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Campus de Los Rı́os,
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Abstract. Floods are common in much of the world,

this is due to different factors among which climate

change and land use stand out. In Mexico they happen

every year in different entities. Tabasco is an entity

that is periodically flooded, causing losses and negative

consequences for the rural, urban, livestock, agricultural

and service industries. Consequently, it is necessary to

create strategies to intervene effectively in the affected

areas. Therefore, different strategies and techniques

have been developed to mitigate the damage caused

by this phenomenon. Satellite programs provide a

large amount of data on the earth’s surface as well as

geospatial information processing tools that are useful

for environmental and forest monitoring, climate change

impacts, risk analysis, natural disasters, among others.

This paper presents a strategy for the classification of

flooded areas using satellite images radar of synthetic

aperture and the U-NET neural network. The study area

is centered on Los Rı́os, region of Tabasco, Mexico. The

partial results show that U-NET performs well despite the

limited amount in the training samples. As training data

and epochs increased, its accuracy increased.

Keywords. Deep learning and SAR, sentinel-1 SAR,

flood detection.

1 Introduction

Floods are natural events that occur around

the world. They are derived from extreme

precipitations of hail, rain or snow, waves or failures

in hydraulic structures.

For Consequently, they cause the increase of

surface water levels in rivers, lakes, lagoons

or oceans. These events cause serious damage to

agriculture, livestock and infrastructure with great

costs to people and the economy of the countries

[5]. Likewise, they cause human losses and lead

vulnerable populations to poverty.

According to the United Nations Office for

Disaster Risk Reduction (UNDRR), more than 45%

of the world’s population has been affected by

floods [32]. In Mexico, floods are constant in

different areas. Particularly, the south of México

has been an area affected by floods [20].

These events originate in the rainy seasons,

which begin in May and end in November, having

repercussions in the rise in river levels and the

spillage of their flows on tracts of land dedicated

to productive activities or in areas with urban

settlements: the most recent case occurred in

November 20201.

With the development of new satellite platforms

and tools and increasingly advanced sensors,

it is possible to collect a large amount of

data from the earth and capture very useful

information [30]. Earth observation satellite

programs have allowed numerous investigations

focused on flood detection, soil analysis, natural

damage monitoring, etc.

1https://elpais.com/mexico/2020-11-23/tabasco-una-
tragedia-bajo-el-agua.html
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The Information acquired by satellites has

different properties such as: 1) spatial resolution,

which determines the area of the earth’s surface

covered by each pixel of the image; 2) spectral

resolution, which represents the electromagnetic

spectrum captured by the remote sensor, the

number and width of regions, and 3) temporal

resolution, which determines how long satellite

information can be obtained from the same

location with the same satellite and radiometric

resolution [15].

Among the Earth observation satellite programs

is Copernicus. It has great capacity in the

acquisition of remote data with high temporal and

spatial resolution useful for mapping floods. It

is made up of 5 satellites developed for different

purposes: Sentinel-1, provides Synthetic Aperture

Radar (SAR) images useful for observing land

and oceans; Sentinel-2, provides multispectral

terrestrial optical images; Sentinel-3 and 6, for

marine observation and Sentinel-4 and 5 for air

quality monitoring [7, 29, 13].

The optical images show the variations

depending on the cloud, which does not allow

to penetrate the cloud layer that is usually present

during precipitations.

On the other hand, SAR images are based on

the reflectance of energy, which makes it effective

during the day and at night. Consequently, they are

not affected by weather or atmospheric conditions.

These characteristics make them used for

flood mapping or environmental monitoring.

Different methods have been proposed in the

literature for the detection and monitoring of

water bodies. Some use multispectral optical

images and SAR data using supervised and

unsupervised algorithms.

Thresholding techniques, such as the Otsu

method, are widely used for the detection of bodies

of water [19, 28].

However, when perturbation factors are present

in SAR images that influence the backscatter, it

may be less effective [16]; when using optical

imaging, threshold spectral indices may be off due

to the sensitivity of NIR (near-infrared) reflectance.

On the other hand, Deep Learning (DL)

techniques have emerged in recent years.

This has allowed the development of new

methods using SAR images for various objectives

such as the classification of land cover [25],

extraction of water bodies [11], etc. Semantic

segmentation algorithms have been the main

factors in automated analysis of remotely sensed

images to find and delimit a specific area.

In particular, Convolutional Neural Networks

(CNN), a specific type of DL, have gained

wide acceptance due to their good performance

and ease of training compared to other types

of DL [2]. CNN’s are made up of multiple

layers of processing, which are the result of

performing spatial convolutions; usually followed by

trigger units. On the other hand, Recurrent Neural

Networks (RNN) [27] are also being used in remote

sensing since they can handle data sequences (for

example, time series), in such a way that the output

of the previous time step is fed as input to the

current step.

With the recent rise of Deep Convolutional

Neural Networks (DCNN), several network models

have been proposed for segmentation tasks such

as: pyramidal networks, such as PSP-Net [35];

based on dilation convolution, such as DeepLab

[6]; encoder-decoder based, such as HR-Net [26],

U-NET [27], etc.

This research presents a strategy for detection

and monitoring of flooded areas using the U-NET

deep learning model and Sentinel-1A SAR satellite

images. The study area is the Rı́os zone in

the state of Tabasco, Mexico. This document is

structured as follows: Section 2 shows the related

works; in Section 3, the materials and methods

implemented to carry out the investigation are

presented; in Section 4, the results obtained are

presented; and finally in Section 5 the conclusions

obtained in the research work are presented.

2 Related Works

SAR data and artificial neural networks,

particularly convolutional neural networks (CNN),

have been implemented in various studies and

have been found to be effective in tracking land

cover, this is due to their great ability to capture

information in the earth’s surface regardless of

weather conditions.
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In recent years, researchs focused on the

analysis, monitoring and review of damage caused

by floods has been carried out [4, 33].

Twele et al. [29] developed a fully automated

processing chain to map flooded areas from

Sentinel-1 images. They combined the threshold,

the HAND index and the classification based on

fuzzy logic, with which they achieved an overall

precision between 94% and 96.1%, and a kappa

coefficient between 0.879 and 0.91.

Fernandez et al. [9] and Pech-May et al. [21]

present studies carried out in Tabasco, Mexico. In

both works they provide an analysis on the use

of SAR satellite images and their usefulness for

monitoring terrestrial phenomena.

They highlight the advantages of using SAR

satellite images, under cloudy and rainy conditions;

In addition, they developed a methodology to

determine the behavior of floods that occur in the

rainy season using machine learning.

Zhao et al. [36] used convolutional networks

and SAR images to classify buildings, vegetation,

roads, and bodies of water. They used TerraSAR

images of the city of Wuhan to train their algorithm.

Training was in horizontal image patches using

2244 sheets of 100 x 100 pixel images. The

precision obtained was 85.6%.

On the other hand, Scepanovic et al. [37]

created a land cover mapping system with 5

classes. They applied several deep learning

semantic segmentation models pretrained with

SAR Sentinel-1 imagery.

They used the following deep networks:

UNet, DeepLabV3+, PSPNet, BiSeNet, SegNet,

FCDenseNet, and FRRN-B. Based on their

results, FC-DenseNet. They achieved a better

overall precision of 90.7%.

Konapala et al. [14] presented a strategy for the

identification of floods from SAR satellite images.

In [23] they use Sentinel-1 and Sentinel-2 to

identify flooded areas. Likewise, Yu Li et al. [17]

conducted a study where they analyze hurricanes.

Finally, Recurrent Neural Networks (RNN) are

being used for the analysis of water bodies and

land cover using Sentinel images [3, 12]. In

[24, 18, 31] they have proposed approaches that

incorporate recursive and convolutional operations

for spatiotemporal data processing.

Study area

SAR Sentinel-1 image 
acquisition

Images preprocessing

Training

Sample collection from
flooded areas

UNET model training

Model obtainment

Validation

Results analysis

1 2

3

Fig. 1. Proposed methodology for flood mapping using

SAR images and U-NET

3 Materials and Methods

The proposed strategy has three main phases.

Figure 1 shows the methodology with each of

the activities of each phase. Each stage is

explained below.

3.1 Study Area

Tabasco is located in the southeast of Mexico, on

the coast of the Gulf of Mexico. In terms of surface,

it ranks 34th at the national level with a territorial

extension of 24,661 km2, which represents 1.3%

of the country.

Two regions are recognized in the entity: Grijalva

and Usumacinta, which contains two subregions

(swamps and rivers). Together they form one of

the largest river systems in the world in terms

of volume.

In addition, the average precipitation of the state

is three times higher than the average precipitation

of Mexico and represents almost 40% of the

country’s fresh water.

The abundance of water and the impact of dams

on the region’s hydrology alter the natural flow

of rivers, causing flash floods that affect drinking

water, health and the lives of thousands of people

[8]. Therefore, flooding is common in the region.
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Fig. 2. Geographical location of the study area, Los Rı́os

Subregion, Tabasco

Fig. 3. Location of the tile that contains the SAR images

of the study area

However, in the fall of 2020, several cold

fronts and hurricanes caused the worst flooding in

decades, causing human and economic losses.

The study area is centered on the Rı́os

subregion (see Figure 2). It is located in the

Eastern of the state, on the border with the state

of Campeche and the Republic of Guatemala.

It is named for the large number of rivers that

cross it, including the Usumacinta River, the largest

in the country, and the San Pedro Mártir River.

The municipalities that make up this subregion

are: Tenosique, Emiliano Zapata and Balancán.

Its surface is approximately 6000 km2, which

represents 24.67% of the total state.

3.1.1 Image Acquisition

Cross-polarized (VH) SAR images obtained from

the Sentinel-1 satellite through the Copernicus

Open Access Hub2 platform were used to map

the floods. These images are found within a tile

that covered the states of Campeche, Chiapas and

Tabasco (See Figure 3).

The images used correspond to the date

November 2020 and September 2022, this

is because during these periods there were

medium-scale floods in the study area. In addition,

the estimated flood map generated by the National

Civil Protection System (SINAPROC-MEXICO)

was used.

3.1.2 SAR Images Proprocessing

To eliminate distortions, flaws or noises that

interfere in the treatment, pre-processing was

applied to the SAR images (see Figure 4):

– Radiometric correction. It was applied to correct

the distortions of the radar signal caused by

alterations in the movement of the sensor or

instrument on board the satellite. It should

be noted that the intensity of the image pixels

can be directly related to the backscattering

signal captured by the sensor. Figure 4a and

4b show an example of an image before and

after correction.

– Speckle filter application. Speckle filtering

was applied, non-Gaussian multiplicative noise,

which indicates that the pixel values do not

follow a normal distribution, which causes the

images to have a salt and pepper effect.

Consequently, the 7x7 Lee [22] filter was used to

standardize the image and reduce this problem

(see Figure 4c).

2https://scihub.copernicus.eu/
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– Geometric calibration. SAR images may be

distorted or rotated, requiring rearrangement.

To make the geometric correction, the Digital

Elevation Model (DEM) of the SRTM (Shuttle

Radar Topography Mission)3 was used. Figure

4d shows the rearrangement of the SAR image

of the study area.

– RGB layer generation. An RGB mask of the SAR

image was made to detect pixels where bodies

of water, vegetation and flooded areas occur.

Figure 4e shows the result of the image with the

RGB layer.

– Binary layer. To separate the water from

what is not, a threshold was used. For

this, the histogram of the filtered backscattering

coefficient of the previously treated images

was analyzed and the minimum backscattering

values were extracted, since these correspond

to the pixels with the presence of water.

Figure 4f shows the binary layer obtained from

thresholding. Areas with shades of red indicate

the presence of water while other deck objects

are ignored. The purpose of this layer is to

perform the training samples that will be used in

the deep learning model. This is complemented

by the 2020 flood map generated by SINAPROC.

3.2 Training

Training deep learning models requires the

conversion of Geographic Information Systems

(GIS) to a format that can be used to classify

images. Creating good training examples is

essential when training a deep learning model or

any image classification model. To carry out the

labels and training of the model, SAR images of

the floods of the study area of the year 2020

were used.

3.2.1 Creation Training Samples

Images preprocessed with the binary layer were

used to create training samples. Figure 5 shows

some of the training samples captured in the

SAR images.

3http://www2.jpl.nasa.gov/srtm/)

Fig. 4. SAR image example. (a) no processing,

(b) with radiometric processing, (c) with speckle filter,

(d) with geometric correction, (e) with RGB layer, and

(f) binary layer

Once the training samples have been

established, the data is exported to a format

understandable by the model with the following

parameters: 1) raster image, where the training

samples were taken; 2) image size, with a value

of 256 pixels; 3) offset distance for the next

image, with value of 128 pixels; 4) metadata

format, Classified Tiles type and 5) image format,

TIFF type.

The output of this process are sets of small

images of the sample sites (image chips), labels

in XML format, metadata file, parameters and

statistics of the captured samples.

3.2.2 Classification Model Training

This step was performed using the Train Deep

Learning Model geoprocessing tool. This tool

allows to generate a model based on deep learning

using as input data the collection of samples

(image chips and labels) that were captured in the

training process.
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(a)

(b)

Fig. 5. Training samples: (a) image used for the creation

of the training samples, (b) sample of one of the regions

used as sample together with the generated mask

Table 1. Number of samples and times used in training

the flood classification model

# Epochs # Samples

25 256

50 566

75 716

100 1,036

CNN U-NET type were used, which despite

being one of the simplest models, tend to offer

more accurate or adjusted results than those

offered by other models. To carry out the training of

the model, a series of parameters were adjusted:

– Times. The maximum number of cycles or

iterations back and forth of all training samples

through the neural network. Different values

were taken: 25, 50, 75 and 100 epochs.

– Processing batch size. Number of samples to

be processed at the same time and depend on

the hardware, number of processors or GPU

available. A value of 8 was taken.

– Chip size. Value equal to the size of the images

of the sample sites or image chips, this value

corresponds to 256.

As a residual network or backbone, the

ResNet-34 model was used [10].

The model is made up of a network of 34

pre-trained layers with over a million images from

the ImageNet database. On the other hand,

as recommended by [1], a value of 10% was

established for the validation data, which specifies

the number of training samples that are used to

validate the model during the learning process.

Finally, it was established that the learning

process does not stop even though the learning

curve begins to flatten. The training was carried

out with the U-NET model with SAR images.

Table 1 shows the number of samples used by

times implemented.

The output produces a file containing

information about the generated model with

the following information:

– Learning rate. Magnitude of change or update

of the model weights in the backpropagation

of data by the neural network during the

training process.

– Training and validation loss. Training and

validation loss function, which indicates how

well the model fits the training data and the

validation data.

– Accuracy. The average accuracy score refers

to the percentage of correct detections that the

model made based on the results obtained with

the internal validation samples.

4 Validation

4.1 Classification Model Training

It should be noted that the results are partial. For

each epoch in the training of the classification

model, its perfermance was obtained.
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– Training algorithm parameters. To train the

neural network, ArcGIS platform with PyTorch

library was used. The ima size of the dataset

used for train is 256 x 256 pixels. Table

1 shows images used for training by epochs.

The model parameters were initialized with a

standard normal distribution.

Parameters optimization was perfoermed using

a bnary cross entropy function to compare.

Parameter optimization was performed by cross

entropy to compare the predicted values

with actual ground values. Subsequently,

the parameters were optimized using Adam

method [34].

Tables 2 shows the results obtained from the

neural model training. As can be seen, the

best results were with 1036 chips and 100

epochs. The precision was 93%, recall 92%, and

F1 93%.

– Flood mapping. The floods detection using

SAR images obtained good results. It is highly

dependent on the increase in training data and

epochs. However, it does better in detecting

non-flooded areas, this is due to the small

dataset to train the deep learning model.

Figures 6 and 7 show the results obtained in

the flooded areas detection. The left image

corresponds to the ground truth and the right to

the prediction made by the model trained at 25,

50, 75 and 100 epochs.

Figure 7(b) corresponds to 100 epochs and 1036

training samples. It can be seen that it obtains

better results in flood detection. It should be

noted that a larger data set is being developed

for model. This with the aim of obtaining better

results in flood detection. Figure 8 shows

the values obtained from the trained model in

relation to the amount data lost in validation

and training.

5 Conclusions

The use of satellite data for flood detection is

a task that requires understanding between the

characteristics of a flood and the data obtained

by the satellite. In this research it was found that

Table 2. Number of samples and epochs used in training

the flood classification model

Chips: 266. Epochs: 25

Evaluation Class: Flood

Accuracy 82%

Recall 40%

F1 53%

Chips:566. Epochs: 50

Accuracy 81%

Recall 78%

F1 78%

Chips:716. Epochs: 75

Accuracy 74%

Recall 72%

F1 73%

Chips: 1036. Epochs: 100

Accuracy 94%

Recall 92%

F1 93%

(a)

(b)

Fig. 6. Result of the trained neural model. (a,b-left)

shows the truth of the ground. (right) Corresponds

to the prediction of the model with 25 (a) and 50 (b)

epochs, respectively

the SAR images noise affects the performance in

mapping floods.
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(a)

(b)

Fig. 7. Result of the trained neural model. (a,b-left)

shows the truth of the ground. (right) Corresponds to

the prediction of the model with 75 (a) and 100 (b)

epochs, respectively

Fig. 8. Evolution of the loss of training data and

validation of the model

Consequently, it requires image processing

for noise correction. Likewise, the use of deep

learning, for flood detection, can be considered

efficient in terms of time, cost and performance.

When satellite SAR data is available during

and after floods this methodology can be very

useful to provide rapid flood mapping results in

emergency situations.

On the other hand, UNet-type networks proved

to be efficient when working with SAR images and

with a data minimum amount. The accuracy of

our model went from 53% to 93% F1 score as

training data and epochs increased; Therefore, it is

assumed that the results are satisfactory given the

amount of data with which the model was trained.

Finally, it is proposed to create a more extensive

data set in order to apply more complex neural

networks for the detection of flooded areas.

References

1. Abd-Elrahman, A., Britt, K., Liu, T. (2021).

Deep learning classification of high-resolution drone

images using the ArcGIS pro software. Vol. 2021,

No. 5, pp. 1–7. DOI: 10.32473/edis-fr444-2021.

2. Alzubaidi, L., Zhang, J., Humaidi, A. J., Al-Dujaili,

A., Duan, Y., Al-Shamma, O., Santamarı́a,

J., A. Fadhel, M., Al-Amidie, M., Laith, F.

(2021). Review of deep learning: Concepts,

CNN architectures, challenges, applications, future

directions. Journal of Big Data, Vol. 8, No. 53. DOI:

10.1186/s40537-021-00444-8.

3. Bengio, Y., Courville, A. C., Vincent, P.

(2013). Representation learning: A review and

new perspectives. IEEE Transactions on Pattern

Analysis and Machine Intelligence, Vol. 35, No. 8,

pp. 1798–1828. DOI: 10.1109/TPAMI.2013.50.

4. Bourenane, H., Bouhadad, Y., Tas, M.

(2018). Liquefaction hazard mapping in the city

of Boumerdès, Northern Algeria. Bulletin of

Engineering Geology and the Environment, Vol. 77,

pp. 1473–1489. DOI: 10.1007/s10064-017-1137-x.

5. Centro Nacional de Prevención de Desastres

(2012). Inundaciones. ¿Qué es una inundación?, 1
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M. (2012). Satélites de teledetección para la gestión

del territorio. Proyecto SATELMAC.

16. Lee, S. U., Yoon-Chung, S., Hong-Park, R.

(1990). A comparative performance study of several

global thresholding techniques for segmentation.

Computer Vision, Graphics, and Image Processing,

Vol. 52, No. 2, pp. 171–190. DOI: 10.1016/0734-1

89X(90)90053-X.

17. Li, Y., Martinis, S., Wieland, M. (2019). Urban flood

mapping with an active self-learning convolutional

neural network based on TerraSAR-X intensity

and interferometric coherence. ISPRS Journal of

Photogrammetry and Remote Sensing, Vol. 152,

pp. 178–191. DOI: 10.1016/j.isprsjprs.2019.04.014.

18. Marc, R., Marco, K. (2018). Multi-temporal land

cover classification with sequential recurrent

encoders. ISPRS International Journal of

Geo-Information, Vol. 7, No. 4, pp. 1–18. DOI:

10.3390/ijgi7040129.

19. Ohki, M., Yamamoto, K., Tadono, T., Yoshimura,

K. (2020). Automated processing for flood area

detection using alos-2 and hydrodynamic simulation

data. Remote Sensing, Vol. 12, No. 17. DOI: 10.339

0/rs12172709.
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