The Subalgebra Lattice of A Finite Diagonal-Free Two-Dimensional Cylindric Algebra

Martín Figallo ${ }^{1}$, Claudia Mónica-Gomes ${ }^{2}$
${ }^{1}$ Universidad Nacional del Sur, Instituto de Matemática de Bahía Blanca, Argentina
${ }^{2}$ Universidad Nacional de San Juan, Instituto de Ciencias Básicas, Argentina

\{figallomartin, gomescostela\}@gmail.com

Abstract

Diagonal-free two-dimensional cylindric algebras ($\mathbf{D f}_{2}$-algebras for short) are Boolean algebras enriched with two existential quantifiers which commute. Df_{2}-algebras were introduced by A. Tarski, L. Chin and F. Thompson with the purpose of providing an algebraic device for the study of the first-order predicate calculus with two variables. This work is devoted to problems related to finite $\mathbf{D f}_{2}$-algebras. More precisely, we study and describe the family of subalgebras of a given finite Df_{2}-algebra. Then, identifying the algebras of this family which are isomorphic, we provide a full description of the lattice of all non-isomorphic subalgebras of a given finite Df_{2}-algebra.

Keywords. Finite Boolean algebras, diagonal-free twodimensional cylindric algebras, lattice of subalgebras.

1 Introduction

Cylindric algebras were introduced by A. Tarski in the 1940s with the intention of providing an algebraic counterpart to the first-order predicate calculus. As a general reference we mention the fundamental work by Henkin, Monk and Tarski [7].

In particular, the class of diagonal-free twodimensional cylindric algebras constitute an algebraic counterpart to the first-order predicate calculus without identity and considering just two variable symbols in the language.

Formally a diagonal-free two-dimensional cylindric algebra is a Boolean algebra enriched with two existential quantifiers which commute.
This class of algebras will be denoted Df_{2}, in agreement with the notation introduced in [7]. Besides, the class Df_{2} constitute a variety (that is, it can be described by means of a finite number of equations) and has been widely studied.
However, little research has pursued to investigate those problems inherent to finite algebras. On the other hand, a monadic Boolean algebra is any pair (A, \exists) formed by a Boolean algebra A enriched with an existential quantifier \exists defined on A (see [6]) and, within the context of cylindric algebras, these algebras are diagonal-free one-dimensional cylindric algebras or Df_{1}-algebras.
As we said, the variety Df_{2} has been widely investigated by different authors. Among other known results, it can be mentioned that D . Monk studied the lattice $\Lambda\left(\mathrm{Df}_{2}\right)$ of all subvarieties of Df_{2} and proved that it has \aleph_{0} elements (subvarieties).
This author also showed that every element of $\Lambda\left(\mathbf{D f}_{2}\right)$ has a finite base and a decidable equational theory. Later, N. Bezhanishvili, in [1], proved that every proper subvariety of Df_{2} is locally finite although Df_{2} is not.

On the other hand, some problems inherent to finite algebras have also been studied.

For instance, in [3], the author exhibited a connection between Df_{2}-algebras and pairs formed by a monadic Boolean algebra and a certain subalgebra of it; and as a consequence, it was obtained a formula to calculate the number of monadic subalgebras of a given finite monadic Boolean algebra.

Also, in [4], formulas for computing the number of Df_{2}-algebra structures that can be defined over a finite Boolean algebra as well as the fine spectrum of Df_{2} were obtained.

Finally, the lattice $\Lambda\left(\mathbf{D f}_{2}\right)$ was studied and a full description of the poset of all its joint-irreducible elements was given.

Besides, in [5] A. V. Figallo and C. M. Gomes studied the variety of $\mathbf{T}_{\mathbf{k}} \mathbf{m}$-algebras, this is, monadic Boolean algebras endowed with a monadic automorphism of period k and established, in the finite case, the relationship between this variety and the variety Df_{2}.

It is worth mentioning that the study of the lattice of all subalgebras of an abstract algebra has interested many authors.

For instance, G. Birkhoff and O. Frink, [2], characterized the subalgebra lattices of universal algebras as algebraic lattices.

On the other hand, in [8], the author proved that every algebraic lattice is isomorphic to the subalgebra lattice of a square of some universal algebra.

The purpose of this paper is to study some properties related to the subalgebras of a finite diagonal-free two-dimensional cylindric algebra.

In section 2, we recall some well-known facts about Df_{2}-algebras, we emphasize, in particular, those which refer to finite algebras and which were stated in [3]; [4] and [7].

The main results of this work are in section 3. There, we define an order over the family of certain partitions of the set of atoms of a finite Df $_{2}$-algebra.

As a consequence of this and other results stated in section 2, we obtain a full description of the lattice of all subalgebras of a finite Df_{2}-algebra.

2 Preliminaries

In this section, we shall review some notions and results concerning finite Df_{2}-algebras will be used to obtain the main result of this work. We refer the interested reader to the references $[3,4]$.

Recall that a Boolean algebra is a structure $\mathbb{A}=(A, \vee, \wedge, \neg, 0,1)$ such that $(A, \vee, \wedge, 0,1)$ is a bounded distributive lattice with first element 0 , last element 1 and where $\neg a$ is the Boolean complement of a, for every $a \in A$.
A Df_{2}-algebra is a triple $\left(\mathbb{A}, \exists_{1}, \exists_{2}\right)$, where \mathbb{A} is a Boolean algebra and \exists_{1}, \exists_{2} are quantifiers defined on \mathbb{A} that commute, that is \exists_{1} and \exists_{2} are unary operators on $A, \exists_{i}: A \rightarrow A(i=1,2)$, that verify the following conditions:

$$
\begin{align*}
\exists_{i} 0 & =0, \tag{1}\\
x & \leqslant \exists_{i} x, \tag{2}\\
\exists_{i}\left(x \wedge \exists_{i} y\right) & =\exists_{i} x \wedge \exists_{i} y, \tag{3}\\
\exists_{i} \exists_{j} x & =\exists_{j} \exists_{i} x . \tag{4}
\end{align*}
$$

For $1 \leqslant i, j \leqslant 2$ and $i \neq j$. The first three are the defining conditions of existential quantifier. In what follows we will denote the Boolean algebra with n atoms by \mathbb{B}_{n} and by $\Pi\left(\mathbb{B}_{n}\right)$ the set of its atoms.
It is well known that there is an onto and one-to-one correspondence between the family of all quantifiers that can be defined over \mathbb{B}_{n}, and the family of all Boolean subalgebras of \mathbb{B}_{n}. Indeed, if S is a subalgebra of \mathbb{B}_{n}, then the map $\exists: \mathbb{B}_{n} \rightarrow \mathbb{B}_{n}$ defined by:

$$
\begin{equation*}
\exists(x)=\bigwedge\{s \in S: x \leq s\} . \tag{5}
\end{equation*}
$$

Is a quantifier which will be called the quantifier associated to S. Moreover, all quantifiers on \mathbb{B}_{n} can be obtained in this way.
On the other hand, every subalgebra S of \mathbb{B}_{n} induces a partition \mathcal{P}_{S} of the set $\Pi\left(\mathbb{B}_{n}\right)$ of its atoms which will be called partition induced by S and it is obtained, by considering the set $\Pi(S)$ of the atoms of S, in the following way:

$$
\begin{gather*}
C \in \mathcal{P}_{S} \tag{6}\\
\text { iff } \\
\text { there is } s \in \Pi(S) \text { such that } s=\bigvee_{a \in C} a \tag{7}
\end{gather*}
$$

Conversely, every partition \mathcal{P} of $\Pi\left(\mathbb{B}_{n}\right)$ induces a subalgebra $S_{\mathcal{P}}$ of \mathbb{B}_{n} as follows: for every $C \in \mathcal{P}$, we consider the element $a_{C}=\bigvee_{a \in C} a$.

Then, $\quad S_{\mathcal{P}}$ is the Boolean subalgebra generated by the set $\left\{a_{C}: C \in \mathcal{P}\right\}$. From the above, we can conclude that there is an onto and one-to-one correspondence between the family of all quantifiers that can be defined over \mathbb{B}_{n}, and the family of all partitions of $\Pi\left(\mathbb{B}_{n}\right)$.

Let \exists be an arbitrary quantifier defined on \mathbb{B}_{n} and let \mathcal{P} be the partition of $\Pi\left(\mathbb{B}_{n}\right)$ associated to \exists. Then, we denote by $\mathcal{P}(x)$ the set:

$$
\begin{equation*}
\left\{C \in \mathcal{P}: \bigvee_{a \in C} a \leqslant x\right\} \tag{8}
\end{equation*}
$$

For each $x \in \exists \mathbb{B}_{n}$. The following definition plays an important role when dealing with finite Df_{2}-algebras and was introduced in [3].

Definition 1. Let \mathcal{P}_{1} and \mathcal{P}_{2} be two partitions of $\Pi\left(\mathbb{B}_{n}\right)$. For each $C \in \mathcal{P}_{i}$, we will call m_{j}-saturated of C, and we will denote it by $m_{j}(C)$, the least (in the sense of inclusion) subset of \mathcal{P}_{j} which verifies $C \subseteq \underset{F \in m_{j}(C)}{\bigcup} F$, for $1 \leqslant i, j \leqslant 2$ and $i \neq j$.

Then, we can determine the m_{j}-saturated of any $C \in \mathcal{P}_{i}$, with $i \neq j, 1 \leqslant i, j \leqslant 2$, as it is indicated in the next lemma.
Lemma 1. If $C \in \mathcal{P}_{i}$ and $b=\bigvee_{a \in C} a$, then $m_{j}(C)=\mathcal{P}_{j}\left(\exists_{j} b\right)$, with $1 \leqslant i, j \leqslant 2$ and $i \neq j$.

Another characterization of $m_{j}(C)$, for any $C \in$ \mathcal{P}_{i}, is given next.

Lemma 2. If $C \in \mathcal{P}_{i}$, then $m_{j}(C)=\left\{D \in \mathcal{P}_{j}\right.$: $C \cap D \neq \emptyset\}, 1 \leqslant i, j \leqslant 2$ and $i \neq j$.

Remark 1. If $C \in \mathcal{P}_{i}$ and $b=\bigvee_{a \in C} a$, then $\exists_{j} b$ can be calculated in the following way:

$$
\begin{equation*}
\exists_{j} b=\bigvee_{\substack{a \in D \\ D \in m_{j}(C)}} a . \tag{9}
\end{equation*}
$$

For $1 \leqslant i, j \leqslant 2$ and $i \neq j$.

Next, we define a binary relation between two partitions of $\Pi\left(\mathbb{B}_{n}\right)$.

Definition 2. Let \mathcal{P}_{1} and \mathcal{P}_{2} be two partitions of $\Pi\left(\mathbb{B}_{n}\right)$. We will say that \mathcal{P}_{2} is a refinement of \mathcal{P}_{1} and we will write $\mathcal{P}_{2} \succ \mathcal{P}_{1}$, if for each $C \in \mathcal{P}_{1}$ there exists $\mathcal{U} \subseteq \mathcal{P}_{1}$ such that:

$$
\begin{equation*}
\bigcup_{G \in m_{2}(C)} G=\bigcup_{F \in \mathcal{U}} F . \tag{10}
\end{equation*}
$$

Remark 2. It is not difficult to check that the subset \mathcal{U}, mentioned in Definition 2, is unique. Therefore, from now on, for each $C \in \mathcal{P}_{1}$, we will denote with \mathcal{U}_{C} the only subset of \mathcal{P}_{1} such that:

$$
\begin{equation*}
\bigcup_{G \in m_{2}(C)} G=\bigcup_{F \in \mathcal{U}_{C}} F . \tag{11}
\end{equation*}
$$

A characterization of \mathcal{U}_{C}, for every $C \in \mathcal{P}_{i}$, is stated in the following lemma.

Lemma 3. If $C \in \mathcal{P}_{i}$ and $b=\bigvee_{a \in C} a$, then $\mathcal{U}_{C}=\mathcal{P}_{i}\left(\exists_{j} b\right)$, with $1 \leqslant i, j \leqslant 2$ and $i \neq j$.

In what follows, we will write $\mathcal{P}_{2} \approx \mathcal{P}_{1}$ to indicate that each of the partitions is a refinement of the other. The following three results are the most important in this section and, as we shall see later, they will be very useful. A detailed proof of them can be found in [3].

Theorem 1. Let \mathcal{P}_{1} and \mathcal{P}_{2} be two partitions of $\Pi\left(\mathbb{B}_{n}\right)$ and \exists_{1}, \exists_{2} their associated quantifiers. Then the following conditions are equivalent:

1. \exists_{1} and \exists_{2} commute,
2. $\mathcal{P}_{1} \approx \mathcal{P}_{2}$.

Lemma 4. Let $\left(\mathbb{B}_{n}, \exists\right)$ be a finite monadic Boolean algebra, S a Boolean subalgebra of \mathbb{B}_{n}, and let \mathcal{P}_{2} and \mathcal{P}_{1} be the partitions of $\Pi\left(\mathbb{B}_{n}\right)$ associated to the quantifier \exists and the subalgebra S, respectively. Then the following conditions are equivalent:

1. S is a monadic subalgebra of $\left(\mathbb{B}_{n}, \exists\right)$,
2. $\mathcal{P}_{2} \succ \mathcal{P}_{1}$.

Lemma 5. Let $\mathcal{P}_{1}, \mathcal{P}_{2}$ be two partitions of $\Pi\left(\mathbb{B}_{n}\right)$. If $\mathcal{P}_{2} \succ \mathcal{P}_{1}$, then $\mathcal{P}_{1} \succ \mathcal{P}_{2}$.

$3 \mathrm{Df}_{2}$-Subalgebras of a Finite Df_{2}-Algebra

In this section, we shall present a correspondence between the family of all subalgebras of a given Df_{2}-algebra $\mathbb{A}=\left(\mathbb{B}_{n}, \exists_{1}, \exists_{2}\right)$ and a certain family of partitions of the set of its atoms $\Pi\left(\mathbb{B}_{n}\right)$.

This will allow us to establish a characterization of the lattice of all subalgebras of \mathbb{A}. A characterization of the subalgebras of a finite Df_{2}-algebra is the following:

Lemma 6. Let $\mathbb{A}=\left(\mathbb{B}_{n}, \exists_{1}, \exists_{2}\right)$ be a finite Df_{2}-algebra, \mathcal{P}_{i} the partition of $\Pi\left(\mathbb{B}_{n}\right)$ associated to $\exists_{i}, i=1,2$, and S a Boolean subalgebra of \mathbb{A}. Then the following conditions are equivalent:

1. S is a $\mathbf{D f}_{2}$-subalgebra of $\left(\mathbb{B}_{n}, \nexists_{1}, \exists_{2}\right)$,
2. $\mathcal{P}_{S} \approx \mathcal{P}_{i}$ for $i=1,2$, with \mathcal{P}_{S} the partition of $\Pi\left(\mathbb{B}_{n}\right)$ associated to S.

Proof. It is consequence of Lemma 4.
If $\mathbb{A}=\left(\mathbb{B}_{n}, \exists_{1}, \exists_{2}\right)$ is a given finite $\mathbf{D f}_{2}$-algebra, we denote the set of all Df_{2}-subalgebras of \mathbb{A} by $\mathscr{S}(\mathbb{A})$ and the set of all partitions \mathcal{P} of $\Pi\left(\mathbb{B}_{n}\right)$ such that $\mathcal{P} \approx \mathcal{P}_{i}$ for $i=1,2$, by $\mathscr{P}(\mathbb{A})$, where \mathcal{P}_{i} is the partition of $\Pi\left(\left(\mathbb{B}_{n}\right)\right.$ associated to \exists_{i}. Then, from the previous lemma, the following corollary is inferred:

Corollary 3.1. $\mathscr{S}(\mathbb{A})$ and $\mathscr{P}(\mathbb{A})$ have the same cardinality.

Now we will endow $\mathscr{P}(\mathbb{A})$ with an order relation \preceq defined as follows:

$$
\begin{gather*}
\mathcal{P} \preceq \mathcal{P}^{\prime} \tag{12}\\
\text { iff }
\end{gather*}
$$

For all $C \in \mathcal{P}^{\prime}$, there is $Q \subseteq \mathcal{P}$ such that $C=\bigcup_{D \in Q} D$

Then we have:
Lemma 7. Let $\mathbb{A}=\left(\mathbb{B}_{n}, \exists_{1}, \exists_{2}\right)$ be a finite $\mathbf{D f}_{2}$-algebra. Then, the ordered sets $(\mathscr{S}(\mathbb{A}), \subseteq)$ and $(\mathscr{P}(\mathbb{A}), \preceq)$ are antiisomorphic.

Proof. Let $\alpha: \mathscr{S}(\mathbb{A}) \rightarrow \mathscr{P}(\mathbb{A})$ be the application defined by:

$$
\begin{equation*}
\alpha(S)=\mathcal{P}_{S} \text { for each } S \in \mathscr{S}(\mathbb{A}), \tag{14}
\end{equation*}
$$

where \mathcal{P}_{S} is the partition of $\Pi\left(\mathbb{B}_{n}\right)$ associated to S. It is not difficult to check that α is one-to-one and onto. Now, let $S_{1}, S_{2} \in \mathscr{S}(\mathbb{A})$ such that (1) $S_{1} \subseteq S_{2}$. For each $C \in \alpha\left(S_{1}\right)$, let:

$$
\begin{equation*}
d=\bigvee_{a \in C} a . \tag{15}
\end{equation*}
$$

Then, $d \in \Pi\left(S_{1}\right)$. From (1) $d \in S_{2}$ and so, we may assert that $d=\underset{\substack{b \in \operatorname{Hs}\left(\mathcal{S}_{2}\right) \\ b \in d}}{ } b$. Therefore,

$$
\begin{equation*}
C=\bigcup_{D \in \mathcal{P}_{\mathcal{S}_{2}}(d)} D . \tag{16}
\end{equation*}
$$

And so, $\alpha\left(S_{2}\right) \preceq \alpha\left(S_{1}\right)$. On the other hand, suppose that (2) $\alpha\left(S_{2}\right) \preceq \alpha\left(S_{1}\right)$, and let $d \in \Pi\left(S_{1}\right)$. Then:

$$
\begin{equation*}
d=\bigvee_{a \in C} a \tag{17}
\end{equation*}
$$

For some $C \in \mathcal{P}_{S_{1}}$. Then, from (2), we have that $C=\bigcup_{D \in Q} D$, with $Q \subseteq \mathcal{P}_{S_{2}}$. Let us assume that $Q=\left\{D_{1}, D_{2}, \ldots, D_{r}\right\}$ and let $b_{i}=\bigvee_{a \in D_{i}} a$ where $1 \leqslant i \leqslant r$. Then, $b_{i} \in \Pi\left(S_{2}\right)$ and $d=\bigvee_{i=1}^{r} b_{i}$, that is to say, $d \in S_{2}$. In this way, $S_{1} \subseteq S_{2}$.
Our next objective is to determine necessary and sufficient conditions for two elements of $\mathscr{S}(\mathbb{A})$ to be isomorphic. For this purpose, let S_{1} and S_{2} be two elements of $\mathscr{S}(\mathbb{A})$.

For each $C \in \mathcal{P}_{S_{1}}\left(D \in \mathcal{P}_{S_{2}}\right)$ we will denote the saturated of $C(D)$ in the partition \mathcal{P}_{i} by $m_{i}^{S_{1}}(C)$ $\left(m_{i}^{S_{2}}(D)\right)$. Besides, we will denote by $\mathcal{U}_{C}^{i S_{1}}\left(\mathcal{U}_{D}^{i S_{2}}\right)$ the least subset of $\mathcal{P}_{S_{1}}\left(\mathcal{P}_{S_{2}}\right)$, such that:

$$
\begin{equation*}
\bigcup_{H \in m_{i}^{S_{1}}(C)} H=\bigcup_{G \in \mathcal{U}_{C}^{i S_{1}}} G\left(\bigcup_{I \in m_{i}^{S_{2}}(D)} I=\bigcup_{F \in \mathcal{U}_{D}^{i S_{2}}} F\right) . \tag{18}
\end{equation*}
$$

Lemma 8. Let $\mathbb{A}=\left(\mathbb{B}_{n}, \exists_{1}, \exists_{2}\right)$ be a finite Df \mathbf{f}_{2}-algebra, S_{1} and $S_{2} \mathbf{D f}_{2}$-subalgebras of \mathbb{A}. Then, the following conditions are equivalent.

1. S_{1} and S_{2} are isomorphic,
2. there is a bijection $f: \mathcal{P}_{S_{1}} \rightarrow \mathcal{P}_{S_{2}}$ such that:

$$
\begin{equation*}
\bigcup_{G \in f\left(\mathcal{U}_{C}^{i S_{1}}\right)} G=\bigcup_{H \in m_{i}^{S_{2}}(f(C))} H \tag{19}
\end{equation*}
$$

For each $C \in \mathcal{P}_{S_{1}}$ and $i=1,2$.
Proof. (i) \Rightarrow (ii). Let S_{1} and S_{2} be isomorphic $\mathbf{D f}_{2}$-subalgebras of \mathbb{A}, and let $\phi: S_{1} \rightarrow S_{2}$ be the corresponding $\mathbf{D f}_{2}$-isomorphism. Let us define $f: \mathcal{P}_{S_{1}} \rightarrow \mathcal{P}_{S_{2}}$ by:

$$
\begin{gather*}
f(C)=D \in \mathcal{P}_{S_{2}} \\
\text { iff } \\
\phi\left(\bigvee_{a \in C} a\right)=\bigvee_{b \in D} b \text { for every } C \in \mathcal{P}_{S_{1}} \tag{21}
\end{gather*}
$$

Then, it is clear that f is well defined. Besides, since $\left.\phi\right|_{\Pi\left(S_{1}\right)}$ is a one-to-one and onto correspondence between $\Pi\left(S_{1}\right)$ and $\Pi\left(S_{2}\right)$, we can assert that f is one-to-one and onto. Let us prove that, for each $C \in \mathcal{P}_{S_{1}}$, it holds:

$$
\begin{equation*}
\bigcup_{G \in f\left(\mathcal{U}_{C}^{i S_{1}}\right)} G=\bigcup_{H \in m_{i}^{S_{2}}(f(C))} H \tag{22}
\end{equation*}
$$

For $i=1,2$. Suppose that $s_{1}=\bigvee_{a \in C} a$, then:

$$
\begin{equation*}
\phi\left(s_{1}\right)=\phi\left(\bigvee_{a \in C} a\right)=s_{2}=\bigvee_{b \in f(C)} b \tag{23}
\end{equation*}
$$

With $s_{1} \in \Pi\left(S_{1}\right)$ and $s_{2} \in \Pi\left(S_{2}\right)$. It can be verified without any difficulty that:

$$
\begin{align*}
\operatorname{ccl}\left(\exists_{i} s_{1}\right) & =\phi\left(\bigvee_{\substack{a \in H \\
H \in m_{i}^{S_{1}}(C)}} a\right) \\
& =\phi\left(\bigvee_{\substack{a \in G \\
G \in \mathcal{U}_{C}^{i} S_{1}}} a\right) \\
& =\phi\left(\bigvee_{G \in \mathcal{U}_{C}^{i} S_{1}} \bigvee_{a \in G} a\right) . \tag{24}
\end{align*}
$$

And, since $\bigvee_{a \in G} a \in S_{1}$ for every $G \in \mathcal{U}_{C}^{i S_{1}}$, we get:

$$
\begin{equation*}
\phi\left(\exists_{i} s_{1}\right)=\bigvee_{G \in \mathcal{U}_{C}^{i S_{1}}} \phi\left(\bigvee_{a \in G} a\right)=\bigvee_{G \in \mathcal{U}_{C}^{i S_{1}}} \bigvee_{b \in f(G)} b \tag{25}
\end{equation*}
$$

On the other hand:

$$
\begin{equation*}
\exists_{i} \phi\left(s_{1}\right)=\exists_{i} s_{2}=\bigvee_{\substack{b \in I \\ I \in m_{i}^{S_{2}}(f(C))}} b \tag{26}
\end{equation*}
$$

From $\phi\left(\exists_{i} s_{1}\right)=\exists_{i} \phi\left(s_{1}\right)$, (1) and (2), we get:

$$
\begin{equation*}
\bigvee_{G \in \mathcal{U}_{C}^{i S_{1}}} \bigvee_{b \in f(G)} b=\bigvee_{\substack{b \in I \\ I \in m_{i}^{S_{2}}(f(C))}} b \tag{27}
\end{equation*}
$$

From (3), and properties of $\mathcal{U}_{C}^{i S_{1}}$ and $m_{i}^{S_{2}}(f(C))$, it results that:

$$
\begin{equation*}
\bigcup_{G \in f\left(\mathcal{U}_{C}^{i S_{1}}\right)} G=\bigcup_{H \in m_{i}^{S_{2}}(f(C))} H \tag{28}
\end{equation*}
$$

(ii) \Rightarrow (i). Let $f: \mathcal{P}_{S_{1}} \rightarrow \mathcal{P}_{S_{2}}$ be a one-to-one and onto function such that:

$$
\begin{equation*}
\bigcup_{G \in f\left(\mathcal{U}_{C}^{i^{S}}\right)} G=\bigcup_{H \in m_{i}^{S_{2}}(f(C))} H \tag{29}
\end{equation*}
$$

for every $C \in \mathcal{P}_{S_{1}}$ and $i=1,2$. Let $\psi_{f}: S_{1} \rightarrow S_{2}$ be the Boolean homomorphism defined by:

$$
\begin{equation*}
\psi_{f}(s)=\bigvee_{H \in \mathcal{P}_{S_{1}}(s)} \bigvee_{r \in f(H)} r \tag{30}
\end{equation*}
$$

Since f is one-to-one and onto, it is easy to check that ψ_{f} is a Boolean isomorphism. Let us now check that $\psi_{f}\left(\exists_{i} s\right)=\exists_{i} \psi_{f}(s)$ for every $s \in$ $\Pi\left(S_{1}\right)$. Let $s \in \Pi\left(S_{1}\right)$, then there is $C \in \mathcal{P}_{S_{1}}$ such that $s=\bigvee_{a \in C} a$. By Lemma 3, we have:

$$
\begin{align*}
\operatorname{ccr} \psi_{f}\left(\exists_{i} s\right) & =\bigvee_{H \in \mathcal{P}_{S_{1}}\left(\exists_{i} s\right)} \bigvee_{r \in f(H)} r \\
& =\bigvee_{H \in \mathcal{U}_{C}^{i S_{1}}} \bigvee_{r \in f(C)} r \\
& =\bigvee_{G \in f\left(\mathcal{U}_{C}^{i S_{1}}\right.} \bigvee_{r \in G} r . \tag{31}
\end{align*}
$$

On other hand, it is clear that:

$$
\begin{equation*}
\exists_{i}\left(\psi_{f}(s)\right)=\exists_{i}\left(\bigvee_{a \in f(C)} a\right)=\bigvee_{D \in m_{i}^{S_{1}}(f(C))} \bigvee_{a \in D} a \tag{32}
\end{equation*}
$$

From (4), (5) and (6), we get that $\psi_{f}\left(\exists_{i} s\right)=\exists_{i}\left(\psi_{f}(s)\right)$.

Now, consider the binary relation Δ on $\mathscr{P}(\mathbb{A})$ defined as:

$$
\begin{gather*}
\mathcal{P}_{1} \Delta \mathcal{P}_{2}, \tag{33}\\
\quad \text { iff } \tag{34}
\end{gather*}
$$

\mathcal{P}_{1} and \mathcal{P}_{2} satisfy condition Lemma 8 (ii).
Then, from all the results above stated, we have:
Theorem 2. The subalgebra lattice of the finite Df_{2}-algebra $\mathbb{A}, \mathscr{S}(\mathbb{A})$, is isomorphic to $(\mathscr{P}(\mathbb{A}) / \Delta, \succeq)$.

Finally, we analyze some examples where we apply the result stated above.

Example 1. Let us consider the $\mathbf{D f}_{2}$-algebra, $\left(\mathbb{B}_{2}, \exists_{1}, \exists_{2}\right)$ whose Hasse diagram is shown below and the quantifiers \exists_{1}, \exists_{2} are defined by the next table.

$$
\begin{array}{ccc}
\hline x & \exists_{1} x & \exists_{2} x \\
\hline 0 & 0 & 0 \\
\hline a & a & 1 \\
\hline b & b & 1 \\
\hline 1 & 1 & 1 \\
\hline
\end{array}
$$

In this case $\mathcal{P}_{1}=\{\{a\},\{b\}\}$ and $\mathcal{P}_{2}=\{\{a, b\}\}$ are the only partitions of $\Pi\left(\mathbb{B}_{2}\right)$ associated to quantifiers \exists_{1} and \exists_{2}, respectively.
Then $\mathscr{P}\left(\mathbb{B}_{2}\right)=\left\{\mathcal{P}_{1}, \mathcal{P}_{2}\right\}$, hence it is clear that $\left(\mathscr{S}\left(\mathbb{B}_{2}\right), \subseteq\right)$ is the chain with two elements and ($\mathbb{B}_{2}, \exists_{1}, \exists_{2}$) has two non-isomorphic subalgebras.

Example 2. Let $\left(\mathbb{B}_{3}, \exists_{1}, \exists_{2}\right)$ be the $\mathbf{D f}_{2}$-algebra whose Hasse diagram is below and the quantifiers \exists_{1}, \exists_{2} are given by the table:

Hence, $\mathcal{P}_{1}=\{\{a\},\{b, c\}\}$ and $\mathcal{P}_{2}=\{\{a, b, c\}\}$ are the partitions of $\Pi\left(\mathbb{B}_{3}\right)$ associated to quantifiers \exists_{1} and \exists_{2}, respectively.

x	$\exists_{1} x$	$\exists_{2} x$
0	0	0
a	a	1
b	f	1
c	f	1
d	1	1
e	1	1
f	f	1
1	1	1

Then $\mathscr{P}\left(\mathbb{B}_{3}\right)=\left\{\mathcal{P}^{1}, \mathcal{P}^{2}, \mathcal{P}^{3}\right\}$ where $\mathcal{P}^{1}=$ $\{\{a\},\{b\},\{c\}\}, \mathcal{P}^{2}=\{\{a\},\{b, c\}\}$ and $\mathcal{P}^{3}=$ $\{\{a, b, c\}\}$.
It is easy to verify that $\mathcal{P}^{1} \preceq \mathcal{P}^{2} \preceq \mathcal{P}^{3}$, hence $\left(\mathscr{S}\left(\mathbb{B}_{3}\right), \subseteq\right)$ is the chain with three elements and $\left(\mathbb{B}_{3}, \exists_{1}, \exists_{2}\right)$ has three non-isomorphic subalgebras.

Example 3. Finally, let us consider the Df $_{2}$-algebra, $\left(\mathbb{B}_{4}, \exists_{1}, \exists_{2}\right.$) whose Hasse diagram is below and the quantifiers \exists_{1} and \exists_{2} are defined by the partitions $\mathcal{P}_{1}=\{\{a, b\},\{c, d\}\}$ and $\mathcal{P}_{2}=\{\{a, c\},\{b, d\}\}$ of $\Pi\left(\mathbb{B}_{4}\right)$, respectively.

Then $\mathscr{P}\left(\mathbb{B}_{4}\right)=\left\{\mathcal{P}^{1}, \mathcal{P}^{2}, \mathcal{P}^{3}, \mathcal{P}^{4}, \mathcal{P}^{5}\right\}$ where:

$$
\begin{align*}
\mathcal{P}^{1} & =\{\{a\},\{b\},\{c\},\{d\}\}, \tag{35}\\
\mathcal{P}^{2} & =\{\{a, b\},\{c, d\}\}, \tag{36}\\
\mathcal{P}^{3} & =\{\{a, c\},\{b, d\}\}, \tag{37}\\
\mathcal{P}^{4} & =\{\{a, d\},\{b, c\}\}, \tag{38}\\
\mathcal{P}^{5} & =\{\{a, b, c, d\}\} . \tag{39}
\end{align*}
$$

It can be seen that $\mathcal{P}^{1} \preceq \mathcal{P}^{2} \preceq \mathcal{P}^{5} ; \mathcal{P}^{1} \preceq$ $\mathcal{P}^{3} \preceq \mathcal{P}^{5} ; \mathcal{P}^{1} \preceq \mathcal{P}^{4} \preceq \mathcal{P}^{5}$ and $\mathcal{P}^{2}, \mathcal{P}^{3}, \mathcal{P}^{4}$ are incomparable.

Then $\left(\mathscr{S}\left(\mathbb{B}_{4}\right), \subseteq\right)$ is the ordered set whose Hasse diagram is indicated next. Hence, the $\mathbf{D f}_{2}$-algebra $\left(\mathbb{B}_{4}, \exists_{1}, \exists_{2}\right)$ has five non-isomorphic subalgebras.

References

1. Bezhanishvili, N. (2002). Varieties of two-dimensional cylindric algebras. Part I: Diagonal-free case. Algebra Universalis, Vol. 48, No. 1, pp. 11-42. DOI: 10.1007/ s00012-002-8203-2.
2. Birkhoff, G., Frink, O. (1948). Representations of lattices by sets. Transactions of the American Mathematical Society, Vol. 64, pp. 299-316.
3. Figallo, M. (2004). Finite diagonal-free twodimensional cylindric algebras. Logic Journal of IGPL, Vol. 12, No. 6, pp. 509-523. DOI: 10.1093/ jigpal/12.6.509.
4. Figallo, M. (2011). Some results on diagonal-free two-dimensional cylindric algebras. Reports on Mathematical Logic, No. 46, pp. 3-15.
5. Figallo, A. V., Gomes, C. M. (2019). Monadic Boolean algebras with an automorphism and their relation to Df_{2}-algebras. Soft Computing, vol. 24, no. 1. Springer Science and Business Media LLC, pp. 227-236. DOI: 10.1007/s00500-019-04317-4.
6. Halmos, P. R. (1954-1956). Algebraic logic, I. Monadic Boolean algebras. Compositio Mathematica, No. 12, pp. 217-249, numdam.org/item/CM_ 1954-1956_-12_-217_0/.
7. Henkin, L., Donald-Monk, J., Tarski, A. (19711985). Cylindric algebras. Part I, North-Holland, Elsevier Science.
8. Iskander, A. A. (1965). Correspondence lattices of universal algebras. Izvestiya Akademii Nauk SSSR, Vol. 29, No. 6, pp. 1357-1372.
9. Sikorski, R. (1968). Algebras de Boole, notas de lógica matemática 4, Instituto de Matemática, Universidad Nacional del Sur, Bahía Blanca, Argentina.

Article received on 04/04/2022; accepted on 05/06/2022. Corresponding author is Martín Figallo.

