Thus it makes the environment 
changing very often and makes the root cause 
analysis arduous. 

Complex Infrastructure: With more distributed 
computing, complex IT infrastructure usage as well 
as extensive use of virtualization, finding out the 
actual cause of any issue has become a 
humongous task. 

1.2  Objective 

The objective of this work is to reduce the MTTR 
by correlating all the raised anomalies and 
pinpointing the cause of the issue leading to 
shorter turnaround time. 

The remaining of the paper is organized as 
follows – Section 2 cites the related works done till 
date. The proposed work is stated in Section 3. 
The implementation of the proposed work, 
experimental setup, and analysis of results are 
presented in Section 4. Section 5 covers the 
conclusion and future work. 

2 Related Work 

Even though, Root Cause Analysis (RCA) has 
been a subject of research since past decade, the 
contribution could not be significant due to the 
unstructured, highly variant and multivariate nature 
of the data. All the works done in the field of RCA 
can be categorized into Deterministic and 
Probabilistic family of models. Deterministic 
models are based on the certain known inferences 
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and facts where are as Probabilistic models are 
able to handle uncertainties. 

Various versions of Bayesian network with 
different subtypes and properties with varying 
learning or inference complexities, Markov Logic 
Networks, Sum-Product Networks, Relational 
Sum-Product Networks were the various models 
with logics like Dempster-Shafer Theory, Non-
axiomatic Logic, Fuzzy logic were used in  
Probabilistic models whereas SVM, Neural 
Network, Decision Tree models were implemented 
using logics like First Order Logic, Abductive Logic 
Program, Fault tree and Propositional Logic were 
used in Deterministic model [5]. 

Even though so many approaches have been 
used, most of them are based on time series data 
generated from various logs, execution traces and 
also work on the already available and fixed 
training data. Most of them are not being able to 
handle the unstructured, highly changing, and 
multivariate data getting generated in a 
microservice based environment and are not 
efficient to work on unsupervised models. 

The models those are based on the 
unsupervised learning turn out to be costly as the 
time complexity calculated to be of 
exponential order. 

In ExplainIt! [2], Jeyakumar et al. proposed an 
unsupervised, declarative RCA engine. The time-
series monitoring data from data centres in large 
complex systems have been used as data source. 
The use of causal hypothesis specified by 
empowered operators is ranked thereby reducing 
the number of causal dependencies significantly. 

The researchers have used SQL as an effective 
tool to enumerate hypothesis which can be 
instrumental in creating the graph based causal 
model of the prospective system. For the inference 
of root cause Monitor Rank [15] – a customized 
random walk algorithm was proposed by Kim et al. 

Using this model, a list of possible causes 
ranked by the order of viability is generated by 
using historical and current time series metrics. 
MicroScope [14] is applied on a microservice 
based environment to produce a ranked list of 
possible root causes. 

Lin et al. have inferred the causes of problems 
related to performance in real time by drawing a 
causal graph. In MicroRCA [1], Wu. L. et al. 
proposed a root cause analysis engine for 

microservice in case of performance issues. The 
authors used correlation of application 
performance symptoms with actual consumption of 
resources for inferring the root cause. Attributed 
graph has been implemented for localizing the 
anomaly propagation across systems. 

Event graph based approach was adopted by 
Wang. H. et al. for developing GROOT [3]. Here, 
taking inputs from various logs, metrics and 
activities from the underlying system, a real-time 
graph is constructed. Based on the faulty points the 
root cause is traced from this causality graph. 

Saha, A. et al. proposed an Incident Causation 
Analysis (ICA) engine where they have used SoTA 
neural NLP techniques for necessary information 
extraction from Problem Review Board (PRB) 
Data. Using this information, a structured Causal 
Knowledge graph was constructed by the authors. 
The researchers used ranking algorithm to trace to 
the root incidence [4]. 

3 Proposed Model 

This section contains the detailed explanation of 
the process of correlating the detected anomalies 
and the root cause analysis. Recently, more and 
more large business enterprises are moving 
towards adoption of microservices. The 
components used in microservices can be easily 
built, tested, and deployed independently without 
affecting the existing parts of the entire application 
much. This flexibility and easier management 
make the architecture simple, agile, scalable and 
more secured [6]. 

The deployment strategies for microservices 
play a very important role in ensuring reusability, 
agility and lowering the impact on the application 
[7]. A glossary of the terms used in this work is 
explained below for better understanding of 
the model. 

Pod refers to a group of single or multiple 
containers on a single host machine. A Pod has a 
unique IP address which shares the same 
specification for running and shares the storage 
and network resources. An application running on 
a set of Pods performing same functions can be 
referred to as Service. Services are normally 
abstracted from outside the cluster. 
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Only an external IP address is exposed. A 
worker machine is called a node in a cluster setup. 
Depending on the cluster, a node can be a physical 
machine or it may be a virtual one also which is 
managed by the control plane. One or multiple 
pods may run on a single node. 

In a cluster, scheduling of the all pods present 
across the Nodes is done by the orchestration tool. 
A sample deployment of microservices is shown in 
Figure 1. 

The proposed Root Cause Analyzer (RCA) 
engine – trACE, takes the input from the Anomaly 
Detection Engine, which is first passed through the 
Node Detection Engine to detect the chances of 
any node related or hardware faults. If it is not a 
hardware or node related problem, then the 
anomalies are passed through the Service 
Detection Engine to trace down to the fault 
originator service or defective pod. 

A block diagram of the proposed model of 
trACE is shown in Figure 2. 

The detail description of each of the engine 
used in the model is given in section 3.1. 

3.1 Anomaly Detection Engine 

ADE is responsible for generating anomalies 
across services. These anomalies can help us to 
understand which pods are not behaving on 
expected lines. There are various methods which 
can be used to generate anomalies which includes 
percentile methods [10], isolation forest method 
[11], one class SVM [9] etc. The details of the 
various methods to find anomaly is beyond the 
scope of discussion. 

Once the anomalies are collected, these are 
passed to trACE. A flow chart of the proposed 
model is shown in Figure 3 and Figure 4. The steps 
shown in Figure 3 check whether the anomalies 
raised in the system are generated due to any 
hardware problem or configuration or not. 

The main purpose of the model is to narrow 
down the actual cause of the reported faults and 
anomalies. To begin the process, possibilities that 
the reported failures are caused by any hardware 
faults are eliminated. In this context, whether the 
problem lies in the worker node is checked as they 
host all services. For this purpose, a Node 
Detection Engine is proposed and the design of the 
code is given in Algorithm 1. 

If the problem is not originated from any 
hardware fault, then the service from where the 
fault is originated is located. In this regard, a 
Service Detection Engine is proposed as per the 
design explained in Algorithm 2. This engine is 
designed to find the affected services, and 
pinpointing exactly which service(s) is/are causing 
the issue. 

3.2 Node Detection Engine 

The root cause analyser first checks for the 
chances of problem arising from hardware fault. If 
the problem primarily lies in the hardware, then all 
the services hosted on it as well as all the services 
which are dependent on these set of services will 

 

Fig. 1. A sample deployment of microservices 

 

Fig. 2. Block diagram of the proposed model 
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be affected and show anomalies. Thus, hardware 
related issues are detected first. 

The list of pods that show anomaly are taken as 
input to the trACE by Anomaly Detection Engine. 
This list of anomalous pods is named as 
‘Anomalous pods list’ in this work. Then this list is 
taken as an input to the proposed Node Detection 
Engine where each worker node is checked. 

Assuming that there are p number of pods are 
running on worker node Hk such that P(Hk) = {P1, 
P2, P3, ....., Pp } where, P represent the total set of 
pods on a worker node. Then it is checked whether 
all the pods of this worker node are present in the 
anomalous pods list or not. If ‘no’ then the checking 
for next worker node is made. 

If ‘yes’ then it is checked whether all the 
anomalies generated in the pods of that worker 
node are similar or not. If not, then it moves on to 
the next worker node else that worker node is 
appended to a list called Anomalous node list. 

After the iteration is completed, the next level of 
checking is done by iterating through the 
Anomalous node list to find out whether the issues 
are reported in the node layer or not. If ‘no’, then 
the problem might exist in underlying hardware; 
however, if the condition is true then problem is 
node specific. If the Anomalous node list is empty, 
then the service issues are checked. 

3.3 Service Detection Engine 

Service Detection Engine (SDE) takes the list of 
anomalous pods as input and creates clusters to 
find the services those are either not meeting the 
SLO or on the threshold of not meeting it. All the 
anomalous services are added to Anomalous 
service list. A service dependency graph is taken 
as input which shows the connectivity between 
services where failure of one service will lead to 
the other. 

Next, all the services in the Anomalous service 
list are iterated to check whether any of the child of 
this service exists in the list or not. If any of the 
children exists in the Anomalous service list, then 
the next service is considered and the process 
repeats. If none of the child is present in the list or 
if this service doesn’t have any child then, the 
percentage of the anomalous pods affected in the 
service are found. If this percentage is lower than 
accepted threshold value then the root cause of the 

issue is stated as pod specific, however if this 
percentage is higher than the threshold then the 
root cause is stated as specific to the service(s). 

 

Fig. 3. Flowchart of faulty node detection engine 

 

Fig. 4. Flowchart service detection engine 
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3.4 Proposed Algorithms 

In this section, the algorithms for Node Detection 
Engine and Service Detection Engine are 
presented in detail. 

4 Experimental Analysis 

For a concrete evaluation of the proposed model, 
test runs were carried out on a real life system as 
well as on a testbed created similar to those of the 
existing work [1] for performance comparison. The 
details of experimental setup, dataset collection, 

implementation, and performance evaluation are 
described in this section. 

4.1 Experimental Setup 

4.1.1 End-to-End Environment Used for 
Testing 

The proposed RCA algorithm was evaluated on a 
real-time on premise server environment. The 
algorithm was applied on SOA University Server 
System that serves more than 30,00,000 requests 
per month and has a user base of 50,000 users. 
Specifically, its RCA algorithm was applied on 

Algorithm  1. Node Detection Engine 

Input: A_pods = List of Anomalous Pods 

  F_Node = List of Nodes whose pods are anomalous. 

Output: Anomalous Node(s) List,  

  Cause of problem if exists 

A_pod ← List_of_anomalous_pods 
F_Node←List_Nodes_where_pods_are_anomalous 
A_node ← [] 
for node_i in F_node do 
A_type ← node_i.pod[0].Anom_type 
for pod_j in node_i.pod do 

cond ← True; 
if pod_j not in A_pods and  
pod_j.Anom_type != A _type then 

cond ← False; 
break 

end if 
end for 
 
 

if cond == True then 
A_node.append(node_i) 
time ← time.now() − (slot ∗ 60) 
node_layer_report ← get(node_i.issue,  

timestamp > time) 
if node_layer_report.length != 0 then 

print("Problem: Node Specific, 
 confidence:High,{node_i}”)  

else 
print("Problem: Underlying hardware, 
Confidence: low, insufficient 
information") 

end if 
end if 

end for 

 

Algorithm  2. Service Detection Engine 

Input: A_pods = List of Anomalous Pods 

   Service Dependancy Graph 

  A_service = List of Services with anomalous pods  

Output: Root Service(s) List,  

  RootPodsList 

g ← ServiceDependencyGraph 
A_pod ← List_of_anomalous_pods 
A_service ← List_of_anomalous_services 

/* The services whose all pods are showing 
anomaly are treated anomalous services /* 

root_service_list ← [] 
 
for service_i in A_service do 
  cond ← True 
  for service_j in service_i.child do 

  if service_j in A_service then 
cond ← False; 
break 

  end if 
   end for 
   if cond == True then 

   if service_i.SLO < required_SLO then 
 root_service_list.append(service_i) 

   else 
 A_podList ← [] 
 for pod_i in service_i.pods do 
   if pod_i.anomaly == True then 

A_podList.append(pod_i) 
   end if 

      end for 
print(“Problem: Pod Specific of 
{service_i}, Confidence : Medium, 
A_podList”) 

     end if 
   end if 
end for 
print(“Problem : Service Specific, Confidence : 
High, root_service_list”) 
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several complex microservices ecosystem that 
runs more than 10 services like frontend, User 
Profile for students, Attendance, Accounts, 
Examination, Admission, User Profile for 
Professors, ERP Service, Notice board, 
Placements, etc. 

Each of these services are running on two data 
centres for several institutes across the University 
including Faculty of Engineering Studies, Faculty 
of Medicines, Agriculture, Business Administration, 
Law, and Hotel Management to name a few. 

These are interactive services those are built on 
different tech stacks including Java, NodeJS, 
ReactJS, and MySQL. The inter service 
communication is established with the help of 
different types of service protocols. 

A list of several services those are running in 
the server where anomalies were detected, 
number of times in a day when an anomaly was 
raised, and the number of times the root cause 
could be successfully localized using our proposed 
trACE is depicted in Table 1. 

The current environment consists of a 
Kubernetes cluster, Prometheus as monitoring 
system and Istio as service mesh. There are ten 
worker nodes and three master nodes in the 
cluster. The detailed hardware component 
description for the master nodes and the worker 
node setup environment with the operating system 
(OS) is illustrated in the Table 2. 

4.2 Dataset Collection 

The entire input for creation of dataset was given 
by the Operations and management team at SOA 
data centre. A labelled dataset was created which 
contained 296 incidents over 12 months (Jan 2021 
–Jan 2022) where 192 root cause on service 
related incidents and 104 root cause on incidents 
related to nodes were logged. 

The required input to the algorithm like pods 
causing anomaly, service dependency graph, and 
the root cause were manually labelled. Two 
categories of root-cause those could be traced are 
mentioned in the dataset as root cause on service 
and root cause on nodes. 

Root cause on Services: The incidents are 
detected based on anomalies from the in services. 
For example: problem due to deployment, request 
timeout, and memory leak etc. 

Root cause on Nodes: The incidents are 
detected due to errors in Nodes. For example: 
CPU hog, memory failure, disk crash, and network 
fault, etc. 

The collection, validation and manual labeling 
of root causes were made by the operations team 
who handle the site incidents on a daily basis. In 
case, there were multiple causes, only the best 
relatable cause with the most prominent event was 
tagged as the root cause. 

These incident contexts and labeled root 
causes were considered as the parameter to judge 
the effectiveness of the suggested algorithms in 
the evaluation process. 

The entire dataset was used for testing purpose 
and the results were validated by comparing 
results obtained on applying the proposed 
algorithm against the labels already given in 
the dataset. 

4.3 Performance Evaluation Metrics 

For the performance evaluation of proposed RCA 
algorithm, the results were analyzed over defined 
set of metrics like accuracy, mean-accuracy and 
time-cost involved. A detailed description of the 
various metrics used for performance evaluation of 
the proposed algorithm is given below. 

Table 1. The service-based anomalies data detected 
on the SOA end-to-end test environment 

Sl. 
No. 

Services on 
the end-to end 
environment 

No. of times 
anomaly was 

detected 
per day 

Number of 
times root 
cause was 
correctly 
localized 

1. Frontend 12 9 

2. Students Profile 10 10 

3. Attendance 16 11 

4. Accounts 7 6 

5. Admission 7 7 

6. Examination 3 3 

7. Professors Profile 7 7 

8. ERP Service 3 1 

9. Departments 5 4 

10. Notice board 3 3 
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Accuracy: Accuracy is defined the degree to 
which the result of the RCL algorithm conforms to 
the correct value or to the actual root cause: 

Accuracy = (TP + TN)/ (TP+ FP+ FN+ TN), where 
True Positive (TP): the algorithm has localized the 
correct root-cause which is the actual root  cause. 
True Negative (TN): the algorithm has given clean 
chit to a node/service and in reality also the 
node/service are meeting the hardware or service 
requirement. False Positive (FP): the algorithm has 
pin pointed a root cause, but the reality being 
something else. False Negative (FN): the algorithm 
has given clean chit to a node/service but in reality 
that node/service is the root cause. 

Mean_Accuracy: Mean Accuracy sums up the 
average performance accuracy of the algorithm 
over the Dataset used above and the real-world 
end-to-end test environment: 

Mean_Accuracy(Am) = summation of (Ad + Ae) / 2, 

where Ad= Accuracy achieved in the test-dataset, 
Ae= Accuracy achieved in the real-world end-to-
end environment. 

Time-costs: The time-costs are the total run-
time cost associated for running the RCL algorithm 
on the test datasets as well as the real-world test 
environments (S ‘O’ A University Server). It is 
calculated in seconds: 

Run-time Costs(RTC)= Tf –Ti,  

where Tf= Final timestamp when algorithm ends, 
Ti= Initial timestamp when algorithm starts. 

4.4 Results and Analysis 

The RCA Algorithm was tested on the given test 
dataset prepared by the operation and 
management team at SOA University Server 
containing past data of failure incidents. 

It was also deployed on a real-world running 
microservice environment that is SOA University 
Server that hosts nearly 10 different services on 
two datacenters and has nearly 30,00,000 
requests per month and a user base of 
50,000 users. 

The results of the RCL algorithm for each 
dataset instance were carefully observed and then 
analyzed based on several parameters discussed 
above like Accuracies, Mean_Accuracies, and 
Time-cost. 

The detailed performance or the experimental 
results for the RCA algorithm on the test dataset 
and real-world end-to-end environment is depicted 
in the Figure 5. It presents an overall time-cost of 
the algorithm when it was run multiple times on 
different server environment under varied 
conditions obtained by trACE. From Figure 5, it can 
be stated that the proposed algorithm worked 
really well for both of the testing environment that 
is on the Test Dataset as well as the real-world 
End-to-End Environment. 

trACE when implemented on the prepared 
dataset obtained 97.4%, 91.8% for the service 
based and node based root cause types 
respectively. Similarly, accuracy obtained were 
92.03%, 89.7% when applied on the end-to-end 
environment for service based and node based 
root cause types. 

Thus results found indicate an overall accuracy 
of 94.72% and 90.75% on both the experiment 
types root-cause on Services and root-cause on 
Nodes, which makes it fit for to working in real 
world complex microservice environments. 

Table 2. Hardware components description for the 
master nodes and worker node setup environment 

Component Master Node ( 
x 3) 

Worker Node ( 
x 10) 

OS Ubuntu 22.04 Ubuntu 22.04 

vCPUs 8 32 

Memory(GB) 32 128 

 

Fig. 5. Accuracies of the trACE implemented on the 
end-to-end environment and predefined dataset for 
both Service-based and Nodes-based datasets 
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The MMTR in seconds after running the 
algorithm on different instances of the prepared 
dataset and in the real-time end-to-end 
environment as given in Table 3 are found to be 
optimal when compared to other baseline and 
state-of-the-art models. 

This cost efficiency attained through trACE in 
terms of real-time makes the algorithm suitable to 
work in any real-world microservice environment. 
Even though the proposed RCA algorithm is 
implemented on a containerized environment 
monitored by Prometheus with Istio, it works good 
even if when implemented without any special type 
of monitoring tool. 

4.4.1 Simulated Environment for Comparative 
Performance Evaluation 

A testbed with similar infrastructural provisions and 
tools as used in MicroRCA [1] was configured on 
Amazon Web Service (AWS) and the same 
benchmark demo application was used for a 
comparative analysis. In this experimentation a 
comparative study of trACE is done with some of 
the state of the art graph based methods like 
Microscope [14] and MicroRCA [1] and a baseline 
method as applied in Monitor Rank [15]. 

A comparison of the root cause localization 
performance based on the Mean Average 
Precision (MAP) recorded by some baseline 
methods such as MonitorRank and Microscope as 
well as a state-of-the-art method MicroRCA is 
given in Table 4. 

From the performance shown, both MicroRCA 
and trACE have shown better results when 
compared to Microscope and MonitorRank. 

However, it has been observed that all the 
works done have experimented on service based 
faults and none of them have taken care of finding 
the root cause for issues generated due to any 
hardware or node related faults, which has been 
duly taken care by trACE. 

5 Conclusion 

In this work, authors proposed a technique for 
determining the correlation between alerts or 
anomalies from all the subsystems and tracing 
down the root-cause of the anomalies in a modern 
infrastructure deployment, where a lot of 

anomalies can be generated at multiple endpoints 
due to a single fault. 

The experimental findings led to the conclusion 
that any infrastructure system failure can have one 
of the four possible root causes: a pod failure, a 
service failure, a node failure, or a data center 
failure. The proposed method finds or closes down 
the source root cause of the fault or problem by 
correlating the detected anomalies. 

An effort has been made to rule out the potential 
reasons starting at the bottom in order to localize 
the root cause. The trACE ensures that platform or 
data center level faults or degradations can have a 
cascading effect and result in a number of 
anomalies, all of which can be connected at once 
and resolved. 

This will not only improve the MTTR but also 
ensure smooth functionality of the system with a 

Table 3. The runtime cost of trACE applied on dataset 
and end-to-end environment 

Experiment # MTTR in seconds(s) 

 Dataset End-to-End 
Environment 

1 1.180 4.279 
2 1.072 4.204 
3 1.31 4.310 
4 1.26 4.813 
5 1.105 4.763 
Average 1.1854 4.4738 

Table 4. The MAP comparison of trACE with other state 
of the art and baseline methods 

Model Metric 

 

C
P

U
 H

o
g

 

M
e

m
o

ry
 L

e
ak

 

L
a

te
n

cy
 

O
v

e
ra

ll 

%
 o

f 
im

p
ro

v
e

m
e

n
t 

in
 

tr
A

C
E

 

Monitor 
Rank 

0.77 0.68 0.73 0.73 34.25 

MicroScope 0.92 0.95 0.7 0.85 15.29 
MicroRCA 0.97 0.98 0.97 0.97 1.03 
trACE 0.98 0.98 0.97 0.98   

 

Computación y Sistemas, Vol. 27, No. 3, 2023, pp. 791–800
doi: 10.13053/CyS-27-3-4498

trACE - Anomaly Correlation Engine for Tracing the Root Cause on Cloud Based Microservice Architecture 799

ISSN 2007-9737



high uptime, thus resulting in a more reliable and 
efficient system. 
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