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Abstract. This article presents the findings of
a bio-inspired audio emotion-detection system
and compares its performance with various neural
network approaches, namely spiking neural networks,
convolutional neural networks, and multilayer
perceptrons. The simulation results demonstrate
the effectiveness of the proposed approach in accurately
detecting audio emotions. Additionally, the detection
task can achieve even higher levels of precision by
improving the training methods. The research utilizes
the EmoDB, SAVEE, and RAVDESS databases.
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1 Introduction

The fields of human-computer interaction and
human-robot interaction aim to create natural and
intuitive communication methods so that users can
effectively give orders or share information with
these machines.

One of the goals is to enable emotional
interaction since humans are social beings who
naturally seek emotional feedback from their
conversational partners and convey information
through their mood [4].

Emotion recognition in audio methods promises
potential applications in the health sector and
many other commercial applications. For instance,
phycological therapy may offer an alternative and
impartial opinion for a patient emotional state that
the specialist can use to bring a better diagnosis.

Also, it can be used to track a patient’s
emotional state over long periods; for commercial
applications, it can be addressed to evaluate the
user’s response to a product or service, which
eases market research.

In cognitive sciences, the area that has carried
out the most studies on emotion detection is
Psychology. Multiple models have been proposed
to try to understand emotions’ functioning and the
relationship between them. Currently, no complete
model can universally indicate the relationship
between the different emotions; we still need
to understand in depth the phenomenon that
generates them since these relationships change
from individual to individual.

There are two conceptual maps used mainly
in computer sciences; the arousal-valence space
[18, 20] and the categorical ones [10], and the main
reason resides as they can easily be represented
computationally. At the same time, they have
demonstrated their validity in practical cases.

It is a widely accepted notion that the more
input data, such as audio, video, speech, and
posture, you process, the better detection and
categorization you can achieve. However, adding
more variables can complicate the classifier’s job,
which presents a significant challenge, particularly
when databases are limited in size. Due to
the limited mobility and potentially invasive nature
of sensors, most classifiers have concentrated
on utilizing audio and video databases for
their applications.

Computación y Sistemas, Vol. 27, No. 3, 2023, pp. 653–665
doi: 10.13053/CyS-27-3-4515

ISSN 2007-9737



This article has considered evaluating the
performance of three bioinspired classification
systems on audio databases to compare their
characteristics and identify the advantages and
disadvantages of each one for this specific problem
to guide future developments within the area.

The rest of the paper is organized as follows.
In section 2, the main characteristics of the three
types of neural networks are discussed.

Also, the emotion recognition problem is
proposed. In section 3, the methodology
implementation in some neuronal networks is
addressed. In section 4, the results of the
comparison are shown. In section 5, results are
discussed, and future work is proposed.

2 Theoretical Framework

Many classifiers base their operation on the
observed behavior of living beings, also called
bio-inspired models. In this paper, three
bio-inspired classifiers based on artificial neural
networks were selected.

Firstly, spiking neural networks (SNN) participate
in this comparison analysis due to closed
similarities with biological neural networks, as they
are the basis of future neuromorphic computer
platforms. Neuromorphic computing seeks to
emulate the behavior and structures present in the
human brain for information processing.

In SNN realizations, it is possible to integrate
into a single silicon die memory and process
that presents power consumption of milliwatts,
with parallel processing capabilities and integration
levels of thousands of neurons.

As memory elements, memristors usually play a
crucial role because they can adjust and maintain
their electrical resistance based on the history of
voltage and electrical current that has been applied
between their terminals.

This ability to adjust and retain its resistance
value can be used to store information and,
therefore, to build non-volatile memories, playing
the role of neural synapses [7, 8].

On the other hand, convolutional neural network
models and their variants with recurring stages
are the models that currently have the best
results with this classification problem, mainly

Fig. 1. Perceptron type neuron diagram

due to their ability to extract features from the
data automatically.

Finally, MLP were examined, these models have
been widely used to solve this classification
problem, and currently, their variants are
widely used as part of the models with
convolutional layers.

2.1 MLP

A Vanilla neural network, also known as a
multi-layer perceptron (MLP), is made up of
multiple layers of Perceptrons. These layers are
connected through weights that multiply the inputs
to them.

Each neuron perceptron performs the weighted
sum of its inputs which serves as input to an
activation function, usually a sigmoid one, relu,
or tanh function. The output of this function
is then evaluated against a threshold. If the
value is greater than the threshold, the output is
activated. The final neuron value is propagated to
the next layer.

The reference [14] shows this model is a
universal function approximator. Its popularity is
due to its ability to be trained using an optimizer or
the backpropagation algorithm, which adjusts the
input weights of the neurons.

The goal is to minimize the error function by
calculating the gradient and reaching a global
minimum. This application teaches the network
by providing it with a variety of examples and their
corresponding expected outputs.
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Fig. 2. CNN diagram

The backpropagation algorithm, then uses this
information to adjust the weights of the inputs,
reducing the error until it is minimal. However, be
aware that overtraining can occur if the error is
constantly reduced, causing the classifier to lose
the ability to generalize.

2.2 CNN

Convolutional neural networks, commonly
known as CNN, have input layers comprising
of convolutional neurons and output layers
consisting of fully connected perceptrons, also
known as dense layers. There are various models
that utilize convolutional neurons, including full
convolutional networks (FCN).

These networks are specifically designed to
analyze images and extract features from them
through convolutional layers. Each convolutional
neuron generates a map of features, which
is essentially a compressed version of the
original image.

During training, the convolutional neurons act as
filters that adjust their values, and the features that
are extracted, become abstract representations
after passing through multiple layers.

Although difficult to interpret for humans, these
abstract representations contain the characteristics
necessary for the dense layers to produce the best
results. One advantage of this model is that feature

extraction is handled by the convolutional layers,
but a significant amount of training examples
are required.

2.3 SNN

The Spiking Neural Networks model is based
on the study of giant squid neurons by
Hodgkin-Huxley (HH) [13] and aims to mimic
biological neurons more closely.

Its primary purpose is to study biological
systems rather than pattern recognition
applications. The mathematical model
includes four differential equations, making it
computationally expensive.

To use these models as classifiers, simpler
versions were proposed.

The leaky integrate and fire model (LIF) [1],
for example, seeks to simplify the original model,
while the Izhikevich model [15] is an intermediate
interpretation that balances the simplicity of the LIF
with the computational power of the HH model.

The Izhikevich model uses only two
differential equations. There are different ways to
train this type of neural network.

However, in the particular case of Izhikevich, its
very nature prevents it from being trained using
backpropagation methods, leading to problems
during implementation since the optimizers usually
have a higher computational cost.
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Fig. 3. Mel-Spectrograms examples

Also one of the main characteristics of this type
of neural network consists as it receives a signal as
input, which must meet a series of characteristics,
so an encoder must be created which converts the
input data into spiking signals so that they can be
learned by the network [17].

2.4 Recognition of Emotions in Audio

Various input data types can be considered to
accurately identify emotions, including EEG [21]
and posture.

It is believed that incorporating multiple cues,
such as tone of voice and gesticulation, will
improve the reliability of emotion classification.

While there are many possible inputs, practical
approaches prioritize audiovisual data as it is
less invasive and can be used in various
environments to interact with the device properly.
The context in which gestures occur can affect
how classifiers interpret data. This is because
different cultures and situations often lead to
different interpretations.

Additionally, emotions can be subtle and
sporadic, and people may hide them during small
talk, making classification even more challenging.
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When classifying emotions in audio, three types
of databases are typically used. The first type
involves using actors in controlled conditions,
which has produced the most successful results
with classifiers.

However, this database may not reflect real-life
situations since the acted emotions are usually
more exaggerated than genuine ones. The second
type involves recording real emotions in controlled
environments, attempting to capture emotions
similar to those displayed in natural interactions.

These databases often produce fewer accurate
results than the first type and can be difficult to
create due to legal reasons or obtaining reliable
data. Finally, the third type of database searches
for audio samples that closely resemble what a
classifier would encounter in the field, including
multiple voices and background noise.

These databases are known as the wild [6] [9].
Audio databases for emotions are typically labeled
in two ways, as previously mentioned. The first
method involves an arousal-valence space map,
which can help locate a particular emotion based
on where these values fall.

The purpose of these maps is to represent
the current understanding in cognitive science
regarding emotions, with an emphasis on finding
similarities. However, these maps also change
from person to person, and although we can locate
a more or less approximate parameter for various
emotions, these are not static.

The second method of categorizing audio
samples is by their corresponding emotion. This
method is practical and straightforward, and is
commonly used in audio emotion databases.
Labels used for this method usually include the
seven basic emotions, but some applications may
use more complex labels.

To guarantee precision, creating a database of
the possible examples the classifier can consult in
specific applications is important.

Fig. 4. SNN diagram

3 Methodology

Even though the compared methods are different,
we can still gain insights into how they work
and how they can be used. This will enable
us to identify useful characteristics that can help
recognize emotions in audio and determine which
model offers the most significant advantages.

3.1 Databases and Data Entry

Three databases were used, which contain audio
samples and are labeled with basic emotions,
although there are differences in labeling between
these sets, all three use basic emotions. One
of the available databases for emotional speech
analysis is EmoDB [5], created by the Institute of
Communication Science at the Technical University
in Berlin, Germany.

This database includes recordings from 10
actors (5 men and 5 women) expressing emotions
such as anger, boredom, anxiety, happiness,
sadness, disgust, and neutrality. It contains a
total of 535 audio samples in German, although
it is not a balanced database, this is the first
database we employed.

The second is SAVEE [12] (Surrey Audio-Visual
Expressed Emotion), which consists of 480
recorded audios of 4 male students between 27
and 31 years, with the categories anger, disgust,
fear, happiness, sadness, and surprise.

We also used RAVDESS [16], which is
the Ryerson Audio-Visual Database of Emotional
Speech and Song, to obtain 1440 speech audio
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Fig. 5. Training method for SNN proposed in the Thesis
”Clasificación eficiente de patrones usando una sola
neurona artificial” [3]

files generated by 24 actors. These files have
eight emotional categories, including neutral, calm,
happy, sad, angry, fearful, disgust, and surprised.

From the speech audio, we identified various
emotional features and discovered that the
Mel-Spectrogram was the most effective for
emotion perception. To minimize noise, we
eliminated any values below 30 dB.

The Mel-Spectrogram is an audio analysis that
enhances the Fourier spectrogram to accentuate
low frequencies, which are more perceptible to the
human ear.

3.2 Characteristics and Implementation of
the SNN

We created our own model for the SNN because
due to the lack of any existing models in the
literature that used this type of neural network for
emotion classification in audio.

To use the SNN for this purpose, an input
signal must be provided, usually generated by

an encoder that processes the available data.
However, creating an effective encoder depends on
the specific problem at hand.

In the case of emotions in audio, the lack of
clear understanding of emotions in audio, makes it
challenging to develop an effective encoder for the
signal. When it comes to the input data generated
by the encoder for these neural networks, specific
characteristics must be met for the network to
function properly.

Specifically, the signal must consist of pulses, as
stated in [17]. Attempting to use an audio signal
that has yet to be encoded beforehand will lead to
unsatisfactory performance by the classifier.

The architecture utilized in this project involves
two layers of spiking neurons based on the
Izhikevich model, chosen for their superior
computing abilities [15]. The first layer is
comprised of three neurons, receiving input from
three vectors containing features extracted from
the first column of the mel-spectrogram.

This window of 128 values represents the power
of various frequencies in the audio and is divided
into two vectors of 43 components and one of 42.
Each vector undergoes a dot product with a set of
weights to produce a single value for each neuron,
representing a signal for a point in the input signal.

This process is repeated for the entire audio
sample, generating the required input signal for the
network to function.

To generate the signal that enters the second
layer, the same process is followed as in the first
layer. This generates a vector with the outputs
of the first layer. The signal at the output of our
neural network is then used to determine the class
it belongs to, which is identified by its frequency.
This type of neural network intrinsically has the
quality of being recurrent, which is one of its
main advantages.

However, as we can see in the SNN
equation [15], this model requires a series of
differential equations, increasing its computational
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complexity and computation time, while limiting the
training methods:

v′ = 0.04v2 + 5v + 140− u+ I, (1)
u′ = a(bv − u), (2)

if v ≥ 30mV, then
{

v ← c,
u← u+ d.

(3)

The previous set of equations describes the
Izhikevich neuron model. In equation 1, v stands
for the neuron membrane potential. The term I,
means the input neuron current.

In Equation 2, u represents a membrane
recovery variable, parameter, a describes the time
scale of u; the parameter b describes the sensitivity
of u, the parameter c, in Equation 3 describes the
after-spike reset value of v, and the parameter d
describess the after-spike reset of u.

We tested various optimization methods in order
to train this neural network and found that the
differential evolution approach (DE) provided the
best results, even though it took the longest
to optimize.

We also tested particle swarm optimization
(PSO) and cybernetic optimization by simulated
annealing (COSA) methods [11], with COSA being
the quickest to converge but not as accurate as
the DE.

This type of neural network requires mapping
the output signal to a label. For this, the training
methodology proposed in the thesis ”Clasificación
eficiente de patrones usando una sola neurona
artificial” [3] was utilized.

This methodology involves several steps. Firstly,
the weights are initialized randomly. Next,
the output frequency is obtained for each data
point. Then, the average frequency per class
is calculated.

After this, the relevance of each element to its
corresponding class is evaluated to calculate the
error. The values of the weights and parameters
of the neurons are saved before proceeding
to optimization.

The process is then repeated from the second
step. At the end, the weights, parameters of the
networks, and frequencies of belongings that gave
better results are saved. This method helps to

Algorithm 1 Training method for SNN
while Epochs > 0 do

for Xi in Audios do
Iij ←WT

j ·Xi ▷ Calculate the input current
Frij ← IZH(Iij) ▷ Calculate the exits of the

SNN and append the values in a list
end for
AFR ▷ Obtain an Average Frequency for each

class
clij ← argmink

k=1(|AFRi − Frij |) ▷ Calculate
the belonging of each audio to a class

pcc ▷ Count correctly classified audios
f(Wj ,X)← 1− (pcc/pt) ▷ Calculate the aptitude

function of vector W
if fWj < fWbest then

Wbest ←Wj

end if
Epoch−−
if Epoch! = 0 then

W ← DifEvo(Wbest, fWbest) ▷ Use
Differential Evolution to optimize W

else
return(AFRbest,Wbest)

end if
end while

assign labels to frequencies, but it may increase
computation time.

It is clear that software implementation of these
models requires more computing power, making
them less efficient than models such as MLPs
or CNNs.

Additionally, their implementation process is
more complex. However, their unique nature is
advantageous because they can be implemented
in hardware by performing the differential equation
using memristors, which has attracted the interest
of numerous research teams.

One of the biggest challenges in using this
model to classify emotions is the absence of an
encoder. Currently, there isn’t enough knowledge
about how emotions are expressed in audio to
create one. This is a complex issue that must be
addressed separately.

3.3 Characteristics and Implementation of
the MLP

The MLP has been a popular classifier model,
but in recent years, it has been overtaken
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Fig. 6. CNN Architecture

by deep neural networks as the primary
bio-inspired classifier.

According to a mathematical proof [14], an MLP
can function as a universal function approximator.
While it is true that a single hidden layer with n
neurons can solve any decision boundary, this has
led to misunderstandings and even caused the
second winter of neural networks.

It is important to note that while one hidden
layer can approximate any decision boundary,
complex problems may require a large number of
neurons. Additionally, the necessary database may
be impractical to generate or the training time may
exceed the age of the universe.

Perceptrons, being the basic element in an MLP
[19], have the advantage that they use simple
operations, ”adds and compares”, and activation
functions with output in a defined range.

To prepare the data for input for the MLP,
the spectrogram was resized to a fixed size of
128 × 128 pixels. Each pixel served as an input
to the network, resulting in an input vector with
16384 values.

However, because the MLP cannot extract
features, a data expert must clean the data
and create the necessary extractors for proper
functionality. In this instance, the Mel-Spectrogram
serves as the feature extractor generator.

The architecture used consisted of an input
layer, 8 intermediate layers, and an output layer.
Each intermediate layer had 500 neurons in a fully
connected configuration, and the output layer had
several neurons equal to the number of classes.

The training process involved using
backpropagation, and labeling was done through
one-hot coding. This approach is faster compared
to metaheuristic methods.

Note that to simplify the training process for the
network, more layers can be added to increase
abstraction levels. This has been a known practice
in MLPs and has led to the development of
deep networks.
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Table 1. CNN Layers

Layer (type) Output Shape Param #

conv2d (Conv2D) (None, 56, 64, 10) 100

conv2d 1 (Conv2D) (None, 52, 64, 10) 510

conv2d 2 (Conv2D) (None, 52, 64, 10) 310

max pooling2d (MaxPooling2D) (None, 17, 64, 10) 0

batch normalization (BatchNo) (None, 17, 64, 10) 40

conv2d 3 (Conv2D) (None, 17, 64, 40) 1240

conv2d 4 (Conv2D) (None, 17, 64, 40) 4840

max pooling2d 1 (MaxPooling2) (None, 8, 64, 40) 0

batch normalization 1 (Batch) (None, 8, 64, 40) 160

conv2d 5 (Conv2D) (None, 8, 64, 80) 32080

conv2d 6 (Conv2D) (None, 8, 64, 80) 6480

max pooling2d 2 (MaxPooling2) (None, 4, 64, 80) 0

batch normalization 2 (Batch) (None, 4, 64, 80) 320

conv2d 7 (Conv2D) (None, 4, 64, 80) 6480

flatten (Flatten) (None, 20480) 0

dense (Dense) (None, 80) 1638480

dense 1 (Dense) (None, 30) 2430

dense 2 (Dense) (None, 7) 124

Table 2. Model’s Accuracy

. EmoDB SAVEE RAVDESS

SNN 0.3 0.23 0.25

MLP 0.53 0.41 0.46

CNN 0.69 0.52 0.62

3.4 Characteristics and Implementation of
the CNN

CNNs are designed to work on images; in
this case, the image of interest is the audio
spectrogram. The main characteristic that
distinguishes this type of neural network is its
ability to extract features from images, which
is why they have become trendy for developing
applications with complex input data, such as
emotion detection.

Identifying emotions through this neural network
requires many examples, but the databases are
quite small, making it difficult. Data augmentation
is commonly used to overcome this challenge,
which was not used in this project.

In a typical CNN, the initial layer consists of
convolutional neurons that work like image filters.

However, they are adaptable and aid
in extracting image features, such as the
Mel-spectrogram, by optimizing weights during
training. These neurons learn which features
the classifier needs and are often paired with a
max-pooling and a batch normalization layer.

Convolutional layers produce feature maps that
can be quite large. To reduce their size, we use
max pooling layers. These layers retain the highest
values in the feature maps and discard the lowest
values using a kernel.

If the kernel size is 2, the feature map size is
halved. While there are other types of pooling
layers, such as Mean and Min pooling, they are not
as frequently used.

During the training process, batch normalization
layers are utilized to decrease the variance of input
values and speed up the convergence towards a
minimal error.

Following the convolutional layers, a set
of neurons resemble MLP, but utilize distinct
activation functions. These neurons perform the
classification task and are referred to as dense
layers. During this phase, the neurons are fully
connected, linking each neuron of one layer with
every neuron in the next layer.

Finally, the process culminates in an output layer
consisting of one neuron representing each class.

The table below describes the network’s
architecture. Currently, the best performing models
are convolutional neural networks with added
recurrent capabilities, as noted in [2].

4 Results

To compare the performance of different models,
we conducted tests simulations with three
databases, each with 1,000 epochs. To ensure
fairness, we balanced the databases by reducing
the examples in each class.

We did not use data augmentation as our main
goal was to evaluate the models rather than
achieve the best classification.

After balancing, EmoDB had 322 samples,
SAVEE had 420, and RAVDESS had 768. The
accuracy of each model is presented in the
table below.
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Fig. 7. Accuracy comparison between the models

The following graphic displays the varying levels
of accuracy achieved by different models. Out
of the three databases, CNN performed the best
overall. This is due to CNN’s ability to extract
information from images.

It’s clear that the CNNs displayed the best
performance. However, it’s worth mentioning that
the SNNs had a longer training time and performed
poorly compared to other models. It’s also
worth noting that, that there are currently limited
resources for creating and evaluating spiking
neural networks.

As a classifier, the MLP demonstrates some
effectiveness, considering that there are 7 classes
and the expected accuracy for the Emo-DB dataset
is around 14.25%. The experimental results show
an average classification rate of 53%.

To summarize, the features of the suggested
networks are evident in this issue. It is noticeable
that all 3 models can classify with varying levels
of success. This article highlights that SNNs have
a smaller architecture compared to other models.

Even without an encoder, they produce better
results than random selection. However, training
time and computational complexity are limitations.

One advantage of SNNs is their ease of
implementation in hardware, which has attracted
the attention of research groups working towards
practical parallel and low-power hardware
implementations. Implementing SNNs in hardware
could eliminate the above-mentioned limitations.

Even though the MLP is much larger and more
computationally complex, it has a lower training
time and better classification capacity compared to
the SNN.

As previously stated, CNNs are renowned
for their capacity to identify features and have
exhibited the best performance. Nevertheless,
they require many examples and epochs to
attain precise learning. They are generally
larger networks than traditional MLPs but have
demonstrated success in multiple fields.

The results of the F-Score help to reveal in more
detail the inner workings of the tested models for an
specific problem, it also shows how certain classes
are easier for the models to recognize.

In the case of the CNN, it can be seen how there
are large variations in performance between each
of the databases, in the case of EMO-DB we can
see that there are classes whose classification is
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Fig. 8. Comparison between the models and
random picking

Table 3. F-Score EmoDB
. Anger Boredom Disgust Fear Happiness Sadness Neutral

SNN 0.0 0.1 0.05 0.0 0.1 0.07 0.01

MLP 0.15 0.0 0.0 0.1 0.23 0.0 0.0

CNN 0.0 0.2 0.15 0.0 0.7 0.45 0.21

Table 4. F-Score SAVEE
. Anger Disgust Fear Happiness Neutral Sadness Surprise

SNN 0.04 0.01 0.15 0.01 0.1 0.26 0.1

MLP 0.25 0.0 0.0 0.21 0.0 0.0 0.12

CNN 0.36 0.0 0.2 0.24 0.0 0.38 0.30

Table 5. F-Score RAVDESS
. Neutral Calm Happy Sad Angry Fearfull Disgust Surprise

SNN 0.11 0.04 0.08 0.1 0.23 0.07 0.01 0.15

MLP 0.4 0.0 0.48 0.0 0.51 0.0 0.0 0.0

CNN 0.43 0.42 0.18 0.2 0.64 0.47 0.46 0.40

0, in the case of the RAVDESS it’s seen there is
a moderately balanced performance between all
classes and in the case of SAVEE we see again
there are classes that doesn’t seem to be classified
but at the same time the classified ones show a
better balance than EMO-DB, this could be due
to the differences between data that each set has,
which could be the language, quality or duration of
the audios.

But in our experience with the experiments, we
suggest that differences can be more influenced by
the size of the databases, even if it is the case, we
see there are emotions that are easier to detect
than, emphasizing anger and happiness.

For the MLP performance was quite lower and
shows how the results are concentrated in only
a couple of classes, we see the lack of feature
extraction plays a very big role in the performance
of the network, we suppose this phenomenon
happens since it stays at a local minimum.

Performance among the three databases also
varies depending on the number of audio samples.

In the case of SNN, which show results with a
balance similar to CNN but with lower performance,
we believe this shows the network generates a
certain extraction of features because this network
doesn’t have an encoder.

As mentioned in previous sections, we think
this is a large fraction of the problem for getting
such a poor performance, but nonetheless, it’s
quite interesting to see that there is some level of
feature extraction.

5 Conclusions

By examining the key features of these bio-inspired
models, we can gain insight into potential
future approaches for enhancing audio emotion
recognition. Refer to Table 3 for a comprehensive
overview of the models’ main characteristics of
this problem.

When we consider the traits of the suggested
models, it is evident that combining CNNs
and recurrent models with data augmentation
techniques leads the way in emotion recognition.

However, this also establishes a minimum
requirement for computational power that platforms
using them must meet to be considered for emotion
recognition applications.

This can be a challenge for low-cost robots
intended for commercial applications that focus on
human-robot interaction.
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Table 6. Characteristics

. Information Computational Training

extraction Complexity time

SNN Yes, poorly Is the Requires more

most complex time than the others

MLP No Is the Requires less

less complex time than the others

CNN Yes . .

5.1 Future Work

Another interesting proposal involves the use of
spiking networks implemented in hardware. This
approach aims to eliminate the main drawbacks of
these models.

However, the main challenge remains -
designing an encoder that can convert emotions
into spiking signals. As a more practical alternative,
CNNs must be utilized as extractors for the
spectrogram to serve as an encoder capable of
learning the optimal values to activate the SNN.
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Académicas (COFAA-IPN) and Consejo
Nacional de Humanidades Ciencia y Tecnologı́a
(CONAHCYT-México).
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