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Abstract. Diagonal–free two–dimensional cylindric
algebras (Df2−algebras for short) are Boolean algebras
enriched with two existential quantifiers which commute.
Df2−algebras were introduced by A. Tarski, L. Chin and
F. Thompson with the purpose of providing an algebraic
device for the study of the first–order predicate calculus
with two variables. This work is devoted to problems
related to finite Df2−algebras. More precisely, we study
and describe the family of subalgebras of a given finite
Df2−algebra. Then, identifying the algebras of this family
which are isomorphic, we provide a full description of the
lattice of all non–isomorphic subalgebras of a given finite
Df2−algebra.
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dimensional cylindric algebras, lattice of subalgebras.

1 Introduction

Cylindric algebras were introduced by A. Tarski
in the 1940s with the intention of providing an
algebraic counterpart to the first–order predicate
calculus. As a general reference we mention the
fundamental work by Henkin, Monk and Tarski [7].

In particular, the class of diagonal–free two–
dimensional cylindric algebras constitute an al-
gebraic counterpart to the first–order predicate
calculus without identity and considering just two
variable symbols in the language.

Formally a diagonal–free two–dimensional cylin-
dric algebra is a Boolean algebra enriched with two
existential quantifiers which commute.

This class of algebras will be denoted Df2, in
agreement with the notation introduced in [7].
Besides, the class Df2 constitute a variety (that is,
it can be described by means of a finite number of
equations) and has been widely studied.

However, little research has pursued to investi-
gate those problems inherent to finite algebras. On
the other hand, a monadic Boolean algebra is any
pair (A,∃) formed by a Boolean algebra A enriched
with an existential quantifier ∃ defined on A (see
[6]) and, within the context of cylindric algebras,
these algebras are diagonal-free one-dimensional
cylindric algebras or Df1−algebras.

As we said, the variety Df2 has been widely
investigated by different authors. Among other
known results, it can be mentioned that D. Monk
studied the lattice Λ(Df2) of all subvarieties of Df2
and proved that it has ℵ0 elements (subvarieties).

This author also showed that every element
of Λ(Df2) has a finite base and a decidable
equational theory. Later, N. Bezhanishvili, in [1],
proved that every proper subvariety of Df2 is locally
finite although Df2 is not.

On the other hand, some problems inherent to
finite algebras have also been studied.
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For instance, in [3], the author exhibited
a connection between Df2−algebras and pairs
formed by a monadic Boolean algebra and a
certain subalgebra of it; and as a consequence,
it was obtained a formula to calculate the number
of monadic subalgebras of a given finite monadic
Boolean algebra.

Also, in [4], formulas for computing the number
of Df2−algebra structures that can be defined
over a finite Boolean algebra as well as the fine
spectrum of Df2 were obtained.

Finally, the lattice Λ(Df2) was studied and a full
description of the poset of all its joint–irreducible
elements was given.

Besides, in [5] A. V. Figallo and C. M.
Gomes studied the variety of Tkm−algebras,
this is, monadic Boolean algebras endowed
with a monadic automorphism of period k and
established, in the finite case, the relationship
between this variety and the variety Df2.

It is worth mentioning that the study of the
lattice of all subalgebras of an abstract algebra has
interested many authors.

For instance, G. Birkhoff and O. Frink, [2],
characterized the subalgebra lattices of universal
algebras as algebraic lattices.

On the other hand, in [8], the author
proved that every algebraic lattice is isomorphic
to the subalgebra lattice of a square of some
universal algebra.

The purpose of this paper is to study some
properties related to the subalgebras of a finite
diagonal–free two–dimensional cylindric algebra.

In section 2, we recall some well-known facts
about Df2−algebras, we emphasize, in particular,
those which refer to finite algebras and which were
stated in [3]; [4] and [7].

The main results of this work are in section
3. There, we define an order over the family of
certain partitions of the set of atoms of a finite
Df2−algebra.

As a consequence of this and other results
stated in section 2, we obtain a full description
of the lattice of all subalgebras of a finite
Df2−algebra.

2 Preliminaries

In this section, we shall review some notions and
results concerning finite Df2−algebras will be used
to obtain the main result of this work. We refer the
interested reader to the references [3, 4].

Recall that a Boolean algebra is a structure
A = (A,∨,∧,¬, 0, 1) such that (A,∨,∧, 0, 1) is
a bounded distributive lattice with first element
0, last element 1 and where ¬a is the Boolean
complement of a, for every a ∈ A.

A Df2−algebra is a triple (A,∃1,∃2), where A is a
Boolean algebra and ∃1, ∃2 are quantifiers defined
on A that commute, that is ∃1 and ∃2 are unary
operators on A, ∃i : A → A (i = 1, 2), that verify
the following conditions:

∃i0 = 0, (1)
x ⩽ ∃ix, (2)

∃i(x ∧ ∃iy) = ∃ix ∧ ∃iy, (3)
∃i∃jx = ∃j∃ix. (4)

For 1 ⩽ i, j ⩽ 2 and i ̸= j. The first three are the
defining conditions of existential quantifier. In what
follows we will denote the Boolean algebra with n
atoms by Bn and by Π(Bn) the set of its atoms.

It is well known that there is an onto and
one-to-one correspondence between the family of
all quantifiers that can be defined over Bn, and the
family of all Boolean subalgebras of Bn. Indeed, if
S is a subalgebra of Bn, then the map ∃ : Bn → Bn

defined by:

∃(x) =
∧

{s ∈ S : x ≤ s}. (5)

Is a quantifier which will be called the quantifier
associated to S. Moreover, all quantifiers on Bn

can be obtained in this way.
On the other hand, every subalgebra S of Bn

induces a partition PS of the set Π(Bn) of its atoms
which will be called partition induced by S and it is
obtained, by considering the set Π(S) of the atoms
of S, in the following way:

C ∈ PS , (6)
iff

there is s ∈ Π(S) such that s =
∨
a∈C

a. (7)
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Conversely, every partition P of Π(Bn) induces a
subalgebra SP of Bn as follows: for every C ∈ P,
we consider the element aC =

∨
a∈C

a.

Then, SP is the Boolean
subalgebra generated by the set
{aC : C ∈ P}. From the above, we can
conclude that there is an onto and one-to-one
correspondence between the family of all
quantifiers that can be defined over Bn, and
the family of all partitions of Π(Bn).

Let ∃ be an arbitrary quantifier defined on Bn

and let P be the partition of Π(Bn) associated to
∃. Then, we denote by P(x) the set:

{C ∈ P :
∨
a∈C

a ⩽ x}. (8)

For each x ∈ ∃Bn. The following definition
plays an important role when dealing with finite
Df2−algebras and was introduced in [3].

Definition 1. Let P1 and P2 be two partitions of
Π(Bn). For each C ∈ Pi, we will call mj–saturated
of C, and we will denote it by mj(C), the least (in
the sense of inclusion) subset of Pj which verifies
C ⊆

⋃
F∈mj(C)

F , for 1 ⩽ i, j ⩽ 2 and i ̸= j.

Then, we can determine themj–saturated of any
C ∈ Pi, with i ̸= j, 1 ⩽ i, j ⩽ 2, as it is indicated in
the next lemma.

Lemma 1. If C ∈ Pi and b =
∨
a∈C

a, then

mj(C) = Pj(∃jb), with 1 ⩽ i, j ⩽ 2 and i ̸= j.

Another characterization of mj(C), for any C ∈
Pi, is given next.

Lemma 2. If C ∈ Pi, then mj(C) = {D ∈ Pj :
C ∩D ̸= ∅}, 1 ⩽ i, j ⩽ 2 and i ̸= j.

Remark 1. If C ∈ Pi and b =
∨
a∈C

a, then ∃jb can

be calculated in the following way:

∃jb =
∨
a∈D

D∈mj(C)

a. (9)

For 1 ⩽ i, j ⩽ 2 and i ̸= j.

Next, we define a binary relation between two
partitions of Π(Bn).

Definition 2. Let P1 and P2 be two partitions of
Π(Bn). We will say that P2 is a refinement of P1

and we will write P2 ≻ P1, if for each C ∈ P1 there
exists U ⊆ P1 such that:⋃

G∈m2(C)

G =
⋃
F∈U

F . (10)

Remark 2. It is not difficult to check that the subset
U , mentioned in Definition 2, is unique. Therefore,
from now on, for each C ∈ P1, we will denote with
UC the only subset of P1 such that:⋃

G∈m2(C)

G =
⋃

F∈UC

F . (11)

A characterization of UC , for every C ∈ Pi, is
stated in the following lemma.

Lemma 3. If C ∈ Pi and b =
∨
a∈C

a, then

UC = Pi(∃jb), with 1 ⩽ i, j ⩽ 2 and i ̸= j.

In what follows, we will write P2 ≈ P1 to indicate
that each of the partitions is a refinement of the
other. The following three results are the most
important in this section and, as we shall see later,
they will be very useful. A detailed proof of them
can be found in [3].

Theorem 1. Let P1 and P2 be two partitions of
Π(Bn) and ∃1, ∃2 their associated quantifiers. Then
the following conditions are equivalent:

1. ∃1 and ∃2 commute,
2. P1 ≈ P2.

Lemma 4. Let (Bn,∃) be a finite monadic Boolean
algebra, S a Boolean subalgebra of Bn, and let P2

and P1 be the partitions of Π(Bn) associated to
the quantifier ∃ and the subalgebra S, respectively.
Then the following conditions are equivalent:

1. S is a monadic subalgebra of (Bn,∃),
2. P2 ≻ P1.

Lemma 5. Let P1,P2 be two partitions of Π(Bn). If
P2 ≻ P1, then P1 ≻ P2.
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3 Df2−Subalgebras of a Finite
Df2−Algebra

In this section, we shall present a correspondence
between the family of all subalgebras of a given
Df2−algebra A = (Bn,∃1,∃2) and a certain family
of partitions of the set of its atoms Π(Bn).

This will allow us to establish a characterization
of the lattice of all subalgebras of A. A
characterization of the subalgebras of a finite
Df2−algebra is the following:

Lemma 6. Let A = (Bn,∃1,∃2) be a finite
Df2−algebra, Pi the partition of Π(Bn) associated
to ∃i, i = 1, 2, and S a Boolean subalgebra of A.
Then the following conditions are equivalent:

1. S is a Df2−subalgebra of (Bn,∃1,∃2),

2. PS ≈ Pi for i = 1, 2, with PS the partition of
Π(Bn) associated to S.

Proof. It is consequence of Lemma 4. □

If A = (Bn,∃1,∃2) is a given finite Df2−algebra,
we denote the set of all Df2−subalgebras of A by
S (A) and the set of all partitions P of Π((Bn) such
that P ≈ Pi for i = 1, 2, by P(A), where Pi is the
partition of Π((Bn) associated to ∃i. Then, from the
previous lemma, the following corollary is inferred:

Corollary 3.1. S (A) and P(A) have the
same cardinality.

Now we will endow P(A) with an order relation
⪯ defined as follows:

P ⪯ P ′ (12)
iff

For all C ∈ P ′, there is Q ⊆ P such that C =
⋃

D∈Q

D. (13)

Then we have:

Lemma 7. Let A = (Bn,∃1,∃2) be a finite
Df2−algebra. Then, the ordered sets (S (A),⊆)
and (P(A),⪯) are antiisomorphic.

Proof. Let α : S (A) → P(A) be the application
defined by:

α(S) = PS for each S ∈ S (A), (14)

where PS is the partition of Π(Bn) associated to S.
It is not difficult to check that α is one-to-one and
onto. Now, let S1,S2 ∈ S (A) such that (1) S1 ⊆ S2.
For each C ∈ α(S1), let:

d =
∨
a∈C

a. (15)

Then, d ∈ Π(S1). From (1) d ∈ S2 and so, we
may assert that d =

∨
b∈Π(S2)

b⩽d

b. Therefore,

C =
⋃

D∈PS2
(d)

D. (16)

And so, α(S2) ⪯ α(S1). On the other
hand, suppose that (2) α(S2) ⪯ α(S1), and let
d ∈ Π(S1). Then:

d =
∨
a∈C

a. (17)

For some C ∈ PS1
. Then, from (2), we have that

C =
⋃

D∈Q

D, with Q ⊆ PS2
. Let us assume that

Q = {D1,D2, . . . ,Dr} and let bi =
∨

a∈Di

a where

1 ⩽ i ⩽ r. Then, bi ∈ Π(S2) and d =

r∨
i=1

bi, that is

to say, d ∈ S2. In this way, S1 ⊆ S2. □

Our next objective is to determine necessary and
sufficient conditions for two elements of S (A) to be
isomorphic. For this purpose, let S1 and S2 be two
elements of S (A).

For each C ∈ PS1
(D ∈ PS2

) we will denote the
saturated of C (D) in the partition Pi by mS1

i (C)

(mS2
i (D)). Besides, we will denote by U i S1

C (U i S2

D )
the least subset of PS1

(PS2
), such that:

⋃
H∈m

S1
i (C)

H =
⋃

G∈Ui S1
C

G

 ⋃
I∈m

S2
i (D)

I =
⋃

F∈Ui S2
D

F

 .

(18)
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Lemma 8. Let A = (Bn,∃1,∃2) be a finite
Df2−algebra, S1 and S2 Df2−subalgebras of A.
Then, the following conditions are equivalent.

1. S1 and S2 are isomorphic,

2. there is a bijection f : PS1
→ PS2

such that:⋃
G∈f(Ui S1

C )

G =
⋃

H∈m
S2
i (f(C))

H (19)

For each C ∈ PS1
and i = 1, 2.

Proof. (i) ⇒ (ii). Let S1 and S2 be isomorphic
Df2−subalgebras of A, and let ϕ : S1 → S2 be the
corresponding Df2−isomorphism. Let us define
f : PS1 → PS2 by:

f(C) = D ∈ PS2
, (20)

iff

ϕ
( ∨
a∈C

a
)
=

∨
b∈D

b for every C ∈ PS1 . (21)

Then, it is clear that f is well defined.
Besides, since ϕ|Π(S1) is a one-to-one and onto
correspondence between Π(S1) and Π(S2), we can
assert that f is one-to-one and onto. Let us prove
that, for each C ∈ PS1 , it holds:⋃

G∈f(Ui S1
C )

G =
⋃

H∈m
S2
i (f(C))

H. (22)

For i = 1, 2. Suppose that s1 =
∨
a∈C

a, then:

ϕ(s1) = ϕ
( ∨
a∈C

a
)
= s2 =

∨
b∈f(C)

b. (23)

With s1 ∈ Π(S1) and s2 ∈ Π(S2). It can be
verified without any difficulty that:

ccl(∃is1) = ϕ
( ∨

a∈H

H∈m
S1
i

(C)

a
)

= ϕ
( ∨

a∈G

G∈Ui S1
C

a
)

= ϕ
( ∨
G∈Ui S1

C

∨
a∈G

a
)
. (24)

And, since
∨
a∈G

a ∈ S1 for every G ∈ U i S1

C ,

we get:

ϕ(∃is1) =
∨

G∈Ui S1
C

ϕ
( ∨
a∈G

a
)
=

∨
G∈Ui S1

C

∨
b∈f(G)

b.

(25)
On the other hand:

∃iϕ(s1) = ∃is2 =
∨
b∈I

I∈m
S2
i

(f(C))

b. (26)

From ϕ(∃is1) = ∃iϕ(s1), (1) and (2), we get:∨
G∈Ui S1

C

∨
b∈f(G)

b =
∨
b∈I

I∈m
S2
i

(f(C))

b. (27)

From (3), and properties of U i S1

C and mS2
i (f(C)),

it results that: ⋃
G∈f(Ui S1

C )

G =
⋃

H∈m
S2
i (f(C))

H. (28)

(ii) ⇒ (i). Let f : PS1
→ PS2

be a one-to-one and
onto function such that:⋃

G∈f(Ui S1
C )

G =
⋃

H∈m
S2
i (f(C))

H (29)

for every C ∈ PS1 and i = 1, 2. Let ψf : S1 → S2

be the Boolean homomorphism defined by:

ψf (s) =
∨

H∈PS1
(s)

∨
r∈f(H)

r. (30)

Since f is one-to-one and onto, it is easy to
check that ψf is a Boolean isomorphism. Let us
now check that ψf (∃is) = ∃iψf (s) for every s ∈
Π(S1). Let s ∈ Π(S1), then there is C ∈ PS1

such
that s =

∨
a∈C

a. By Lemma 3, we have:

ccrψf (∃is) =
∨

H∈PS1
(∃is)

∨
r∈f(H)

r

=
∨

H∈Ui S1
C

∨
r∈f(C)

r

=
∨

G∈f(Ui S1
C )

∨
r∈G

r. (31)
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On other hand, it is clear that:

∃i(ψf (s)) = ∃i
( ∨
a∈f(C)

a
)
=

∨
D∈m

S1
i (f(C))

∨
a∈D

a.

(32)
From (4), (5) and (6), we get that

ψf (∃is) = ∃i(ψf (s)). □
Now, consider the binary relation ∆ on P(A)

defined as:

P1∆P2, (33)
iff

P1 and P2 satisfy condition Lemma 8 (ii). (34)

Then, from all the results above stated, we have:

Theorem 2. The subalgebra lattice of the
finite Df2−algebra A, S (A), is isomorphic to
(P(A)/∆,⪰).

Finally, we analyze some examples where we
apply the result stated above.

Example 1. Let us consider the Df2−algebra,
(B2,∃1,∃2) whose Hasse diagram is shown below
and the quantifiers ∃1,∃2 are defined by the
next table.

0

b

1

a

x ∃1x ∃2x
0 0 0
a a 1
b b 1
1 1 1

In this case P1 = {{a} , {b}} and P2 = {{a, b}}
are the only partitions of Π(B2) associated to
quantifiers ∃1 and ∃2, respectively.

Then P(B2) = {P1,P2}, hence it is clear that
(S (B2),⊆) is the chain with two elements and
(B2,∃1,∃2) has two non-isomorphic subalgebras.

Example 2. Let (B3,∃1,∃2) be the Df2−algebra
whose Hasse diagram is below and the quantifiers
∃1,∃2 are given by the table:

Hence, P1 = {{a} , {b, c}} and P2 = {{a, b, c}}
are the partitions of Π(B3) associated to quantifiers
∃1 and ∃2, respectively.

1

f

b

d e

c

0

a

x ∃1x ∃2x
0 0 0
a a 1
b f 1
c f 1
d 1 1
e 1 1
f f 1
1 1 1

Then P(B3) =
{
P1,P2,P3

}
where P1 =

{{a} , {b} , {c}} ,P2 = {{a} , {b, c}} and P3 =
{{a, b, c}}.

It is easy to verify that P1 ⪯ P2 ⪯ P3, hence
(S (B3),⊆) is the chain with three elements and
(B3,∃1,∃2) has three non-isomorphic subalgebras.

Example 3. Finally, let us consider the
Df2−algebra, (B4,∃1,∃2) whose Hasse diagram
is below and the quantifiers ∃1 and ∃2 are
defined by the partitions P1 = {{a, b} , {c, d}} and
P2 = {{a, c} , {b, d}} of Π(B4), respectively.

t
t t

t
t

t t
t

t
t t

t
t

t t
t

�
�
��

@
@

@@
�
�
��

@
@

@@

��������������
��������������

��������������
��������������

����������������������������

����������������������������

PPPPPPPPPPPPPP
PPPPPPPPPPPPPP

PPPPPPPPPPPPPP
PPPPPPPPPPPPPP

XXXXXXXXXXXXXX XXXXXXXXXXXXXX

XXXXXXXXXXXXXX XXXXXXXXXXXXXX

�
�
��

@
@

@@
�
�
��

@
@

@@

�
�
��

@
@

@@
�
�
��

@
@

@@

�
�
��

@
@

@@
�
�
��

@
@

@@

fe g h

i l m k

1

n

j

a

b c

d

0

Then P(B4) = {P1,P2,P3,P4, P5} where:

P1 = {{a} , {b} , {c} , {d}} , (35)

P2 = {{a, b} , {c, d}} , (36)

P3 = {{a, c} , {b, d}} , (37)

P4 = {{a, d} , {b, c}} , (38)

P5 = {{a, b, c, d}} . (39)

It can be seen that P1 ⪯ P2 ⪯ P5;P1 ⪯
P3 ⪯ P5;P1 ⪯ P4 ⪯ P5 and P2,P3,P4

are incomparable.
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S1

S4

S5

S2 S3

Then (S (B4),⊆) is the ordered set
whose Hasse diagram is indicated next.
Hence, the Df2−algebra (B4,∃1,∃2) has five
non-isomorphic subalgebras.
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