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Abstract. In numerical models of the atmosphere, data 
on land use are considered as initialization data, 
therefore a current classification at the simulation date 
will allow the model an appropriate representation of the 
processes related to the radiation balance and the 
hydrological cycle of the study area. In the particular 
case of the Weather Research and Forecasting model, 
the default database uses a classification of 21 
categories of land use type, based on MODIS satellite 
images between the years 2001-2005 with a spatial 
resolution of 500 meters, therefore these data are not 
considered current or applicable to recent events. This 
paper proposes a methodology to update the 
classification of types of land use in the Metropolitan 
Area of the Valley of Mexico based on the analysis of the 
spectral signature of Landsat 8 satellite images and 
derived indices, as well as the statistical validation of its 
effect in the numerical simulation of rainfall with the 
WRF model. 

Keywords. Scientific computing, remote sensing, 
weather forecasting, model validation, urban areas. 

1 Introduction 

Numerical models of the atmosphere, based on 
initial meteorological data, apply physical-
mathematical models to calculate the future state 
of meteorological variables such as relative 
humidity, temperature, precipitation, wind speed 
and direction, among others. With the 
advancement of computing and knowledge of the 
atmosphere, these models have evolved and 
correspond to the first consultation reference in 

operational forecasting centers. Among the input 
data, the models consider the geographical 
characteristics of the study area, among which are 
the topography, Coriolis force, angle of rotation of 
the earth and definition of type of land use. The 
latter allows an appropriate representation of 
processes related to the radiation balance and the 
local hydrological cycle [8]. 

The WRF (Weather Research and Forecasting) 
model has become the most widely used in the 
scientific community with more than 57,800 users 
from 160 countries [23]. This model was developed 
by different institutions in the US, including NCAR 
(National Center for Atmospheric Research), 
NCEP (National Centers for Environmental 
Prediction) and NOAA (National Oceanic and 
Atmospheric Administration). The main 
characteristics of the model revolve around its non-
hydrostatic dynamics and its ability to operate in 
spatial resolutions of a few kilometers. 

Contains different configuration options and 
physical parameterizations for convection, 
microphysics, planetary boundary layer, radiation, 
among other hydrothermodynamic processes.  

The model code is open to the community and 
has been optimized for operation in both shared 
and distributed memory computing environments 
[3, 30]. 

The WRF model uses by default a classification 
of 21 categories of land use type, defined in the 
International Geosphere and Biosphere Program 
(IGBP), based on MODIS satellite images between 
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2001-2005 and a resolution of 500 meters [7]. 
However, over the years, naturally or by 
anthropogenic effect, there are changes in the type 
of land use in specific areas, for example, the 
transfer of grasslands and scrublands to 
agricultural uses [33], so the default database is 
not considered current or applicable to recent 
events or several years prior to its creation. 

On the other hand, remote sensing is 
fundamentally based on the fact of working with 
descriptive information of phenomena and objects 
present in the physical universe that has been 
collected without coming into contact with them, 
making it a very efficient alternative for remote 
monitoring [17]. Remote sensing makes it possible 
to explore various aspects of our planet in different 
spectral bands. 

For example, through remote sensing it is 
possible to identify changes in vegetation cover 
and bodies of water, types of climates, advance or 
retreat of glaciers, felling of forests, erosion 
processes, among others [20, 34]. In addition to 
the direct use of the different spectral bands, 
derived spectral indices have been developed, 
which allow to improve the identification of 
characteristics or objects that are not directly 
identifiable from the satellite bands [1, 10,29].  

The objective of this work was to apply a 
methodology for the classification of types of land 
use in the Metropolitan Zone of the Valley of 
Mexico based on the analysis of the spectral 
signature of Landsat 8 Satellite images and 
derived indices to later replace the default 
database of the WRF model and statistically 
evaluate its effect on the precipitation simulation 
for a selected event with extraordinary rainfall in 
the year 2020. 

2 Metodology 

2.1 Study Zone 

The Metropolitan Zone of the Valley of Mexico 
(ZMVM or Valley of Mexico) is located at 19°20' 
North Latitude and 99°05' West Longitude, in the 
center of the country, forming part of a basin, which 
has an average elevation of 2,240 meters above 
sea level (masl); it presents intermountain valleys, 
plateaus and ravines, as well as semi-flat terrain, 

in what were once the lakes of Chalco, Texcoco 
and Xochimilco [30]. The ZMVM is the main 
economic, financial, political and cultural center of 
Mexico. With respect to its population, it is the third 
largest metropolitan area in the Organization for 
Economic Cooperation and Development (OECD) 
and the largest in the world outside of Asia. 
According to the most used Mexican delimitations, 
the ZMVM covers around 9,560 km2 (almost five 
times the size of the Greater London region and 
three times that of Luxem-bourg), includes the 16 
delegations of the Federal District, 59 
municipalities of the state of Mexico and one 
municipality of the state of Hidalgo [26]. 

2.2 Datasets 

2.2.1 Meteorological Fields 

To generate the initial and boundary conditions 
required by the WRF model, data from the Global 
Tropospheric Analysis System of the NCEP FNL 
(Final) operational model were used, which 
operates from the month of July 1999 [24]. The 
FNL data was downloaded from the 7th at 00:00 
until the 9th of June at 18:00 of the year 2020, in 
UTC time (Universal Time Coordinated). These 
data are in GRIB format with a temporal resolution 
of 3 hours and a spatial resolution of 27 km. 

2.2.2 LANDSAT Satellite Images 

For the analysis of the spectral signature, the 
images of the Landsat 8 satellite, launched into 
space in August 2012, were used. Contains 11 
bands with an average resolution of 30 m, which 
allows a wide range of applications. The 
consultation, download and cropping of the images 
was carried out by means of Google Earth Engine 
(GEE), tool developed by the company Google that 
allows geospatial analysis to be carried out using 
processing and data collections in the cloud [27]. 

Using GEE's Javascript code editor, the 
process of selecting, cutting and downloading the 
images for the ZMVM in Tiff format was automated. 
Four images were selected for the year 2020, one 
per season of the year, applying as the main 
criterion the selection of images without the 
presence of clouds that could affect the 
classification. The values of the 11 bands were 
normalized on a scale of 0 to 1. 
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2.2.3 Rainfall Records 

As observed data, the daily rainfall records of the 
weather stations of the Hydrological Information 
System (SIH) were used, operated by the Surface 
Water and River Engineering Management 
(GASIR) of the National Water Commission 
(CONAGUA). The data from these stations 
correspond to the accumulated rainfall from 6:00 
hours of the day before to 6:00 hours of the day 
of registration. 

For this study, only the data reported for June 
9, 2020 was used, being a total of 82 weather 
stations that contained data in the study area. The 
maximum precipitation reported for this date was 
63.5 mm at the station "Las arboledas" with 
ARBMX station key, latitude 19.5667, longitude -
99.2167 and an elevation of 2,280 masl. 

2.3 Analysis of the Spectral Signature  

The analysis of the spectral signature and derived 
indices was carried out to identify 10 types of land 
use: arid soil, bare ground, farmland, grasslands, 
snow, mixed forests, rocky ground, 

shrubs/meadows, urban zone and water. The 
selected spectral indices are described below. 

The Normalized Difference Building Index 
(NDBI), allows estimating built-up surfaces or 
construction development [4, 35]. It is expressed in 
values from -1 to 1. Positive values indicate areas 
built up or under construction, while negative 
values indicate areas with vegetation or bare soil 
(Eq. 1): 

𝑁𝐷𝐵𝐼 =  , (1) 

where NIR correspond to near infrared (band 5 on 
Landsat 8) and SWIR correspond to shortwave 
infrared (band 6 on Landsat 8). 

The Normalized Difference Vegetation Index 
(NDVI), identifies presence of vegetation [29]. It is 
expressed in values from -1 to 1 (Eq. 2). Values 
greater than 0.2 indicate areas with vegetation, 
while opposite values indicate urban areas, arid 
soils, among others: 

𝑁𝐷𝑉𝐼 =  , (2) 

where Red corresponde to visible red (band 4 on 
Landsat 8) and NIR correspond to near infrared 
(band 5 on Landsat 8). 

 

Fig. 1. Spectral signature per band 
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The Urban Index (UI), allows estimation of built-
up areas [14]. It is expressed in values from -1 to 
1. Where positive values indicate urbanized areas, 
while negative values refer to bare or vegetated 
areas (Eq. 3): 

𝑈𝐼 =  , (3) 

where SWIR correspond to shortwave infrared 1 
(band 6 on Landsat 8) and VNIR correspond to 
shortwave infrared 2 (band 7 on Landsat 8). 

The Normalized Difference Snow Index (NDSI). 
It is expressed in values from -1 to 1. Where values 
close to 1 indicate areas with ice or snow (Eq. 4): 

𝑁𝐷𝑆𝐼 =  , (4) 

where Green correspond to visible green (band 3 
on Landsat 8) and SWIR correspond to shortwave 
infrared 1 (band 6 on Landsat 8). 

The Normalized Differential Water Index 
(NDWI), allows to identify water masses and areas 
saturated with moisture [5]. It is expressed in 
values between -1 and 1. Positive values indicate 
bodies of water, flooded or humid areas, while 
negative values indicate dry areas (Eq. 5): 

𝑁𝐷𝑊𝐼 =  , (5) 

where Green correspond to visible green (band 3 
on Landsat 8) and NIR correspond to near infrared 
(band 5 on Landsat 8). 

Subsequently, the spectral signatures were 
generated for two points, randomly selected, for 
the types of land use defined, with the exception of 
the snow category because no pixels were found 
in the treated images. 

Significant variations were observed during the 
year in the categories of vegetation cover and 
bodies of water; therefore, it was determined to 
make an average of the images corresponding to 
the four seasons of the year, determining the 
spectral signature on these values. 

Figures 1 and 2 present the spectral signature 
by type of land use by band and by spectral 
index  respectively. 

Based on the bibliography and on the analysis 
of both the spectral signature and the derived 
indices, it was possible to define a classification of 
10 categories of land use types called 
LANDSAT  classification. 

 

Fig. 2. Spectral signature by derived index2.4 LANDSAT classification 
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Table 1. Land use type categories identified based on the spectral signature and indices derived from the LANDSAT satellite 

Index Land use NDVI value Other values 

1 Water bodies 

<= 0.0 

NDWI >= 0.1 

2 Snow NDSI >= 0.9 

3 Rocky ground  

4 Bare ground <= 0.10  

5 Arid soil 

<= 0.25 

 

6 Urban zone 

Band 10 >= 0.75 
Band 11 >= 0.75 

UI >= 0.05 
NDBI >= 0.05 

7 Farmland 
<= 0.4 

Band 1 >= 0.1225 
Band 2 >= 0.1069 

8 Shrubs and meadows  

9 Grasslands <= 0.6  

10 Mixed forest > 0.6  

Table 2. Equivalence between land use type indices between the default database of the WRF model (MODIS) and the 
LANDSAT classification 

MODIS LANDSAT 

Index Land use Index Land use 

1 Evergreen needle-leaf forest 

10 Mixed forest 

2 Evergreen broadleaf forest 

3 Deciduous Needle-Leaf Forest 

4 Deciduous forest 

5 Mixed forest 

6 Closed scrub 

8 Shrubs and meadows 
7 Open scrub 

8 Wooded savannahs 

9 Savannahs 

10 Grasslands 9 Grasslands 

11 Permanent wetlands 1 Water bodies 

12 Farmland 7 Farmland 

13 Urban and build 6 Urban zone 

14 Mosaic of farmland / natural vegetation 7 Farmland 

15 Ice/Snow 2 Snow 

16 Barren or sparsely vegetated 

3 Rocky ground 

4 Bare ground 

5 Arid soil 

17 Water 1 Water bodies 

18 Wooded tundra [Unclassified] 

19 Mixed tundre [Unclassified] 

20 Barren tundre [Unclassified] 

21 Lakes 1 Water bodies 
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The NDVI allowed a clear distinction to be made 
between the categories with vegetation from the 
rest, therefore it was determined that this index can 
be used as the first classification filter, but not 
determining, since some types of soil, such as arid 
soil, farmland and urban areas presented values in 
the same range. 

For these categories, the values of other 
indices and specific bands are considered. Table 1 
presents the LANDSAT classification and the key 
values for its detection. 

Subsequently, a relationship was created 
between the 21 categories of land use type that the 
WRF model uses by default (MODIS), and the 10 
categories of the LANDSAT classification obtained 
from the previous analysis. Table 2 shows the 
LANDSAT classification indices and their 
equivalence in MODIS. 

The steps to generate the LANDSAT 
classification are as follows: 

Step 1. Open Geotiff file with the 11 bands of 
the LANDSAT satellite. 

Step 2. Read the 11 bands into 
independent  variables. 

Step 3. Calculate the derived indices NDBI, 
NDVI, NDSI AND NDWI and UI. 

Step 4. Obtain dimensions nx and ny of the 
satellite bands. 

Step 5. Create the classification array of ny and 
nx dimensions. 

Step 6. Iterate for each mesh point and assign 
the category to the variable classification according 
to the values of the table 1. 

Step 7. Close Geotiff file. 

The classification variable will be used in the 
process of updating the LU_INDEX variable of the 
file with the default geographic data of the 
WRF  model. 

It is necessary to point out that, for each 
category, here are values corresponding to the 
physical parameters of albedo, soil moisture 
availability, surface emissivity, roughness 
thickness, thermal inertia and surface heat 
capacity that considers the WRF model for each 
type of specific land use, these values are found in 
the LANDUSE.TBL file, included within the model 
file structure. 

2.5 Updating the Land Use Type Layer 

Once the LANDSAT classification has been 
obtained, with 30 m resolution, the values of the 
LU_INDEX variable of the original file were 
updated with the geographic data of the d02 
domain (geo_em.d02) generated with the WPS 
(WRF Preprocessing System) module, the latter 
with a resolution of 1 km. 

This process involves sampling all the points of 
the LANDSAT classification contained for each 
grid point of the variable LU_INDEX and assigning 
it the modal value. The WRF model uses an Ara-
kawa-C type mesh [31], therefore, each grid point 
has geographic coordinates that correspond to the 
center (XLAT_M and XLONG_M), to the vertex V 
(XLAT_V and XLONG_V) and to the vertex U 
(XLAT_U and XLONG_U). 

The steps for updating the LU_INDEX variable 
with the LANDSAT classification are as follows:  

Step 1. Open the file with the geographic data 
(by default) of the domain d02 in NetCDF format 
(geo_em.d02), which were generated by the 
WPS  module. 

Step 2. Read the variables LU_INDEX, 
XLAT_U, XLONG_U, XLAT_V and XLONG_V. 

Step 3. Get ny and nx dimensions of the 
variable LU_INDEX. 

Step 4. Iterate y and x for each mesh point and 
update LU_INDEX according to the following: 

Step 4.1. Obtain minimum longitude (lonMin) of 
vertex U (XLONG_U[y, x]) 

Step 4.2. Get maximum longitude (LongMax) of 
vertex U (XLONG_U[y, x+1]) 

Step 4.3. Get minimum latitude (latMin) of 
vertex V (XLAT_V[y, x]) 

Step 4.4. Get maximum latitude (latMax) of 
vertex V (XLAT_V[y+1, x]) 

Step 4.5. Find the indices iy1 and iy2 in the 
LANDSAT classification mesh within the vertices of 
the LU_INDEX cell corresponding to latMin 
and latMax. 

Step 4.6. Find the indices ix1 and ix2 in the 
LANDSAT classification grid within the vertices of 
the LU_INDEX cell corresponding to lonMin 
and lonMax. 

Step 4.7. Extract from the classification variable 
a subgrid of the segment [iy2:iy1,ix1:ix2] and store 
it in the tmp variable. 

Step 4.8. Get the mode of the variable tmp. 
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Step 4.9. Replace LU_INDEX[y,x] with mode. 
Step 5. Update the LU_INDEX variable in the 

file with the geographic data. 
Step 6. Close the Geo file. 

2.6 Rainfall Simulation with the WRF Model 

For this study, the ARW (Advanced Research 
WRF) kernel was used in its version 4.2. This 
kernel allows horizontal nesting, making it possible 
to obtain a higher resolution in a specific area, this 
is achieved by adding one or more additional 
meshes or domains to the simulation. This option 
is for horizontal refinement, with rectangular 
meshes that are aligned to a coarser parent mesh 
called the parent domain (d01), within which 
subsequent meshes can be nested (d02, d03, etc.) 
called nested domains [18]. 

Among the good practices, it is recommended 
to scale down between the parent and nested 
domains from 1-3 or 1-5 to maintain stability in the 
model. For the simulation of rainfall in the ZMVM, 

the WRF model was configured for domains d01 
and d02 with 5 and 1 km resolution, respectively, 
thus maintaining the relation 1-5. 

Two numerical simulations were carried out to 
obtain the accumulated rainfall in 24 hours 
between June 8 at 6:00 hours and June 9 at 6:00 
hours, same period of the observed data selected 
from the SIH database. 

Simulations were performed with a 38 hours 
warm-up, the first using the MODIS default land 
use type and the second with the LANDSAT 
classification. 

Although exact methods exist to solve small-
scale physical processes, these are not considered 
appropriate for their application in numerical 
models because they require a long computation 
time and the meteorological values required for 
their calculation are not included in the required 
scale and quality. 

So that, the WRF model uses different types of 
parameterizations to simplify processes that are 
too small and complex. Table 3 shows the main 

Table 3. Configuration parameters of the domains of the WRF model 

Parameter Description Parent domain (d01) 
Nested domain 

(d02) 

i_parent_start 
Starting Lower Left Corner I-indices 
from the parent domain 

1 27 

j_parent_start 
Starting Lower Left Corner J-indices 
from the parent domain 

1 27 

e_we End index in x (west-east) direction  51 86 

e_sn End index in y (south-north) direction  51 86 

dx/dy 
Grid length in x/y direction, unit in 
meters 

5000 1000 

Parent_grid_ratio Parent-to-nest domain grid size ratio. 1 5 

Lat_central 
Real value with the central latitude of 
the parent domain. 

20.687 Does not apply 

Long_central 
Real value with the central longitude of 
the parent domain. 

-103.348 Does not apply 

Table 4. Selected parameterization schemes in the WRF model 

Process Parameterization scheme (for both domains) 

Microphysics Option 9: Milbrandt–Yau Double Moment Scheme [15, 16]. 

Convection Option 3: Grell–Freitas Ensemble Scheme [9]. 

Planetary boundary layer Option 5: Mellor–Yamada Nakanishi Niino Level 2.5/3 Schemes [21, 22, 25]. 

Layer options surface Option 1: Revised MM5 Scheme [13]. 

Land surface options Option 1: 5–layer Thermal Diffusion Scheme [6]. 

Long wave radiation Option 4: RRTMG Longwave Scheme [11]. 

Short wave radiation Option 4: RRTMG Shortwave Scheme [11]. 

Urban surface options Option 1: Single Layer Urban Canopy Model [4] 
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configuration parameters of the domains. Table 4 
shows the parameterization schemes selected for 
this study. 

2.7 Statistical Evaluation 

To measure the effect of updating the land use 
type layer on the rainfall simulation with the WRF 
model, the BIAS, MAE and RMSE statistics were 
applied between the observed rainfall and the 
simulated rainfall by the WRF model. 

The BIAS measures the error that occurs 
systematically, so it is a good indicator to measure 
the reliability of the models [28]. It can be positive 
(overestimation) or negative (underestimation) 
(Eq. 6): 

𝐵𝐼𝐴𝑆 =  ∑
( )

, (6) 

where N is the number of observations, Pi is the 
value of the model prediction in element i and Oi is 
the value of the observation in element i. 

The Mean Absolute Error (MAE) is a widely 
used measure in model evaluations [2, 32]. 
Provides the average of the absolute difference 

between the model prediction and the observed 
value (Eq. 7): 

𝑀𝐴𝐸 =  
∑ | |

. (7) 

The Root Mean Square Error (RMSE) 
expresses the total error of the model [32]. 
Consists of the square root of the sum of the 
squared errors, which captures both positive and 
negative errors; therefore, it expresses both 
systematic and random errors (Eq. 8): 

𝑅𝑀𝑆𝐸 =  ∑
( )

. (8) 

3 Results 

Significant variations were observed mainly in the 
category’s farmland and urban zone. Farmland in 
MODIS classification is minimal, this is considered 
wrong, since according to INEGI [12], the area for 
agriculture in the ZMVM amounts to 36%. 

It should be considered that urban agriculture is 
not only within the city, but also on its edges, which 
have lost their agricultural tradition due to urban 
expansion. Urban agriculture in these areas is the 

 

Fig. 3. MODIS classification (left) and LANDSAT classification (right) 
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result of rural-urban migration, it is a practice that 
is recovered by the emigrated population with 
strong community roots towards their places of 
origin [19]. 

Regarding the urban zone, the LANDSAT 
classification detects urban growth in the north and 
northwest between the limits of the ZMVM and the 
state of Hidalgo. 

 

Fig. 4. MODIS and LANDSAT classification frequency histograms 

 

Fig. 5. Accumulated rainfall (mm) in 24 hours observed, simulated WRF-MODIS and simulated WRF-LANDSAT 
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However, in MODIS other classifications are 
considered as urban, therefore in km2 it presents a 
higher frequency. 

Figure 3 shows the comparison between the 
MODIS and LANDSAT classification. Figure 4 
shows the histogram of frequencies with both 
classifications. Figure 5 shows the comparison 
between the rainfall records from the SIH weather 
stations and those simulated by the WRF model 
with MODIS and LANDSAT. 

Finally, the statistical metrics were applied 
between the observed values and those simulated 
by the WRF model for the two simulations. In all 
the experiments negative BIAS values were 
obtained, this indicates that the model presents a 
systematic error with a tendency to underestimate, 
that is, at the comparison grid points, the model 
simulates less rainfall than what actually occurred 
in the ZMVM. 

Regarding the MAE metric, this tells us that the 
expected average error ranges between 10.81 and 
11.77 mm. On the other hand, RMSE presents a 
cumulative variance between 163.56 and 168.09. 

However, according to the BIAS, MAE and 
RMSE metrics, an improvement was observed in 
the precipitation simulation with the LANSAT 
classification with respect to MODIS. Table 5 
presents the results obtained with the 
statistical metrics. 

4 Conclusions 

The methodology presented allowed a 
classification of the types of land use predominant 
in the Metropolitan Zone of the Valley of Mexico. 
Each category can be obtained directly based on 
the spectral signature of the bands and the derived 
indices. It was identified that the NDVI can be used 
as the first classification filter, but not as a 
determinant, since some land use, such as arid 
soil, urban areas and farmland present values in 
the same range, for these cases other indices and 
auxiliary bands should be used. 
The main variation with the updating of the type of 
land use corresponds to the categories of urban 
zone and farmland in the Metropolitan Area of the 
Valley of Mexico. Although the MODIS 
classification mostly covers Mexico City, it omits 
some urban spots in the north and northwest that 

are identified in the LANDSAT classification. 
Regarding farmland, in the MODIS classification 
this is minimal, while the LANDSAT classification 
is considered more realistic. The substitution of the 
land use type layer on the original file generated by 
the WRF preprocessing module was transparent, 
so the numerical simulations were carried 
out  successfully. 

The effect on the simulation of the rainfall 
variable was evaluated for the storm reported by 
the SIH on June 9, 2020. With a maximum record 
of 63.5 mm at the "Las arboledas" station with 
ARBMX code, latitude 19.5667, longitude -99.2167 
and an elevation of 2,280 masl. In general, it was 
observed that the model had a tendency to 
underestimate, however, there was an 
improvement in the precipitation simulation with 
the LANDSAT classification, this based on the 
statistical results that went from 9.36, 11.77 and 
168.09 to -8.84, 10.81 and 163.56 of the BIAS, 
MAE and RMSE metrics respectively. 

The variation in the rainfall simulation with and 
without updating the land use type layer highlights 
the sensitivity of the WRF model to the 
characteristics of the terrain. 

Acknowledgments  

The authors acknowledge the financial support of 
project number 309343, selected within the 2019 
call for the CONAGUA-CONACYT Water 
Research and Development Sector Fund and 
developed at the Mexican Institute of Water 
Technology in the period 2021-2023. 

References 

1. Ariza, A., Roa, O. J., Serrato, P. K. León, H. 
A. (2017). Uso de índices espectrales 
derivados de sensores remotos para la 
caracterización geomorfológica en zonas 

Table 5. Statistical results for the storm reported by the 
SIH for June 9, 2020 

Metrics WRF-MODIS WRF-LANDSAT 

BIAS -9.36 -8.84 

MAE 11.77 10.81 

RMSE 168.09 163.56 

Computación y Sistemas, Vol. 27, No. 2, 2023, pp. 435–447
doi: 10.13053/CyS-27-2-4625

Indalecio Mendoza Uribe, Víctor Kevin Contreras Tereza, Pamela Iskra Mejía Estrada, et al.444

ISSN 2007-9737



insulares del Caribe colombiano. Revista 
Perspectiva Geográfica, Vol. 23, No. 1, pp. 
105-122. DOI: 10.19053/01233769.5863. 

2. Chai, T., Draxler, R. R. (2014). Root mean 
square error (RMSE) or mean absolute error 
(MAE)? Arguments against avoiding RMSE in 
the literatura. Geoscientific Model 
Development, Vol. 7, No. 3, pp. 1247–1250. 
DOI: 10.5194/gmd-7-1247-2014. 

3. Chen, S. H., Sun, W. Y. (2002). A one-
dimensional time dependent cloud model. 
Journal of the Meteorological Society of Japan, 
Vol. 80, No. 1, pp. 99–118. 

4. Chen, F., Kusaka, H., Bornstein, R., Ching, 
J., Grimmond, C. S. B. (2011). The integrated 
WRF/urban modeling system: Development, 
evaluation, and applications to urban 
environmental problems. International Journal 
of Climatology, Vol. 31, No. 2, pp.  273–288, 
DOI: 10.1002/joc.2158. 

5. Chen, X., Zhao, H., Li, P., Yin, Z. (2006). 
Remote sensing image-based analysis of the 
relationship between urban heat island and 
land use/cover changes. Remote Sensing of 
Environment, Vol. 104, No. 2, pp. 133–146. 
DOI: 10.1016/j.rse.2005.11.016. 

6. Dudhia, J. (1996). A multi-layer soil 
temperature model for MM5. The Sixth 
PSU/NCAR Mesoscale Model Users' 
Workshop, Boulder, pp. 49–50. 

7. Friedl, M. A., Sulla‐Menashe, D., Tan, B., 
Schneider, A., Ramankutty, N., Sibley, A. 
Huang, X. (2010). MODIS collection 5 global 
land cover: Algorithm refinements and 
characterization of new datasets. Remote 
Sensing of Environment, Vol. 114, No. 1, pp. 
168–182. DOI: 10.1016/j.rse.2009.08.016. 

8. Garzón, J. E. (2014). Análisis del efecto de la 
modificación de la geodatabase (uso del suelo, 
elevación) en el clima simulado por weather 
research and forecasting WRF para la Sabana 
de Bogotá. Tesis de licenciatura. Universidad 
Nacional de Colombia. 

9. Grell, G. A., Freitas, S. R. (2014). A scale and 
aerosol aware stochastic convective 
parameterization for weather and air quality 
modeling. Atmospheric Chemistry and 

Physics, Vol. 14, pp. 5233–5250. DOI: 
10.5194/acp-14-5233-2014. 

10. González-Luna, C., Filonov, A., Mireles, O. 
Tereshchenko, I. (2019). Análisis espectral y 
dispersión superficial de detritos suspendidos 
en la Bahía de Banderas mediante imágenes 
de satélite. Revista Cartográfica, Vol. 98, pp. 
223-237. DOI: 10.35424/rcarto.i98.148. 

11. Iacono, M. J., Delamere, J. S., Mlawer, E. J., 
Shephard, M. W., Clough, S. A., Collins, W. 
D. (2008). Radiative forcing by long-lived 
greenhouse gases: Calculations with the AER 
radiative transfer models. Journal of 
Geophyssical Research, Vol. 113, No. 
D13103, pp. 1–8. DOI:  10.1029/2008JD 
009944. 

12. Instituto Nacional de Estadística y 
Geografía (INEGI). (2014). Cuaderno 
estadístico y geográfico de la zona 
metropolitana del Valle de México 2014. 
INEGI: México. 

13. Jiménez, P. A., Dudhia, J., González–
Rouco, F., Navarro, J., Montavez, J. P., 
Garcia–Bustamante, E. (2012). A revised 
scheme for the WRF surface layer formulation. 
Monthly Weather Review, Vol. 140, No. 3, pp. 
898–918. DOI: 10.1175/MWR-D-11-00056.1. 

14. Kawamura, M., Jayamana, S., Tsujiko, Y. 
(1996). Relation between social and 
environmental conditions in Colombo Sri 
Lanka and the urban index estimated by 
satellite remote sensing data. The 
International Archives of Photogrammetry and 
Remote Sensing, Vol. 31, pp. 321–326. 

15. Milbrandt, J. A., Yau, M. K. (2005a). A 
multimoment bulk microphysics 
parameterization. Part I: Analysis of the role of 
the spectral shape parameter. Journal of 
Atmospheric Science, Vol. 62, No. 9, pp. 
3051–3064. DOI: 10.1175/JAS3534.1. 

16. Milbrandt, J. A., Yau, M. K. (2005b). A 
multimoment bulk microphysics 
parameterization. Part II: A proposed three–
moment closure and scheme description. 
Journal of Atmospheric Science, Vol. 62, No. 
9, pp. 3065–308. DOI: 10.1175/JAS3535.1. 

17. Mireles, I. O., Filonov, A., González, C. A., 
Tereshchenko, I. (2019). La percepción 

Computación y Sistemas, Vol. 27, No. 2, 2023, pp. 435–447
doi: 10.13053/CyS-27-2-4625

Methodology for the Classification of Types of Land Use in the Metropolitan Area ... 445

ISSN 2007-9737



remota en el seguimiento de plumas de 
detritos en bahía de banderas, Jalisco-Nayarit, 
México. Revista Internacional de 
Contaminación Ambiental, Vol. 35, No. 3, pp. 
671–681, DOI: 10.20937/RICA.2019.35. 
03.12. 

18. Morales, L. G. (2019). Uso del modelo WRF 
para monitoreo de huracanes en México 
.Instituto Politécnico Nacional, ESIA, Tesis de 
licenciatura, pp. 1–96. 

19. Moreno-Gaytán, S. I., Jiménez-Velázquez, 
M. A., Hernández-Juárez, M. (2019). 
Sustentabilidad y agricultura urbana 
practicada por mujeres en la Zona 
Metropolitana de Ciudad de México, Valle de 
Chalco Solidaridad. Revista de Alimentación 
Contemporánea y Desarrollo Regional, Vol. 
29, No. 54, pp. 2–33. DOI: 10.24836/es.v 
29i54.795. 

20. Muñoz, R., Radic, S. (2015). Uso de 
percepción remota y SIG en la selección de 
sitios de muestreo de suelos para la región de 
Magallanes. Agro Sur, Vol. 43, No. 2, pp. 65–
76. DOI: 10.4206/agrosur.2015.v43n2-08. 

21. Nakanishi, M., Niino, H. (2006). An improved 
Mellor–Yamada level 3 model: Its numerical 
stability and application to a regional prediction 
of advecting fog. Boundary Layer Meteorology, 
Vol. 119, pp. 397–407. DOI: 10.1007/s10546-
005-9030-8. 

22. Nakanishi, M., Niino, H. (2009). Development 
of an improved turbulence closure model for 
the atmospheric boundary layer. Journal of the 
Meteorological Society of Japan, Vol. 87, No. 
5, pp. 895–912. DOI: 10.2151/jmsj.87.895. 

23. National Center for Atmospheric Research 
(NCAR). (2022). The weather research & 
forecasting model. mesoescale & microescale 
meteorology laboratory. https://www.mmm. 
ucar.edu/weather-research andforecasting-
model 

24. National Centers for Environmental 
Prediction (NCEP) (2021). NCEP FNL 
Operational model global tropospheric 
analyses, continuing from July 1999. 
NCEP:  USA. 

25. Olson, J. B., Kenyon, J, Wayne, A., Brown, 
J., Pagowski, M., Sušelj, K. (2019). A 

Description of the MYNN-EDMF scheme and 
the coupling to other components in WRF–
ARW. NOAA Technical Memorandum OAR 
GSD 61, USA. DOI: 10.25923/n9wm-be49. 

26.  Organization for Economic Cooperation 
and Development (OECD), (2015). OECD 
Territorial Reviews: Valle de México, México. 
OECD Library: USA. 

27. Perilla, G., Mas, J. F. (2020). Google Earth 
Engine: Una poderosa herramienta que 
vincula el potencial de los datos masivos y la 
eficacia del procesamiento en la nube. 
Investigaciones Geográficas, Vol. 101, pp. 1–
6. DOI: 10.14350/rig.59929. 

28. Ravinder, H. V. (2017). Bias in aggregations 
of subjective probability and utility. Journal of 
the Operational Research Society, Vol. 43, No. 
6, pp.  621–627, DOI: 10.1057/jors.1992.87. 

29. Sanz, E., Saa-Requejo, A., Díaz-Hambrona, 
C. H., Ruiz-Ramos, M., Rodríguez, A., 
Iglesias, E., Esteve, P., Soriano, B., Tarquis, 
A. M. (2021). Normalized difference vegetation 
index temporal responses to temperature and 
precipitation in arid rangelands. Remote 
Sensing, Vol. 13, No. 5, pp. 1–24. DOI: 10.33 
90/rs13050840. 

30. Secretaría del Medio Ambiente del 
Gobierno de la Ciudad de México 
(SEDEMA), Secretaría de Medio Ambiente y 
Recursos Naturales (SEMARNAT), 
Secretaría del Medio Ambiente del 
Gobierno del Estado de México (SMAGEM) 
& Secretaría de Medio Ambiente y 
Recursos Naturales del Gobierno del 
Estado de Hidalgo (SEMARNATH) (2021). 
Programa de gestión para mejorar la calidad 
del aire de la zona metropolitana del Valle de 
México (ProAire ZMVM 2021-2030). 
SEDEMA, SEMARTNAT, SMAGEM & 
SEMARNATH: Ciudad de México. 

31. Skamarock, W. C., Klemp, J. B., Dudhia, J., 
Gill, D. O., Liu, Z., Berner, J., Wang, W., 
Powers, J. G., Duda, M. G., Barker, D. M., 
Huang, X. Y. (2019). A description of the 
advanced research WRF version 4. NCAR 
Technical Note NCAR/TN-556+STR: USA. 

32. Souza, N. B. P., Nascimento, E. G. S., 
Moreira, D. M. (2023). Performance 
evaluation of the WRF model in a tropical 

Computación y Sistemas, Vol. 27, No. 2, 2023, pp. 435–447
doi: 10.13053/CyS-27-2-4625

Indalecio Mendoza Uribe, Víctor Kevin Contreras Tereza, Pamela Iskra Mejía Estrada, et al.446

ISSN 2007-9737



region: Wind speed analysis at different sites. 
Atmósfera, Vol. 36, No. 2, pp. 253–277. DOI: 
10.20937/ATM.52968. 

33. Thompson, J. B., Zurita-Arthos, L., Müller, 
F., Chimbolema, S., Suárez, E. (2021). Land 
use change in the Ecuadorian páramo: The 
impact of expanding agriculture on soil carbon 
storage. Arctic, Antarctic, and Alpine 
Research, Vol. 53, No. 1, pp. 48–59. DOI: 
10.1080/15230430.2021.1873055. 

34. Veneros, J., García, L., Morales, E., Gómez, 
V., Torres, M., López, F. (2020). Aplicación de 
sensores remotos para el análisis de cobertura 

vegetal y cuerpos de agua. IDESIA, Vol. 38, 
No. 4, pp. 99–107. DOI: 0.4067/S0718-
34292020000400099. 

35. Zha, Y., Gao, J., NI, S. (2003). Use of 
normalized difference built-up index in 
automatically mapping urban from TM 
imagery. International Journal of Remote 
Sensing, Vol. 24, No. 3, pp. 583–594. DOI: 
10.1080/01431160304987. 

Article received on 02/10/2022; accepted on 15/12/2022. 
Corresponding author is Indalecio Mendoza Uribe. 

 
 

Computación y Sistemas, Vol. 27, No. 2, 2023, pp. 435–447
doi: 10.13053/CyS-27-2-4625

Methodology for the Classification of Types of Land Use in the Metropolitan Area ... 447

ISSN 2007-9737


