
Specifying and Verifying a Transformation of
Recursive Functions into Tail-Recursive Functions

Axel Suárez Polo, José de Jesús Lavalle Martínez,
Iván Molina Rebolledo

Benemérita Universidad Autónoma de Puebla,
Puebla,
Mexico

{axel.suarez, gustavo.molinar}@alumno.buap.mx,
jose.lavalle@correo.buap.mx

Abstract. It is well known that some recursive functions
admit a tail recursive counterpart which have a more
efficient time-complexity behavior. This paper presents
a formal specification and verification of such process. A
monoid is used to generate a recursive function and its
tail-recursive counterpart. Also, the monoid properties
are used to prove extensional equality of both functions.
In order to achieve this goal, the Agda programming
language and proof assistant is used to generate a
parametrized module with a monoid, via dependent
types. This technique is exemplified with the length,
reverse, and indices functions over lists.

Keywords. Dependent types, formal specification and
verification, tail recursion, accumulation, program trans-
formation.

1 Introduction

Dependently typed programming languages pro-
vide an expressive system that allows both
programming and theorem proving. Agda is an
implementation of such a kind of language [7].
Using these programming languages, it can be

proved that two functions return the same output
when they receive the same input, which is a
property known as extensional equality [6].
In Agda, the totality of a function is a requirement

of the language, which means that every function
must always return a value for any input, while
ensuring that the function always terminates; which
gives us a proof of termination for any construct
within Agda [7].

Agda was chosen because of our familiarity with
it, nevertheless there are other alternatives such as
Coq [3] or Lean [8]. Programs can be developed
using a transformational approach, where an initial
program whose correctness is easy to verify is
written, and after that, it is transformed into a
more efficient program that preserves the same
properties and semantics [14].
Proving that the transformed program works the

same way as the original program is usually done
by using algebraic reasoning [4], but this can also
be done using dependently typed programming
[13], with the advantage of the proof being verified
by the compiler.
The accumulation strategy is a well-known

program transformation technique to improve the
efficiency of recursive functions [5].
This technique is the focus of this paper, in

which dependently typed programming is used to
develop a strategy to prove extensional equality
between the original recursive programs and their
tail-recursive counterparts. The source code of this
paper is available here1.

2 A Simple Example: List Length

Let us start with a simple example: a function to
compute the length of a list. This function can be
defined recursively as follows:

1https://github.com/ggzor/specifying-verifying-tail-recursion

Computación y Sistemas, Vol. 27, No. 1, 2023, pp. 333–340
doi: 10.13053/CyS-27-1-4529

ISSN 2007-9737

len : List A → ℕ
len [] = 0
len (x ∷ xs) = suc (len xs)

Nonetheless, this function requires space pro-
portional to the length of the list due to the recursive
calls. This program can be transformed into a
tail-recursive function, which can be optimized
automatically by the compiler to use constant space
[2]. The transformed function is shown below:

len-tl : List A → ℕ → ℕ
len-tl [] n = n
len-tl (x ∷ xs) n = len-tl xs (suc n)

In this example, it is clear to see that both func-
tions return the same result for every possible list
we provide as input. This fact can be represented
in Agda using dependent function types:

len≡len-tl : ∀ (xs : List A)
→ len xs ≡ len-tl xs 0

The notion of “sameness” used here is the one of
intensional equality, which is an inductively defined
family of types [9, 13] with the following definition:

data _≡_ {a} {A : Set a} (x : A) : A → Set a
where↪

instance refl : x ≡ x

This means that two terms are equal if they are
exactly the same term. Additionally, in Agda, if both
terms reduce to the same term, we can state that
they are intensionally equal. For example:

refl : 2 + 3 ≡ 5

This notion of equality together with the addition
of the universal quantifier, allows us to state a
kind of equality for functions, known as point-wise
equality or extensional equality [6].
To prove extensional equality for the length

functions, we can proceed inductively over the list,
which has the [] and x∷xs cases2:

len≡len-tl : ∀ (xs : List A)
→ len xs ≡ len-tl xs 0

len≡len-tl [] = ?
len≡len-tl (x ∷ xs) = ?

2The ? symbols are holes, which must be filled later
to complete the proof, but are useful to write the proof
incrementally.

The base case is trivial, because both sides of
the equality in the resulting type reduce to the same
term, which is:

len [] = 0 (by definition)
len-tl [] 0 = 0

Therefore, we can fill the first hole in our proof
with the refl constructor, such that the resulting
equation is:

len≡len-tl [] = refl

For the inductive case, we can reduce both sides
of the equality instantiated with the argument, and
check what is necessary to prove.
Note that this can be done automatically by

querying Agda, and it is particularly useful when
using the Agda mode in Emacs [17]. The
reductions are shown below and follow from
the definition:

len (x∷xs) = suc (len xs)
len-tl (x∷xs) 0 = len-tl xs (suc 0)

= len-tl xs 1

We need to prove that suc (len xs)≡len-tl xs
1. This time, we cannot simply use refl, because
both sides do not reduce to the same term. For
this reason, we can proceed to call this function
recursively with the tail of the list.
This is justified because of the Curry-Howard

correspondence, and the fact that we are making a
proof by induction. The result of the recursive call
gives us the induction hypothesis:

len≡len-tl (x ∷ xs) =
let ind-h = len≡len-tl xs
in ?

The type of ind-h is len xs≡len-tl xs 0. The left
sides of the induction hypothesis and what we are
proving are almost the same. Tomake themmatch,
we can apply the congruence property of equality,
which has the following type:

cong : ∀ (f : A → B) {x y} → x ≡ y → f x ≡ f
y↪

Computación y Sistemas, Vol. 27, No. 1, 2023, pp. 333–340
doi: 10.13053/CyS-27-1-4529

Axel Suárez Polo, José de Jesús Lavalle Martínez, Iván Molina Rebolledo334

ISSN 2007-9737

Applying this function to the induction hypothesis,
we get the function below:

len≡len-tl (x ∷ xs) =
let ind-h = len≡len-tl xs

suc-cong = cong suc ind-h
in ?

The suc-cong term has the type:

suc (len xs) ≡ suc (len-tl xs 0)

As we can see the left sides match, so we can
change our goal to prove that the right side of
suc-cong is equal to the right side of the goal; by
making use of the transitive property of equality,
which has the following type in Agda:

trans : ∀ {x y z} → x ≡ y → y ≡ z → x ≡ z

Therefore, now our proof is:

len≡len-tl (x ∷ xs) =
let ind-h = len≡len-tl xs

suc-cong = cong suc ind-h
in trans suc-cong ?

The type of the term required to fill the hole is:

suc (len-tl xs 0) ≡ len-tl xs 1

We need to “pull” the 1 from the accumulator
somehow, and convert it to a suc call. We can
extract this new goal into a helper function:

len-pull : ∀ (xs : List A)
→ suc (len-tl xs 0) ≡ len-tl xs 1

We can try to prove this goal by straightforward
induction over the list, but we reach a dead end:

len-pull [] = refl
len-pull (x ∷ xs) = ?

The base case is trivial, following the definitions
of the function, both terms reduce to 1. The problem
is the inductive case, which reduces as follows:

suc (len-tl (x∷xs) 0)
= suc (len-tl xs (suc 0))
= suc (len-tl xs 1)

suc (len-tl (x∷xs) 1)
= len-tl xs (suc 1)
= len-tl xs 2

So, we are left with the following goal, which is
very similar to the one we started with:

suc (len-tl xs 1) ≡ len-tl xs 2

We could try to prove this proposition by
straightforward induction too, but that would require
to prove a similar proposition for the next values 2
and 3, and so on.
To solve this issue, we can use a generalization

strategy to prove this inductive property [1]. The
generalized property will allow us to vary the value
of the accumulator in the different cases of the
inductive proof, but we will need to introduce
another variable for it.
It is important to note that after processing the

first n items of the list, we will get n + len-tl xs
0 on the left side and len-tl xs n on the right one.
Combining the generalization strategy and this fact,
we can see that the property we have to prove is:

len-pull-generalized :
∀ (xs : List A) (n p : ℕ)
→ n + len-tl xs p ≡ len-tl xs (n + p)

This function can be proved by induction over
the list:

len-pull-generalized [] n p = refl
len-pull-generalized (x ∷ xs) n p = ?

The base case is trivial, because replacing
the xs argument with [], and following a single
reduction step on both sides, the common term
n + p is reached. The inductive case is more
interesting. Reducing both sides of the equation
proceeds as follows:

n + len-tl (x∷xs) p
= n + len-tl xs (suc p)

len-tl (x∷xs) (n + p)
= len-tl xs (suc (n + p))

We can see that we have pretty much the
induction hypothesis, with the only difference being
the accumulating parameter p. Nevertheless, as
we have generalized the proposition, we can pick
a value for p when using the induction hypothesis:

len-pull-generalized (x ∷ xs) n p =
len-pull-generalized xs n (suc p)

Computación y Sistemas, Vol. 27, No. 1, 2023, pp. 333–340
doi: 10.13053/CyS-27-1-4529

Specifying and Verifying a Transformation of Recursive Functions into Tail-Recursive Functions 335

ISSN 2007-9737

This takes us closer to the goal we want to prove.
Unfortunately, we are left with the following goal
after performing the substitution of p with suc p:

n + len-tl xs (suc p) ≡ len-tl xs (n + suc p)

This is almost what we want, except for suc (n
+ p) not being equal to n + suc p. However, these
two terms are indeed equal, but not definitionally,
because the plus function is defined by induction
on the first argument, and not on the second one:

+ : Nat → Nat → Nat
zero + m = m
suc n + m = suc (n + m)

Therefore, applying reduction steps does not
allow Agda to deduce the equality of these two
terms. Fortunately, the fact that these terms are
equal can be easily proved inductively as follows:

+-suc : ∀ m n → m + suc n ≡ suc (m + n)
+-suc zero n = refl
+-suc (suc m) n = cong suc (+-suc m n)

The remaining step is to “replace” the suc (n +
p) term with n + suc p. Agda provides the rewrite
construct to perform this transformation:

len-pull-generalized (x ∷ xs) n p
rewrite (sym (+-suc n p))

= len-pull-generalized xs n (suc p)

We make use of the symmetric property of
equality in the rewriting step, which allows us to flip
the sides of the equality:

sym : ∀ {x y} → x ≡ y → y ≡ x

With all this in place, we can finally prove
the remaining goals, giving as a result the
complete proof:

len-pull-generalized :
∀ (xs : List A) (n p : ℕ)
→ n + len-tl xs p ≡ len-tl xs (n + p)

len-pull-generalized [] n p = refl
len-pull-generalized (x ∷ xs) n p
rewrite (sym (+-suc n p))

= len-pull-generalized xs n (suc p)

len-pull : ∀ (xs : List A)
→ suc (len-tl xs 0) ≡ len-tl xs 1

len-pull xs = len-pull-generalized xs 1 0

len≡len-tl : ∀ (xs : List A)
→ len xs ≡ len-tl xs 0

len≡len-tl [] = refl
len≡len-tl (x ∷ xs) =
let ind-h = len≡len-tl xs

suc-cong = cong suc ind-h
suc-pull = len-pull xs

in trans suc-cong suc-pull

3 Another Example: List Reverse

The list reversal function follows a similar pattern to
the one we have seen before:

reverse : List A -> List A
reverse [] = []
reverse (x ∷ xs) = reverse xs ++ (x ∷ [])

reverse-tl : List A -> List A -> List A
reverse-tl [] ys = ys
reverse-tl (x ∷ l) l' = reverse-tl l (x ∷ l')

It should not come as a surprise that the equality
proof is very similar too:

reverse-pull-generalized :
∀ (xs ys zs : List A)
→ reverse-tl xs ys ++ zs

≡ reverse-tl xs (ys ++ zs)
reverse-pull-generalized [] ys zs = refl
reverse-pull-generalized (x ∷ xs) ys zs =
reverse-pull-generalized xs (x ∷ ys) zs

reverse-pull :
∀ (x : A) (xs : List A)
→ reverse-tl xs [] ++ (x ∷ [])

≡ reverse-tl xs (x ∷ [])
reverse-pull x xs =
reverse-pull-generalized xs [] (x ∷ [])

reverse≡reverse-tl : ∀ (xs : List A)
→ reverse xs ≡ reverse-tl xs []

reverse≡reverse-tl [] = refl
reverse≡reverse-tl (x ∷ xs) =
let ind-h = reverse≡reverse-tl xs

append-cong = cong (_++ (x ∷ [])) ind-h

Computación y Sistemas, Vol. 27, No. 1, 2023, pp. 333–340
doi: 10.13053/CyS-27-1-4529

Axel Suárez Polo, José de Jesús Lavalle Martínez, Iván Molina Rebolledo336

ISSN 2007-9737

append-pull = reverse-pull x xs
in trans append-cong append-pull

There are minor variations in the function
signatures and the order of the parameters, but the
structure is identical:

– Start proving by induction on the list.

– Fill the base case with refl.

– Take the inductive hypothesis by using a
recursive call.

– Apply an operator to both sides of the equality,
using cong.

– Create a function to pull the accumulator, and
prove it using a generalized version of this
function that allows varying the accumulator.

– Compose the two equalities using the trans func-
tion.

4 Generalization

Starting from the function definitions, we can see
that they follow the same recursive pattern, we
can write this pattern in Agda, which is just a
specialization of a fold function [11, 12]:

reduce : List A → R
reduce [] = empty
reduce (x ∷ xs) = f x <> reduce xs

where

– R is the result type of the function.

– empty is the term to return when the list is empty.

– f is a function to transform each element of the
list into the result type.

– <> is the function to combine the current item and
the recursive result.

In the case of the len function, the result type is
ℕ, the natural numbers; empty is 0; the function to
transform each element is a constant function that
ignores its argument and returns 1; and the function
to combine the current item and the result of the
recursive call is the addition function.
For the reverse function, the result type is the

same type as the original list, List A; empty is the
empty list; the function to transform each element
creates just a singleton list from its parameter; and
the function to combine the current transformed
item and the result of the recursive call, is the
flipped concatenation function.
The flipping is necessary to make the function

concatenate its first argument to the right:

reduce (x∷xs)
= (λa→a∷[]) x <> reduce xs
= (x∷[]) <> reduce xs
= (λxs ys→ys ++ xs) (x∷[]) (reduce xs)
= reduce xs ++ (x∷[])

The functions that follow this pattern, can be
defined in a tail-recursive way as follows:

reduce-tl : List A → R → R
reduce-tl [] r = r
reduce-tl (x ∷ xs) r = reduce-tl xs (r <> f

x)↪

We can check manually that this function
matches the tail-recursive definition in the case of
the reverse function:

reverse-tl (x∷xs)
= reduce-tl xs (r <> (λa→a∷[]) x)
= reduce-tl xs (r <> (x∷[]))
= ... xs ((λxs ys→ys ++ xs) r (x∷[]))
= reduce-tl xs ((x∷[]) ++ r)
= reduce-tl xs (x∷r)

Now we can proceed to prove that these two
functions are extensionally equal in the general
case. The proof follows the same pattern as the
one for the len function:

reduce≡reduce-tl : ∀ (xs : List A)
→ reduce xs ≡ reduce-tl xs

empty↪
reduce≡reduce-tl [] = refl
reduce≡reduce-tl (x ∷ xs) =
let ind-h = reduce≡reduce-tl xs

op-cong = cong (f x <>_) ind-h
op-pull = reduce-pull (f x) xs

in trans op-cong op-pull

Computación y Sistemas, Vol. 27, No. 1, 2023, pp. 333–340
doi: 10.13053/CyS-27-1-4529

Specifying and Verifying a Transformation of Recursive Functions into Tail-Recursive Functions 337

ISSN 2007-9737

Wemake use of a piece of syntactic sugar called
sections, which allows us to write the function (λr→f
x <> r) as (f x <>_). Apart from that, the proof is
identical to the ones we have seen before.
However, to prove the accumulator pulling

function, we need to use a different strategy. We
are required to prove that:
reduce-pull :

∀ (r : R) (xs : List A)
→ r <> reduce-tl xs empty
≡ reduce-tl xs (empty <> r)

To do this, we can prove this proposition by
induction over the list, which requires us to prove
the proposition when xs is []:

r <> reduce-tl [] empty = r <> empty
reduce-tl [] (empty <> r) = empty <> r

So we are required to prove that r <>
empty≡empty <> r. We could require the <>
function to be commutative, but we can “ask for
less” by just requiring empty to be a left and right
identity for <>, this is expressed in Agda as:
<>-identityl : ∀ (r : R) → empty <> r ≡ r
<>-identityr : ∀ (r : R) → r <> empty ≡ r

This way, we can use those identities to rewrite
our goals, and make them match over the term r,
and then, complete the base case using the trivial
equality proof refl:
reduce-pull r []

rewrite <>-identityl r
| <>-identityr r = refl

The inductive case goal is:

r <> reduce-tl (x∷xs) empty
= r <> reduce-tl xs (empty <> f x)

reduce-tl (x∷xs) (empty <> r)
= reduce-tl xs ((empty <> r) <> f x)

Which cannot be proved directly by straightfor-
ward induction, as we have seen before, but at least
we can simplify it by using the left identity property
over empty <> f x and then over empty <> r:

reduce-pull r (x ∷ xs)
rewrite <>-identityl (f x)

| <>-identityl r
= reduce-pull-generalized r (f x) xs

Finally, we just need to prove the generalized
accumulation pulling function, which has the
following type signature:

reduce-pull-generalized :
∀ (r s : R) (xs : List A)
→ r <> reduce-tl xs s ≡ reduce-tl xs (r <>

s)↪

Note that the base case is trivial, and it is quite
similar to the ones we have already proved, so we
are going to focus on the inductive case. Following
the same kind of reductions we have been doing
before, we can see that our goal is:

r <> reduce-tl (x∷xs) s
= r <> reduce-tl xs (s <> f x)

reduce-tl (x∷xs) (s <> r)
= reduce-tl xs ((r <> s) <> f x)

Following the generalization strategy, we have
to call the function recursively, replacing the s by
s <> f x, which almost gives what it is required,
except that the right hand side accumulator is
associated wrongly.

r <> reduce-tl xs (s <> f x)
≡ reduce-tl xs (r <> (s <> f x))

Associativity is indeed the last property that the
<> function needs to satisfy. This can be expressed
in Agda straightforwardly as:

<>-assoc : ∀ (r s t : R)
→ (r <> s) <> t ≡ r <> (s <> t)

Which helps us complete the proof:

reduce-pull-generalized r s [] = refl
reduce-pull-generalized r s (x ∷ xs)

rewrite <>-assoc r s (f x)
= reduce-pull-generalized r (s <> f

x) xs↪

Computación y Sistemas, Vol. 27, No. 1, 2023, pp. 333–340
doi: 10.13053/CyS-27-1-4529

Axel Suárez Polo, José de Jesús Lavalle Martínez, Iván Molina Rebolledo338

ISSN 2007-9737

All of these properties match the definition of
a monoid. We can complete the formalization
and encapsulate it in a ready to use parametrized
module, using the standard library definition
of a monoid:

open import Algebra.Structures using
(IsMonoid)↪

module GenericBasic
{A : Set}
{R : Set}
(f : A → R)
(_<>_ : R → R → R)
(empty : R)
(m : IsMonoid _≡_ _<>_ empty)
where

open IsMonoid m using ()
renaming (identityl to <>-identityl

; identityr to <>-identityr
; assoc to <>-assoc
)

5 Using the Module with the Examples

With the module in place, we can start using it
to derive the recursive function, the tail-recursive
counterpart, and the proof that both functions are
extensionally equal.
The length function uses the usual sum monoid

over the natural numbers:

open import GenericBasic
{A = ℕ} (λ _ → 1) _+_ 0 +-0-isMonoid
renaming (reduce to len

; reduce-tl to len-tl
; reduce≡reduce-tl to len≡len-tl
)

The reverse function requires us to create an
instance of a flipped monoid for ++, which can be
done with the already defined properties for list
concatenation, but flipping them when necessary.

++-flipped-isMonoid {A} = record
{ isSemigroup = record

{ isMagma = record
{ isEquivalence = isEquivalence
; ∙-cong = cong₂ (flip _++_)
}

; assoc = λ x y z → sym (++-assoc z y x)
}

; identity = ++-identityr , ++-identityl
}

Finally, the indices function also requires us
to create a custom monoid. The original indices
function specialized for lists of natural number
is the following:

indices : ℕ → List ℕ → List ℕ
indices n [] = []
indices n (x ∷ xs) with n ?= x
... | yes _ = 0 ∷ map suc (indices n xs)
... | no _ = map suc (indices n xs)

The monoid for this function has the following
operation and identity element:

IndicesData : Set
IndicesData = ℕ × List ℕ

empty : IndicesData
empty = 0 , []

<> : IndicesData → IndicesData →
IndicesData↪

(ln , ll) <> (rn , rl) =
ln + rn , ll ++ map (ln +_) rl

6 Conclusions

A technique to prove extensional equality between
a recursive function and its tail-recursive coun-
terpart has been presented, along with an Agda
module to automatically generate the functions and
the proof from an arbitrary monoid.
As far as we know there is no related work

in the literature which gives a formal proof of
the extensional equality and transformation of a
recursive function into a tail-recursive one, which
is the main contribution of this work.
The tail-recursive function generally improves

the time complexity of the original recursive
function and opens the possibility of performing
tail-call optimization by the compiler, leading to a
more space efficient function execution [2, 15].
There are some caveats with this technique

which are exemplified by the indices function.
Even though the generated function avoids

mapping over the entire recursive call result, it intro-
duces inefficiency by doing nested concatenations
to the left, which leads to quadratic time complexity.
This could be solved by using higher order

functions as the accumulating monoid [10], but
proving the corresponding monoid laws will require

Computación y Sistemas, Vol. 27, No. 1, 2023, pp. 333–340
doi: 10.13053/CyS-27-1-4529

Specifying and Verifying a Transformation of Recursive Functions into Tail-Recursive Functions 339

ISSN 2007-9737

to be able to transform extensional equality to
intensional equality, which is not possible in Agda
without using cubical type theory [6, 16], but that is
out of the scope of this paper.
Further work can be done in order to generalize

this result to arbitrary recursive data types and
recursion schemes [12].

References

1. Abdali, S. K., Vytopil, J. (1984). Generalization
heuristics for theorems related to recursively defined
functions. Proceedings of the Fourth AAAI Confer-
ence on Artificial Intelligence, pp. 1–5. DOI: 10.555
5/2886937.2886938.

2. Bauer, A. (2003). Compilation of functional pro-
gramming languages using gcc—tail calls. Master’s
thesis, Institut für Informatik, Technische Universität
München, Germany.

3. Bertot, Y., Castéran, P. (2013). Interactive theorem
proving and program development: Coq’Art: the
calculus of inductive constructions. DOI: 10.1007/
978-3-662-07964-5.

4. Bird, R., De Moor, O. (1996). The algebra of pro-
gramming. NATO ASI DPD, Vol. 152, pp. 167–203.

5. Bird, R. S. (1984). The promotion and accumulation
strategies in transformational programming. ACM
Transactions on Programming Languages and
Systems (TOPLAS), Vol. 6, No. 4, pp. 487–504. DOI:
10.1145/1780.1781.

6. Botta, N., Brede, N., Jansson, P., Richter,
T. (2021). Extensional equality preservation and
verified generic programming. Journal of Functional
Programming, Vol. 31. DOI: 10.1017/S095679682
1000204.

7. Bove, A., Dybjer, P., Norell, U. (2009). A
brief overview of agda–a functional language
with dependent types. International Conference on
Theorem Proving in Higher Order Logics, pp. 73–78.
DOI: 10.1007/978-3-642-03359-9.pdf#page=84.

8. de Moura, L., Kong, S., Avigad, J., van Doorn, F.,
von Raumer, J. (2015). The lean theorem prover
(system description). International Conference on
Automated Deduction, pp. 378–388. DOI: 10.1007/
978-3-319-21401-6_26.

9. Dybjer, P. (1994). Inductive families. Formal aspects
of computing, Vol. 6, No. 4, pp. 440–465. DOI: 10.1
007/BF01211308.

10. Hughes, J. (1986). A novel representation of
lists and its application to the function “reverse”.
Information Processing Letters, Vol. 22, No. 3,
pp. 141–144. DOI: 10.1016/0020-0190(86)90059-1.

11. Hutton, G. (1999). A tutorial on the universality
and expressiveness of fold. Journal of Functional
Programming, Vol. 9, No. 4, pp. 355–372. DOI: 10
.1017/S0956796899003500.

12. Meijer, E., Fokkinga, M., Paterson, R. (1991).
Functional programming with bananas, lenses, en-
velopes and barbed wire. Conference on functional
programming languages and computer architecture,
pp. 124–144.

13. Mu, S. C., Ko, H. S., Jansson, P., . Algebra of
programming using dependent types. Lecture Notes
in Computer Science, pp. 268–283. DOI: 10.1007/
978-3-540-70594-9_15.

14. Pettorossi, A., Proietti, M. (1993). Rules and
strategies for program transformation. Formal Pro-
gram Development, pp. 263–304. DOI: 10.1007/3-5
40-57499-9_23.

15. Rubio-Sánchez, M. (2017). Introduction to recur-
sive programming.

16. Vezzosi, A., Mörtberg, A., Abel, A. (2021). Cubical
agda: A dependently typed programming language
with univalence and higher inductive types. Journal
of Functional Programming, Vol. 31. DOI: 10.1145/
3341691.

17. Wadler, P. (2018). Programming language foun-
dations in agda. Brazilian Symposium on Formal
Methods, pp. 56–73. DOI: 10.1007/978-3-030-030
44-5_5.

Article received on 10/04/2022; accepted on 06/06/2022.
Corresponding author is José de Jesús Lavalle Martínez.

Computación y Sistemas, Vol. 27, No. 1, 2023, pp. 333–340
doi: 10.13053/CyS-27-1-4529

Axel Suárez Polo, José de Jesús Lavalle Martínez, Iván Molina Rebolledo340

ISSN 2007-9737

