
trACE - Anomaly Correlation Engine for Tracing
the Root Cause on Cloud Based Microservice Architecture

Anukampa Behera1,2, Chhabi Rani Panigrahi1, Sitesh Behera3,
Rohit Patel4, Sourav Bera2

1 Rama Devi Women’s University,
Department of Computer Science,

India

2 S‘O’A (Deemed to be) University, ITER,
Department of Computer Science & Engineering,

India

3 Plivo,
India

4 S‘O’A (Deemed to be) University, ITER,
Department of Computer Science & Information Technology,

India

{anukampa1, panigrahichhabi, sitesh.citzen, rohitpatel.iter, sauravberaiit}@gmail.com

Abstract. The introduction of cloud based microservices
architectures has made the process of designing
applications more complex. Such designs include
numerous degrees of dependencies - starting with
hardware and ending with the distribution of pods, a
fundamental component of a service. Though
microservice based architectures function independently
and provides a lot of flexibility in terms of scalability,
maintenance and debugging, in case of any failure, a
large number of anomalies are detected due to complex
and interdependent microservices, raising alerts across
numerous operational teams. Tracing down the root
cause and finally closing down the anomalies via
correlating them is quite challenging and time taking for
the present industry ecosystem. The proposed model -
trACE discusses how to correlate alerts or anomalies
from all the subsystems and trace down to the true root
cause in a systematic manner, thereby improving the
Mean Time to Resolve (MTTR) parameter. This
facilitates the effectiveness and systematic functioning
of different operation teams, allowing them to respond to
the anomalies faster and thus bringing up the
performance and uptime of such subsystems. On
experimentation, it was found that trACE achieved an
average cost of (in terms of time) 1.18 seconds on
prepared dataset and 4.47 seconds when applied on

end-to-end real time environment. When tested on a
microservice benchmark running on Amazon Web
Services (AWS) with Kubernetes cluster, trACE
achieved a Mean Average Precision (MAP) of 98%
which is an improvement of 1% to 34% over the state of
the art as well as other baseline methods.

Keywords. Root cause analysis, cloud infrastructure,
Kubernetes, mean time to resolve (MTTR),
micro services.

1 Introduction

With the adoption of microservice architecture, a
major paradigm shift has been observed in the way
applications are managed traditionally in
monolithic architecture. Here, each service is
considered as an independently deployable
component those perform a specific function.

In a well-designed microservice based
architecture each service is designed to manage
its own data.

Because of the implementation of independent
components, a lot of flexibility has been observed

Computación y Sistemas, Vol. 27, No. 3, 2023, pp. 791–800
doi: 10.13053/CyS-27-3-4498

ISSN 2007-9737

in feature addition/removal, maintenance and
debugging [13].

With all these advantages, microservice based
architecture also comes with a lot of challenges
especially from monitoring point of view. Because
of their highly dynamic nature, large volume of
multivariate and multi-dimensional data is
generated which is almost impossible to be
handled using traditional forms of monitoring.

So, in case any fault arises, due to the large
number of correlated components, the fault can be
replicated on multiple endpoints and finding the
source of error becomes too difficult [12].

In a large scale production environment, the
performance is monitored using Service Level
Objectives (SLO) and Service Level Indicators
(SLI) where SLO acts as a statement of desired
performance and SLI acts as a measurement of
performance [8]. Whenever there is any fault in the
system, there is a possibility of multiple anomalies
getting detected due to the large number of
correlated, interdependent components and the
complexities in modern day
infrastructure deployments.

In such a scenario finding or closing down to the
exact root cause of the fault/problem by correlating
the detected anomalies has become one of the
primary requirements of engineering. In recent
years, faster root cause analysis has become a
major research area as it will help in better MTTR.

1.1 Motivation

In order to ensure a smooth functionality along with
a high uptime, looking into the performance issues,
tracing down to the root cause and pin pointing the
origination of the problem must be done in an
urgent basis [1]. However, a very less number of
works have been done till date to find the root
cause analysis on a complex production
infrastructure due to the following challenges:

Inter-linked and inter-dependent services: A
large number of interdependent services can be
available in a typical microservice based
architecture. Thus, in case of failure or degradation
of one of these services can have a cascading
effect on other dependent services resulting in
anomalies in multiple services which creates a
complex situation to track the root cause.

Availability of large number of monitoring
metrics: In order to take care of the performance
related issues, large number of monitoring metrics
is used. It generates a huge overhead for the root
cause analysis purpose as lots of parameters and
logs are generated.

Support for multiple languages: Services
deployed in a microservice based architecture can
be developed using multiple technology stacks and
various programming languages which makes it
difficult to correlate the errors as each languages
and technology have their own way of
reporting problems.

Microservices get frequently updated: To cater
to the needs of the customers (based on their
feedbacks) updates for microservice are released
very frequently. Thus it makes the environment
changing very often and makes the root cause
analysis arduous.

Complex Infrastructure: With more distributed
computing, complex IT infrastructure usage as well
as extensive use of virtualization, finding out the
actual cause of any issue has become a
humongous task.

1.2 Objective

The objective of this work is to reduce the MTTR
by correlating all the raised anomalies and
pinpointing the cause of the issue leading to
shorter turnaround time.

The remaining of the paper is organized as
follows – Section 2 cites the related works done till
date. The proposed work is stated in Section 3.
The implementation of the proposed work,
experimental setup, and analysis of results are
presented in Section 4. Section 5 covers the
conclusion and future work.

2 Related Work

Even though, Root Cause Analysis (RCA) has
been a subject of research since past decade, the
contribution could not be significant due to the
unstructured, highly variant and multivariate nature
of the data. All the works done in the field of RCA
can be categorized into Deterministic and
Probabilistic family of models. Deterministic
models are based on the certain known inferences

Computación y Sistemas, Vol. 27, No. 3, 2023, pp. 791–800
doi: 10.13053/CyS-27-3-4498

Anukampa Behera, Chhabi Rani Panigrahi, Sitesh Behera, et al.792

ISSN 2007-9737

and facts where are as Probabilistic models are
able to handle uncertainties.

Various versions of Bayesian network with
different subtypes and properties with varying
learning or inference complexities, Markov Logic
Networks, Sum-Product Networks, Relational
Sum-Product Networks were the various models
with logics like Dempster-Shafer Theory, Non-
axiomatic Logic, Fuzzy logic were used in
Probabilistic models whereas SVM, Neural
Network, Decision Tree models were implemented
using logics like First Order Logic, Abductive Logic
Program, Fault tree and Propositional Logic were
used in Deterministic model [5].

Even though so many approaches have been
used, most of them are based on time series data
generated from various logs, execution traces and
also work on the already available and fixed
training data. Most of them are not being able to
handle the unstructured, highly changing, and
multivariate data getting generated in a
microservice based environment and are not
efficient to work on unsupervised models.

The models those are based on the
unsupervised learning turn out to be costly as the
time complexity calculated to be of
exponential order.

In ExplainIt! [2], Jeyakumar et al. proposed an
unsupervised, declarative RCA engine. The time-
series monitoring data from data centres in large
complex systems have been used as data source.
The use of causal hypothesis specified by
empowered operators is ranked thereby reducing
the number of causal dependencies significantly.

The researchers have used SQL as an effective
tool to enumerate hypothesis which can be
instrumental in creating the graph based causal
model of the prospective system. For the inference
of root cause Monitor Rank [15] – a customized
random walk algorithm was proposed by Kim et al.

Using this model, a list of possible causes
ranked by the order of viability is generated by
using historical and current time series metrics.
MicroScope [14] is applied on a microservice
based environment to produce a ranked list of
possible root causes.

Lin et al. have inferred the causes of problems
related to performance in real time by drawing a
causal graph. In MicroRCA [1], Wu. L. et al.
proposed a root cause analysis engine for

microservice in case of performance issues. The
authors used correlation of application
performance symptoms with actual consumption of
resources for inferring the root cause. Attributed
graph has been implemented for localizing the
anomaly propagation across systems.

Event graph based approach was adopted by
Wang. H. et al. for developing GROOT [3]. Here,
taking inputs from various logs, metrics and
activities from the underlying system, a real-time
graph is constructed. Based on the faulty points the
root cause is traced from this causality graph.

Saha, A. et al. proposed an Incident Causation
Analysis (ICA) engine where they have used SoTA
neural NLP techniques for necessary information
extraction from Problem Review Board (PRB)
Data. Using this information, a structured Causal
Knowledge graph was constructed by the authors.
The researchers used ranking algorithm to trace to
the root incidence [4].

3 Proposed Model

This section contains the detailed explanation of
the process of correlating the detected anomalies
and the root cause analysis. Recently, more and
more large business enterprises are moving
towards adoption of microservices. The
components used in microservices can be easily
built, tested, and deployed independently without
affecting the existing parts of the entire application
much. This flexibility and easier management
make the architecture simple, agile, scalable and
more secured [6].

The deployment strategies for microservices
play a very important role in ensuring reusability,
agility and lowering the impact on the application
[7]. A glossary of the terms used in this work is
explained below for better understanding of
the model.

Pod refers to a group of single or multiple
containers on a single host machine. A Pod has a
unique IP address which shares the same
specification for running and shares the storage
and network resources. An application running on
a set of Pods performing same functions can be
referred to as Service. Services are normally
abstracted from outside the cluster.

Computación y Sistemas, Vol. 27, No. 3, 2023, pp. 791–800
doi: 10.13053/CyS-27-3-4498

trACE - Anomaly Correlation Engine for Tracing the Root Cause on Cloud Based Microservice Architecture 793

ISSN 2007-9737

Only an external IP address is exposed. A
worker machine is called a node in a cluster setup.
Depending on the cluster, a node can be a physical
machine or it may be a virtual one also which is
managed by the control plane. One or multiple
pods may run on a single node.

In a cluster, scheduling of the all pods present
across the Nodes is done by the orchestration tool.
A sample deployment of microservices is shown in
Figure 1.

The proposed Root Cause Analyzer (RCA)
engine – trACE, takes the input from the Anomaly
Detection Engine, which is first passed through the
Node Detection Engine to detect the chances of
any node related or hardware faults. If it is not a
hardware or node related problem, then the
anomalies are passed through the Service
Detection Engine to trace down to the fault
originator service or defective pod.

A block diagram of the proposed model of
trACE is shown in Figure 2.

The detail description of each of the engine
used in the model is given in section 3.1.

3.1 Anomaly Detection Engine

ADE is responsible for generating anomalies
across services. These anomalies can help us to
understand which pods are not behaving on
expected lines. There are various methods which
can be used to generate anomalies which includes
percentile methods [10], isolation forest method
[11], one class SVM [9] etc. The details of the
various methods to find anomaly is beyond the
scope of discussion.

Once the anomalies are collected, these are
passed to trACE. A flow chart of the proposed
model is shown in Figure 3 and Figure 4. The steps
shown in Figure 3 check whether the anomalies
raised in the system are generated due to any
hardware problem or configuration or not.

The main purpose of the model is to narrow
down the actual cause of the reported faults and
anomalies. To begin the process, possibilities that
the reported failures are caused by any hardware
faults are eliminated. In this context, whether the
problem lies in the worker node is checked as they
host all services. For this purpose, a Node
Detection Engine is proposed and the design of the
code is given in Algorithm 1.

If the problem is not originated from any
hardware fault, then the service from where the
fault is originated is located. In this regard, a
Service Detection Engine is proposed as per the
design explained in Algorithm 2. This engine is
designed to find the affected services, and
pinpointing exactly which service(s) is/are causing
the issue.

3.2 Node Detection Engine

The root cause analyser first checks for the
chances of problem arising from hardware fault. If
the problem primarily lies in the hardware, then all
the services hosted on it as well as all the services
which are dependent on these set of services will

Fig. 1. A sample deployment of microservices

Fig. 2. Block diagram of the proposed model

Computación y Sistemas, Vol. 27, No. 3, 2023, pp. 791–800
doi: 10.13053/CyS-27-3-4498

Anukampa Behera, Chhabi Rani Panigrahi, Sitesh Behera, et al.794

ISSN 2007-9737

be affected and show anomalies. Thus, hardware
related issues are detected first.

The list of pods that show anomaly are taken as
input to the trACE by Anomaly Detection Engine.
This list of anomalous pods is named as
‘Anomalous pods list’ in this work. Then this list is
taken as an input to the proposed Node Detection
Engine where each worker node is checked.

Assuming that there are p number of pods are
running on worker node Hk such that P(Hk) = {P1,
P2, P3,, Pp } where, P represent the total set of
pods on a worker node. Then it is checked whether
all the pods of this worker node are present in the
anomalous pods list or not. If ‘no’ then the checking
for next worker node is made.

If ‘yes’ then it is checked whether all the
anomalies generated in the pods of that worker
node are similar or not. If not, then it moves on to
the next worker node else that worker node is
appended to a list called Anomalous node list.

After the iteration is completed, the next level of
checking is done by iterating through the
Anomalous node list to find out whether the issues
are reported in the node layer or not. If ‘no’, then
the problem might exist in underlying hardware;
however, if the condition is true then problem is
node specific. If the Anomalous node list is empty,
then the service issues are checked.

3.3 Service Detection Engine

Service Detection Engine (SDE) takes the list of
anomalous pods as input and creates clusters to
find the services those are either not meeting the
SLO or on the threshold of not meeting it. All the
anomalous services are added to Anomalous
service list. A service dependency graph is taken
as input which shows the connectivity between
services where failure of one service will lead to
the other.

Next, all the services in the Anomalous service
list are iterated to check whether any of the child of
this service exists in the list or not. If any of the
children exists in the Anomalous service list, then
the next service is considered and the process
repeats. If none of the child is present in the list or
if this service doesn’t have any child then, the
percentage of the anomalous pods affected in the
service are found. If this percentage is lower than
accepted threshold value then the root cause of the

issue is stated as pod specific, however if this
percentage is higher than the threshold then the
root cause is stated as specific to the service(s).

Fig. 3. Flowchart of faulty node detection engine

Fig. 4. Flowchart service detection engine

Computación y Sistemas, Vol. 27, No. 3, 2023, pp. 791–800
doi: 10.13053/CyS-27-3-4498

trACE - Anomaly Correlation Engine for Tracing the Root Cause on Cloud Based Microservice Architecture 795

ISSN 2007-9737

3.4 Proposed Algorithms

In this section, the algorithms for Node Detection
Engine and Service Detection Engine are
presented in detail.

4 Experimental Analysis

For a concrete evaluation of the proposed model,
test runs were carried out on a real life system as
well as on a testbed created similar to those of the
existing work [1] for performance comparison. The
details of experimental setup, dataset collection,

implementation, and performance evaluation are
described in this section.

4.1 Experimental Setup

4.1.1 End-to-End Environment Used for
Testing

The proposed RCA algorithm was evaluated on a
real-time on premise server environment. The
algorithm was applied on SOA University Server
System that serves more than 30,00,000 requests
per month and has a user base of 50,000 users.
Specifically, its RCA algorithm was applied on

Algorithm 1. Node Detection Engine

Input: A_pods = List of Anomalous Pods

 F_Node = List of Nodes whose pods are anomalous.

Output: Anomalous Node(s) List,

 Cause of problem if exists

A_pod ← List_of_anomalous_pods
F_Node←List_Nodes_where_pods_are_anomalous
A_node ← []
for node_i in F_node do
A_type ← node_i.pod[0].Anom_type
for pod_j in node_i.pod do

cond ← True;
if pod_j not in A_pods and
pod_j.Anom_type != A _type then

cond ← False;
break

end if
end for

if cond == True then
A_node.append(node_i)
time ← time.now() − (slot ∗ 60)
node_layer_report ← get(node_i.issue,

timestamp > time)
if node_layer_report.length != 0 then

print("Problem: Node Specific,
 confidence:High,{node_i}”)

else
print("Problem: Underlying hardware,
Confidence: low, insufficient
information")

end if
end if

end for

Algorithm 2. Service Detection Engine

Input: A_pods = List of Anomalous Pods

 Service Dependancy Graph

 A_service = List of Services with anomalous pods

Output: Root Service(s) List,

 RootPodsList

g ← ServiceDependencyGraph
A_pod ← List_of_anomalous_pods
A_service ← List_of_anomalous_services

/* The services whose all pods are showing
anomaly are treated anomalous services /*

root_service_list ← []

for service_i in A_service do
 cond ← True
 for service_j in service_i.child do

 if service_j in A_service then
cond ← False;
break

 end if
 end for
 if cond == True then

 if service_i.SLO < required_SLO then
 root_service_list.append(service_i)

 else
 A_podList ← []
 for pod_i in service_i.pods do
 if pod_i.anomaly == True then

A_podList.append(pod_i)
 end if

 end for
print(“Problem: Pod Specific of
{service_i}, Confidence : Medium,
A_podList”)

 end if
 end if
end for
print(“Problem : Service Specific, Confidence :
High, root_service_list”)

Computación y Sistemas, Vol. 27, No. 3, 2023, pp. 791–800
doi: 10.13053/CyS-27-3-4498

Anukampa Behera, Chhabi Rani Panigrahi, Sitesh Behera, et al.796

ISSN 2007-9737

several complex microservices ecosystem that
runs more than 10 services like frontend, User
Profile for students, Attendance, Accounts,
Examination, Admission, User Profile for
Professors, ERP Service, Notice board,
Placements, etc.

Each of these services are running on two data
centres for several institutes across the University
including Faculty of Engineering Studies, Faculty
of Medicines, Agriculture, Business Administration,
Law, and Hotel Management to name a few.

These are interactive services those are built on
different tech stacks including Java, NodeJS,
ReactJS, and MySQL. The inter service
communication is established with the help of
different types of service protocols.

A list of several services those are running in
the server where anomalies were detected,
number of times in a day when an anomaly was
raised, and the number of times the root cause
could be successfully localized using our proposed
trACE is depicted in Table 1.

The current environment consists of a
Kubernetes cluster, Prometheus as monitoring
system and Istio as service mesh. There are ten
worker nodes and three master nodes in the
cluster. The detailed hardware component
description for the master nodes and the worker
node setup environment with the operating system
(OS) is illustrated in the Table 2.

4.2 Dataset Collection

The entire input for creation of dataset was given
by the Operations and management team at SOA
data centre. A labelled dataset was created which
contained 296 incidents over 12 months (Jan 2021
–Jan 2022) where 192 root cause on service
related incidents and 104 root cause on incidents
related to nodes were logged.

The required input to the algorithm like pods
causing anomaly, service dependency graph, and
the root cause were manually labelled. Two
categories of root-cause those could be traced are
mentioned in the dataset as root cause on service
and root cause on nodes.

Root cause on Services: The incidents are
detected based on anomalies from the in services.
For example: problem due to deployment, request
timeout, and memory leak etc.

Root cause on Nodes: The incidents are
detected due to errors in Nodes. For example:
CPU hog, memory failure, disk crash, and network
fault, etc.

The collection, validation and manual labeling
of root causes were made by the operations team
who handle the site incidents on a daily basis. In
case, there were multiple causes, only the best
relatable cause with the most prominent event was
tagged as the root cause.

These incident contexts and labeled root
causes were considered as the parameter to judge
the effectiveness of the suggested algorithms in
the evaluation process.

The entire dataset was used for testing purpose
and the results were validated by comparing
results obtained on applying the proposed
algorithm against the labels already given in
the dataset.

4.3 Performance Evaluation Metrics

For the performance evaluation of proposed RCA
algorithm, the results were analyzed over defined
set of metrics like accuracy, mean-accuracy and
time-cost involved. A detailed description of the
various metrics used for performance evaluation of
the proposed algorithm is given below.

Table 1. The service-based anomalies data detected
on the SOA end-to-end test environment

Sl.
No.

Services on
the end-to end
environment

No. of times
anomaly was

detected
per day

Number of
times root
cause was
correctly
localized

1. Frontend 12 9

2. Students Profile 10 10

3. Attendance 16 11

4. Accounts 7 6

5. Admission 7 7

6. Examination 3 3

7. Professors Profile 7 7

8. ERP Service 3 1

9. Departments 5 4

10. Notice board 3 3

Computación y Sistemas, Vol. 27, No. 3, 2023, pp. 791–800
doi: 10.13053/CyS-27-3-4498

trACE - Anomaly Correlation Engine for Tracing the Root Cause on Cloud Based Microservice Architecture 797

ISSN 2007-9737

Accuracy: Accuracy is defined the degree to
which the result of the RCL algorithm conforms to
the correct value or to the actual root cause:

Accuracy = (TP + TN)/ (TP+ FP+ FN+ TN), where
True Positive (TP): the algorithm has localized the
correct root-cause which is the actual root cause.
True Negative (TN): the algorithm has given clean
chit to a node/service and in reality also the
node/service are meeting the hardware or service
requirement. False Positive (FP): the algorithm has
pin pointed a root cause, but the reality being
something else. False Negative (FN): the algorithm
has given clean chit to a node/service but in reality
that node/service is the root cause.

Mean_Accuracy: Mean Accuracy sums up the
average performance accuracy of the algorithm
over the Dataset used above and the real-world
end-to-end test environment:

Mean_Accuracy(Am) = summation of (Ad + Ae) / 2,

where Ad= Accuracy achieved in the test-dataset,
Ae= Accuracy achieved in the real-world end-to-
end environment.

Time-costs: The time-costs are the total run-
time cost associated for running the RCL algorithm
on the test datasets as well as the real-world test
environments (S ‘O’ A University Server). It is
calculated in seconds:

Run-time Costs(RTC)= Tf –Ti,

where Tf= Final timestamp when algorithm ends,
Ti= Initial timestamp when algorithm starts.

4.4 Results and Analysis

The RCA Algorithm was tested on the given test
dataset prepared by the operation and
management team at SOA University Server
containing past data of failure incidents.

It was also deployed on a real-world running
microservice environment that is SOA University
Server that hosts nearly 10 different services on
two datacenters and has nearly 30,00,000
requests per month and a user base of
50,000 users.

The results of the RCL algorithm for each
dataset instance were carefully observed and then
analyzed based on several parameters discussed
above like Accuracies, Mean_Accuracies, and
Time-cost.

The detailed performance or the experimental
results for the RCA algorithm on the test dataset
and real-world end-to-end environment is depicted
in the Figure 5. It presents an overall time-cost of
the algorithm when it was run multiple times on
different server environment under varied
conditions obtained by trACE. From Figure 5, it can
be stated that the proposed algorithm worked
really well for both of the testing environment that
is on the Test Dataset as well as the real-world
End-to-End Environment.

trACE when implemented on the prepared
dataset obtained 97.4%, 91.8% for the service
based and node based root cause types
respectively. Similarly, accuracy obtained were
92.03%, 89.7% when applied on the end-to-end
environment for service based and node based
root cause types.

Thus results found indicate an overall accuracy
of 94.72% and 90.75% on both the experiment
types root-cause on Services and root-cause on
Nodes, which makes it fit for to working in real
world complex microservice environments.

Table 2. Hardware components description for the
master nodes and worker node setup environment

Component Master Node (
x 3)

Worker Node (
x 10)

OS Ubuntu 22.04 Ubuntu 22.04

vCPUs 8 32

Memory(GB) 32 128

Fig. 5. Accuracies of the trACE implemented on the
end-to-end environment and predefined dataset for
both Service-based and Nodes-based datasets

Computación y Sistemas, Vol. 27, No. 3, 2023, pp. 791–800
doi: 10.13053/CyS-27-3-4498

Anukampa Behera, Chhabi Rani Panigrahi, Sitesh Behera, et al.798

ISSN 2007-9737

The MMTR in seconds after running the
algorithm on different instances of the prepared
dataset and in the real-time end-to-end
environment as given in Table 3 are found to be
optimal when compared to other baseline and
state-of-the-art models.

This cost efficiency attained through trACE in
terms of real-time makes the algorithm suitable to
work in any real-world microservice environment.
Even though the proposed RCA algorithm is
implemented on a containerized environment
monitored by Prometheus with Istio, it works good
even if when implemented without any special type
of monitoring tool.

4.4.1 Simulated Environment for Comparative
Performance Evaluation

A testbed with similar infrastructural provisions and
tools as used in MicroRCA [1] was configured on
Amazon Web Service (AWS) and the same
benchmark demo application was used for a
comparative analysis. In this experimentation a
comparative study of trACE is done with some of
the state of the art graph based methods like
Microscope [14] and MicroRCA [1] and a baseline
method as applied in Monitor Rank [15].

A comparison of the root cause localization
performance based on the Mean Average
Precision (MAP) recorded by some baseline
methods such as MonitorRank and Microscope as
well as a state-of-the-art method MicroRCA is
given in Table 4.

From the performance shown, both MicroRCA
and trACE have shown better results when
compared to Microscope and MonitorRank.

However, it has been observed that all the
works done have experimented on service based
faults and none of them have taken care of finding
the root cause for issues generated due to any
hardware or node related faults, which has been
duly taken care by trACE.

5 Conclusion

In this work, authors proposed a technique for
determining the correlation between alerts or
anomalies from all the subsystems and tracing
down the root-cause of the anomalies in a modern
infrastructure deployment, where a lot of

anomalies can be generated at multiple endpoints
due to a single fault.

The experimental findings led to the conclusion
that any infrastructure system failure can have one
of the four possible root causes: a pod failure, a
service failure, a node failure, or a data center
failure. The proposed method finds or closes down
the source root cause of the fault or problem by
correlating the detected anomalies.

An effort has been made to rule out the potential
reasons starting at the bottom in order to localize
the root cause. The trACE ensures that platform or
data center level faults or degradations can have a
cascading effect and result in a number of
anomalies, all of which can be connected at once
and resolved.

This will not only improve the MTTR but also
ensure smooth functionality of the system with a

Table 3. The runtime cost of trACE applied on dataset
and end-to-end environment

Experiment # MTTR in seconds(s)

 Dataset End-to-End
Environment

1 1.180 4.279
2 1.072 4.204
3 1.31 4.310
4 1.26 4.813
5 1.105 4.763
Average 1.1854 4.4738

Table 4. The MAP comparison of trACE with other state
of the art and baseline methods

Model Metric

C
P

U
 H

o
g

M
e

m
o

ry
 L

e
ak

L
a

te
n

cy

O
v

e
ra

ll

%
 o

f
im

p
ro

v
e

m
e

n
t

in

tr
A

C
E

Monitor
Rank

0.77 0.68 0.73 0.73 34.25

MicroScope 0.92 0.95 0.7 0.85 15.29
MicroRCA 0.97 0.98 0.97 0.97 1.03
trACE 0.98 0.98 0.97 0.98

Computación y Sistemas, Vol. 27, No. 3, 2023, pp. 791–800
doi: 10.13053/CyS-27-3-4498

trACE - Anomaly Correlation Engine for Tracing the Root Cause on Cloud Based Microservice Architecture 799

ISSN 2007-9737

high uptime, thus resulting in a more reliable and
efficient system.

References

1. Wu, L., Tordsson, J., Elmroth, E., Kao., O.
(2020). MicroRCA: Root cause localization of
Performance issues in micro-services. NOMS
2020 IEEE/IFIP Network Operations and
Management Symposium, pp. 1–9. DOI:
10.1109/NOMS47738.2020.9110353.

2. Jeyakumar, V., Madani, O., Parandeh, A.,
Kulshreshtha, A., Zeng, W., Yadav, N.
(2019). ExplainIt! -- A declarative root-cause
analysis engine for time series data.
Proceedings of the 2019 International
Conference on Management of Data
SIGMOD'19, pp. 333–348. DOI: 10.1145/329
9869.3314048.

3. Wang, H., Wu, Z., Jiang, H., Huang, Y.,
Wang, J., Kopru, S., Xie, T. (2021). Groot: An
event-graph-based approach for root cause
analysis in industrial settings. 2021 36th
IEEE/ACM International Conference on
Automated Software Engineering, pp. 419–
429. DOI: 10.1109/ASE51524.2021.9678708.

4. Saha, A., Hoi, S. C. H. (2022). Mining root
cause knowledge from cloud service incident
investigations for AIOps. Proceedings of the
44th International Conference on Software
Engineering: Software Engineering in Practice,
pp. 197–206. DOI: 10.1145/3510457.3
513030.

5. Solé, M., Muntés-Mulero, V., Rana, A. I.,
Estrada, G. (2017). Survey on models and
techniques for root-cause analysis. DOI:
10.48550/arXiv.1701.08546.

6. NetApp. (2022). What are micro-services.
https://www.netapp.com/knowledge-center/wh
at-are-micro-services/

7. Garusinghe, A. I., Perera, I., Meedeniya, D.
(2017). Service oriented product lines-
managed service level agreements for better
quality of service. International Journal on
Advances in ICT for Emerging Regions
(ICTer), Vol. 10, No. 2. DOI: 10.4038/ICTER.
V10I2.7184.

8. Behera, A., Panigrahi, C. R., Behera, S.,
Pati, B. (2023). Anomaly detection of
unstructured logs generated from complex
micro-service based architecture using one-
class SVM. Proceedings of the 6th
International Conference on Advance
Computing and Intelligent Engineering, Vol.
428, pp. 105–113. DOI:10.1007/978-981-19-
2225-1_10.

9. Fedushko, S., Ustyianovych, T., Yuriy, S.,
Peracek, T. (2020). User-engagement score
and SLIs/SLOs/SLAs measurements
correlation of E-business projects through big
data analysis. Applied Sciences, Vol. 10, No.
24, pp. 1–16. DOI: 10.3390/app10249112.

10. Jin, M., Lv, A., Zhu, Y., Wen, Z., Zhong, Y.,
Zhao, Z., Wu, J., Li, H., He, H., Chen, F.
(2020). An anomaly detection algorithm for
microservice architecture based on robust
principal component analysis. IEEE Access,
Vol. 8, pp. 226397–226408. DOI: 10.1109/
ACCESS.2020.3044610.

11. Wang, Y., Kadiyala, H., Rubin, J. (2021).
Promises and challenges of microservices: an
exploratory study. Empirical Software
Engineering, Vol. 26, No. 63. DOI:10.1007/
s10664-020-09910-y.

12. Francesco, P. D., Malavolta, I., Lago, P.
(2017). Research on architecting
microservices: Trends, focus, and potential for
industrial adoption. IEEE International
Conference on Software Architecture (ICSA),
pp. 21–30. DOI: 10.1109/ICSA.2017.24.

13. Lin, J., Chen, P., Zheng, Z. (2018).
Microscope: Pinpoint performance issues with
causal graphs in micro-service environments.
Service-Oriented Computing, Vol. 11236, pp.
3–20. DOI: 10.1007/978-3-030-03596-9_1.

14. Kim, M., Sumbaly, R., Shah, S. (2013). Root
cause detection in a service-oriented
architecture. ACM SIGMETRICS Performance
Evaluation Review, Vol. 41, No. 1, pp. 93–104.
DOI: 10.1145/2494232.2465753.

Article received on 02/02/2023; accepted on 16/04/2023.
Corresponding author is Anukampa Behera.

Computación y Sistemas, Vol. 27, No. 3, 2023, pp. 791–800
doi: 10.13053/CyS-27-3-4498

Anukampa Behera, Chhabi Rani Panigrahi, Sitesh Behera, et al.800

ISSN 2007-9737

