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Abstract. The question of defining a Jaśkowski-Fitch
natural deduction system for modal logic has been
settled since the very introduction of such formalisms
in the middle of the last century. In contrast, a
sequent-style formulation of this approach has only been
discussed since the turn of this century but exclusively
from the point of view of type theories. In this paper
we propose a substructural sequent-style deductive
system, based on previous ideas by Borghuis and
Clouston, which captures Fitch-style for modal logic in
a faithful way, meaning that the features of the original
diagrammatic proofs are enforced by the sequent rules.
This answers the question of what is a sequent-style
version of Fitch-style natural deduction in the case of the
necessity fragment of minimal modal logic S4.

Keywords. Natural deduction, fitch-style, modal
necessity, substructural logics, sequents.

1 Introduction

Fitch-style natural deduction [5], originally intro-
duced by Jaśkowski [8], is a style of proof
characterized by the use of so-called subordinate
proofs, encompassing the idea of a mathematical
proof which depends on temporal assumptions,
such as a conditional proof, an indirect proof or
a proof by cases. The actual construction of a
Fitch-style proof usually requires a diagrammatic
mechanism to indicate the beginning and end of

a subordinate proof. For instance the use of
indentation, lines or rectangles (text boxes). These
kinds of diagrammatic features make difficult to
develop meta-theoretical results for such systems
but also to pursue formal verification tasks with the
help of modern proof-assistants.

An important and well-known solution to this
challenge is to avoid the use of diagrams by using
a sequent-style system, one that manipulates
sequents instead of formulas.

Such formalisms already appear in the seminal
work of Gentzen [7] and their relevant feature here
is that all assumptions are local and therefore there
is no need for a visual aid to keep track of a
temporal assumption.

The problem of defining a natural deduction
system in Fitch-style for modal logic has been
settled since the middle of the last century. In
his seminal book [5], Fitch himself proposes such
a formalism by introducing a second notion of
subordinate proof, called strict.

Those proofs follow a semantical intuition: the
opening of a strict subordinate proof corresponds
to going to an arbitrary world in the usual
Kripke semantics, though neither Fitch nor us
employ formal semantical concepts. Such proofs
appear spontaneously, for they do not require an
assumption to be triggered.
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Later, during the 1980’s Fitting [6], using
the ideas of Siemens [10], gives a systematic
treatment of Fitch-style systems for normal modal
logics, using signed formulas common to tableaux
procedures, and Borghuis [2, 3] proposes an
extension to higher-order logic, by means of modal
pure type systems.

The absence of a formula indicating the
beginning of a strict subordinate proof represents
a challenge to avoid the use of diagrams, not to
mention mechanization issues.

Perhaps this is the reason why the work on
sequent systems for Fitch-style modal logic dates
only from the turn of this century:

Borghuis [1, 2] uses a so-called structural
connective to indicate the beginning of a strict
subordinate proof; a similar idea occurrs in Ritter
and De Paiva [12], who sketch a multi-context
sequent system dictated by the maximum modal
depth of formulas in a derivation; and Clouston [4]
presents modal type systems using a lock sign to
indicate that a box has been opened thus allowing
access to its content.

However, all these works do not discuss the logic
itself, instead they are interested in type systems
and categorical semantics (see also Kakutani et
al. [9] for a more recent approach).

Moreover, even when they mention that their
systems capture Fitch-style, they provide no proof
sustaining this claim.

To this purpose, we provide a formal notion of
Fitch-proof which captures the visual intuition using
proof translations and avoiding the direct use of
diagrammatic reasoning.

For the time being, we consider only the
box operator □ and their S4 axioms, since it
is well-known that weaker systems like K or
T require further restrictions on the diagrams
and stronger systems like S5 are not easily
captured by an ordinary sequent systems, for
we either require labelled systems or pure
systems handling not sequents but hypersequents
or hypersequent trees.

Furthermore, we consider only the minimal
logic, that is, we do not handle a negation
operator, either constructive or classical, since
such extensions are straightforward.

On the other hand, the study of minimal systems
alone, is important in Computer Science where the
classical versions are not so well behaved with
respect to algorithmic content.

The paper is organized as follows: in Section 2
we present F□, an ordinary Fitch-style logic but
featuring a formal definition of proof, enhancing the
original definition of [3], which allows us to depart
from the diagrammatic reasoning while keeping
its intuition.

In Section 3 we introduce a sequent-style version
of Fitch-style for modal logic, called NS4□, and
emphasize the substructural nature of the system.
The equivalence between both systems is proved
in detail in Section 4.

1.1 Syntax

We dedicate this brief section to set up the
important syntactic notions that accompany the
rest of the work, namely formulas and contexts.
Modal propositions are generated by the follow-
ing grammar:

Prop ∋ A,B ::= pn | A → B | □A, (1)

where pn denotes an element taken from an infinite
supply of propositional variables, indexed by a
natural number. Let us observe that we consider
neither negation nor the constant ⊥.

Thus we will be dealing with modal logic ob-
tained from minimal implicative propositional logic,
extended with the modal operator of necessity.

In this paper contexts are implemented as finite
lists built from the empty list, denoted here by ·, and
a constructor that generates a new list from a given
one Γ by adding a new item Q to its right-end.

The elements of such a list are formulas in the
case of F□ but they also include the symbol b for
NS4□. Contexts are formally defined as follows:

Γ ::= · | Γ,Q. (2)

The operation Γ,Q is usually called snoc.
Furthermore, the append operation of two contexts
Γ and Γ′ is recursively defined as usual and
denoted with a semicolon Γ; Γ′.
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...
□A
...
b

...
A
...

(K-IMP)

...
b

...
A

□A
...

(K-EXP)

...
□A
...
b

...
□A
...

(4-IMP)

...
b

...
A

A
...

(T-EXP)

Fig. 1. Modal rules for system F□

2 Fitch-Style for Modal Necessity

Here we define a Fitch-style natural deduction
system for the S4 necessity fragment.

The emphasis is in the behavior of this operator
alone, but since we do not consider here neither ⊥
nor ¬ it can be said that we are dealing with the
minimal modal logic S4.

We follow the approach of [2]. All modal rules
involve the use of a strict subordinate proof, whose
start is indicated by an opened lock b.

The modal rules of system F□ are in Figure 1. It
is worth noting that the rules (K-IMP) and (4-IMP)
can be considered as specialized reiteration rules
allowing to introduce already known information, (A
as consequence of □A or □A itself) inside a strict
subordinate proof.

On the other hand, rules (K-EXP) and (T-EXP)
allow us to close a strict subordinate proof. It
is important to remark that the general reiteration
rule common in Fitch-style systems, listed below,

is not present here for it is not necessary 1,
see [13, Section 2.4], and departs from the natural
mathematical reasoning where any already proved
information can be used at any stage in a proof
without state it again.

...
A
...

...
A (REIT.)
...

Figure 2 shows an example of a proof in the
system F□. This diagram corresponds to a proof
of □(□A → □B) from the hypothesis □(□A →
□(□A → □B)).

The visual aids provided by the diagram originate
from Fitch’s work. In this diagram, the vertical
line indicates a subordinate proof while the boxes
labelled with b designate strict subordinate proofs.

We observe that the unique hypothesis is at step
1; a temporal assumption starting a subordinate
proof starting at step 2 which is closed at step 8;
a strict subordinate proof starting at step 2 and
finished at step 9 and a strict subordinate proof
from steps 5 to 7 The meaning of the last column
in the above proof will be explained later.

Our aim here is to give a formal definition
of these diagrammatic proofs departing from the
diagram but somehow keeping the visual intuition.

This was originally done by Van Westrhenen et
al. [11], and extended to modal logic by Borghuis
in [3], by means of a mathematical structure called
proof scheme or proof figure.

This notion is enhanced by us here in order to
achieve our main goal, the definition of a sequent-
style calculus for Fitch-style in the case of modal
logic S4 and the proof of its equivalence with F□.

Definition 2.1. A proof scheme or proof figure is a
mathematical structure P = ⟨D,F , I⟩ such that:

– D = {1, 2 . . . ,n} ⊂ N is a (discrete) interval
hereafter denoted as D = [1,n].
1An interesting related discussion can be found at www.

logicmatters.net/2017/07/20/reiterating-in-fitch-style-proofs/
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1. □ (□A → □ (□A → □B)) (HYP) deg(F1) = (0, 0)

b
2 . □A
3 . □A → □ (□A → □B)
4 . □ (□A → □B)

b
5. □A → □B
6. □A
7. □B

8. □B
9. □A → □B

(ASSUMP) deg(F2) = (1, 1)
(K-IMP) 1 deg(F3) = (1, 1)
(MP) 2,3 deg(F4) = (1, 1)

(K-IMP) 4 deg(F5) = (2, 1)
(4-IMP) 2 deg(F6) = (2, 1)
(MP) 5,6 deg(F7) = (2, 1)
(T-EXP) 7 deg(F8) = (1, 1)
(→ I) 2,8 deg(F9) = (1, 0)

10. □ (□A → □B) (K-EXP) 9 deg(F10) = (0, 0)

Fig. 2. Example including degree of steps

– F : D → Prop is a function assigning
propositions to the elements of D.

– I is a collection of intervals of one of the
following forms:

– [i, j] ⊆ D.

– [i,∞) with i ∈ D, called an indeterminate in-
terval.

Any two intervals I, J ∈ I are either disjoint
I ∩ J = ∅ or included one in the other
I ⊂ J or J ⊂ I.

– There exists a decomposition I = O∪M where:

– O is the collection of ordinary intervals such
that if J = [i, j] ∈ O then the proposition F (i)
is called the assumption of the interval J . It is
possible that D ∈ O.

– M is the collection of modal intervals. If J =
[i, j] ∈ M then the proposition F (i) is not an
assumption of J . Moreover D /∈ M.

Further, if P has no indeterminate intervals and
the decomposition I = O∪M is a partition of I we
say that the proof figure P is closed.

We can see that the above definition captures
the features of Fitch diagrammatic proofs, the
interval D represents the total number of steps
in a derivation; the function F models the
sequence of formulas, that is F (i) is the formula
in the ith step of the proof; an ordinary interval

[i, j] ∈ O captures an ordinary subordinate proof,
one that introduces F (i) as an assumption which
is discharged at step j + 1.

Moreover, [i, j] ∈ M models an strict or modal
subordinate proof, one that starts at step i and
closes at step j.

Further, an indeterminate interval [i,∞) repre-
sents the opening of a subordinate proof, either
ordinary or strict, which was never closed.

For instance the diagrammatic proof of the
above example corresponds to the proof figure
P = ⟨[1, 10],F , I⟩ where O = {[2, 8]} and
M = {[2, 9], [5, 7]}.

Of course, not every proof figure represents
a valid proof, in particular those which have
indeterminate intervals are not valid proofs.

This will be made precise in a moment by
introducing a formal notion of proof depending on
proof figures, but before let us introduce some
technical requirements.

Definition 2.2. Let P = ⟨D,F , I⟩ be a proof figure.
If i ∈ D, the proposition F (i) will be denoted by Fi.
We say that Fi precedes Fj exactly when i < j.

For I ∈ I, if I = [i, j] we say that k ∈ I if and
only if and i ≤ k ≤ j and in case I = [i,∞) we say
that k ∈ I if and only if i ≤ k ≤ |D|.
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Further, if i ∈ I for some interval I ∈ I∪{D} and
there is no J ∈ I such that i ∈ J and J ⊂ I, then
we say that the proposition Fi lies in I, which will
be denoted as Fi ∈ I.

If J ⊆ K ⊂ I we say that I precedes J , in
particular if J = K ⊂ I we say that J lies in I.

The usual definition of derivation in Fitch-style
systems requires that all subordinate proofs
become closed.

In our case we have two kinds of such proofs and
at each step we need to keep track of the number of
subordinate proofs, boxes in a diagrammatic proof,
that need to be closed after the current step.

To this purpose we introduce the concept of
degree of a (step) formula Fi in a derivation, which
is a pair of numbers (n,m), meaning that Fi lies
in the nth nested modal interval, say Mn, and that
there are m ordinary intervals opened inside Mn

and before the next, i.e., the n+1th modal interval.
This means that in order to finish the proof we

first must close m ordinary intervals to being able
to close the n nested modal intervals containing Fi.

This way, by using the degree, we will ensure
that subordinate proofs are closed in the proper
order, guaranteeing for example that if a strict proof
is opened inside an ordinary subordinate proof, the
former has to be closed before the latter.

Furthermore, we will know that a derivation of a
formula A is an actual proof if it does not contain
unclosed subordinate proofs, that is if its degree is
(0, 0). Let us give the formal definition of degree.

Definition 2.3. Let P = ⟨D,F , I⟩ be a proof figure.
We define the degree functions of P as follows:

– degM : D → N is the modal degree function,
defined as:

degM(i) = |{J ∈ M | i ∈ J}|. (3)

– degO : D → N is the ordinary degree function,
defined as:

degO(i) = |{K ∈ O′ | i ∈ K}, (4)

where:

O′ = {I ∈ O | i ∈ I ∧ ∄J ∈ M(i ∈ J ⊂ I)}. (5)

– deg : D → N× N is the general degree function,
defined as:

deg(i) = (degM(i), degO(i)). (6)

Further, a degree of a formula Fi in P is defined
as the corresponding degree of i.

The reader can now verify that the last column
in the above example renders the degree of each
formula in a correct way.

To completely capture the notion of correct
derivation we need to verify that every formula Fi

is introduced in a sound way, that is, it is
either a hypothesis, an assumption or it is the
result of applying an inference rule to previous
formulas in the sequence and taking care of the
intervals involved.

In order to verify this question we give now a
precise definition of rule application.

Definition 2.4. Let P = ⟨D,F , I⟩ be a proof
scheme. A formula E is the result of an application
of the deduction rule R if E is the conclusion of R,
the premises of R precede E in P and one and only
one of the following conditions holds according to
the shape of R.

– (MP). There are j, k, l ∈ D, a proposition A
and intervals J ,K,L ∈ I such that Fk = A →
E ∈ J ,Fl = A ∈ K,Fj = E ∈ L and either
L ⊆ K ⊆ J or L ⊆ J ⊆ K. Further, the modal
degree of A → E,A and E remains constant,
that is degM(Fj) = degM(Fk) = degM(Fl).
This means that no modal intervals are opened
in between.

We are now in position to give the formal
definition of proof but since these objects are built
step by step it is more adequate to introduce
first a notion of pseudoproof corresponding
to an unfinished proof, one possibly having
indeterminate intervals.

Definition 2.5. A pseudoproof of a formula C from
a finite collection of hypotheses H1, . . . ,Hk is a
proof figure P = ⟨D,F , I⟩ such that:

– D = [1,n] with n ≥ k.
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– If 1 ≤ i ≤ k then Fi = Hi is a hypothesis.

– If k < i ≤ n then one and only one of the
following cases hold:

– Fi is an assumption and there is an interval
I ∈ O starting at i.

– Fi is the result of the application of an
inference rule whose premises belong to the
image of F and precede Fi. If the applied rule
was K-IMP or 4-IMP then there is an interval
I ∈ M starting at i.

– Fn = C.

If there is a pseudoproof P of C where
Γ = {A1, . . . ,Am} is the list of hypotheses and
assumptions in P then we write Γ p∼F C.

It is easy to discern if a formula Fi in P is
a hypothesis or an assumption: hypotheses are
given a priori and are placed only at the beginning
of the proof figure, which means that there are
no intervals starting at a j < i and therefore
deg(Fi) = (0, 0), whereas assumptions are
generated by intervals: if I ∈ O starts at i then
Fi is an assumption and thus deg(Fi) ̸= (0, 0).

Proofs are a special case of pseudoproofs,
according to the following.

Definition 2.6. A proof of C from a given
collection of hypotheses Γ is a closed proof-figure
P = ⟨D,F , I⟩ such that Γ p∼F C. In such case we
write Γ ⊢F C. Moreover, if · ⊢F C, that is if Γ is
empty, then we say that C is a theorem of that C is
derivable in F□.

It is easy to prove that if P = ⟨[1,n],F , I⟩ is a
proof figure witnessing Γ ⊢F C then there is no
assumptions, that is Γ consists of given hypotheses
only and deg(Fn) = (0, 0).

Let us finish this section with a important
property of pseudoproofs that will be needed later,
namely the composition or substitution principle.

Proposition 2.1. The substitution principle holds
for pseudoproofs in F□, that is if Γ,D p∼F C and
Γ p∼F D then Γ p∼F C.

Proof. This is a direct consequence of modus po-
nens.

It is well known that natural deduction systems
have no structural rules, in the sense that none
such rule is explicitly stated as primitive. In several
logics this means that such rules are sound and
used tacitly, which implies that they are admissible
in the corresponding sequent-style versions.

However, in our case the manage of hypotheses
and assumptions is more delicate due to the
presence of strict subordinate proofs. This implies
that the unrestricted use of structural reasoning
is not sound thus generating a substructural
sequent-style system discussed next.

3 NS4□: A Substructural Sequent-Style
System for Modal Necessity

In this section we present the main contribution
of this work, a sequent-style system capturing the
ideas of F□ but without any reference neither to the
diagrams nor to the proof-figures.

Our system follows the idea of Clouston’s modal
lambda calculi [4], which introduces the open
lock b as a sign indicating the opening of a
new strict subordinate proof, suggesting the action
of travelling to an arbitrary world in the Kripke
semantics intuition.

This element can occurr anywhere in a context
thus causing the lack of general structural rules.
However, we will see that these rules are still valid
under some restrictions.

System NS4□ is given in Figure 3 where the
rules have sequents with explicit contexts including
the lock symbol b to emphasize a subordinate
modal proof. Recall that contexts are lists of
formulae and locks.

The starting rule (HYP) allows us to derive a
formula in the context, only if it was introduced
within the last strict subordinate proof, that is, after
the last b in the context.

For implication, the introduction rule discharges
the last formula in the context while the modus
ponens is additive, requiring the same context to
derive the conclusion. The rules regarding modal
formulas use a lock in contexts to emphasize the
modal scope in the proof.
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Γ,A, Γ′ ⊢NS4□ A
b /∈ Γ′ (HYP)

Γ,A ⊢NS4□ B

Γ ⊢NS4□ A → B
(→ I)

Γ ⊢NS4□ A → B Γ ⊢NS4□ A

Γ ⊢NS4□ B
(MP+)

Γ,b ⊢NS4□ A

Γ ⊢NS4□ □A
(K-EXP)

Γ ⊢NS4□ □A

Γ, Γ′,b, Γ′′ ⊢NS4□ A
(K-IMP)

Γ ⊢NS4□ □A

Γ, Γ′,b, Γ′′ ⊢NS4□ □A
(4-IMP)

Γ,b ⊢NS4□ A

Γ ⊢NS4□ A
(T-EXP)

Fig. 3. Rules of system NS4□

Rule (K-EXP) mimics closing a strict subordinate
proof, that is whenever a formula A is derived
using a context where the last hypothesis is a
lock then a boxed formula □A may be derived
discharging this b.

Rule (K-IMP) indicates the opening of a
subordinate proof by adding a b, this is stated
in the most general way using contexts Γ′ and
Γ′′. The last two rules (4-IMP) and (T-EXP) behave
in a similar way and characterize S4.

It is very important to note that the modus
ponens must be stated in the additive or context
sharing way, meaning that the hypotheses context
for both premises is one and the same (as
opposed to the multiplicative or independent
contexts formulation, meaning that the hypotheses
contexts of each premise are different).

The use of a context sharing formulation of
modus ponens departs from the intuition of natural
deduction but is the price to pay here to get a
sound system.

Let us exhibit a counterexample showing that
the use of independent contexts in modus ponens
would allow us to derive the unsound sequent
A, b ⊢NS4□ A.

This sequent is unsound since it would allow us
to conclude · ⊢NS4□ A → □A, which is invalid in all
usual semantics for S4.

Let B any formula such that · ⊢NS4□ □B (for
instance B may be any propositional tautology), by
(K-IMP) we get b ⊢NS4□ B.

On the other hand we can derive A ⊢NS4□ B →
A and the multiplicative modus ponens would allow
us to get A,b ⊢NS4□ A.

Moreover, if we state the rule concatenating the
contexts in the inverse way we can again derive
the same unsound sequent: since b ⊢NS4□ A → A
and A ⊢NS4□ A, modus ponens would allow us to
derive A,b ⊢NS4□ A.

A derivation of our running example in system
NS4□ is in Figure 4.

Let us see why our logic is substructural in
a strong way, since all three rules weakening,
exchange and contraction are unsound when the
lock is involved.

As counterexample, starting with an initial
sequent (given by (HYP)) we derive again the
unsound sequent A,b ⊢NS4□ A in any case of
structural rule:

– Weakening: from A ⊢NS4□ A by weakening we
conclude A,b ⊢NS4□ A.

– Exchange: since b,A ⊢NS4□ A by exchange we
conclude A,b ⊢NS4□ A.

– Contraction: from A,b,A ⊢NS4□ A by
contraction we conclude A,b ⊢NS4□ A.

This shows that, if unrestricted, all three
structural rules will generate an unsound system.
However, the rules are sound under some
restrictions according to the following.

Proposition 3.1 (Restricted structural rules). The
following rules are admissible:

– Weakening:

Γ, Γ′ ⊢NS4□ C

Γ,A, Γ′ ⊢NS4□ C (7)
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1. □ (□A → □ (□A → □B)) ⊢NS4□ □ (□A → □ (□A → □B)) (HYP)

2. □ (□A → □ (□A → □B)) ,b,□A ⊢NS4□ □A (HYP)

3. □ (□A → □ (□A → □B)) ,b,□A ⊢NS4□ □A → □ (□A → □B) (K-IMP) 1

4. □ (□A → □ (□A → □B)) ,b,□A ⊢NS4□ □ (□A → □B) (MP+) 2, 3

5. □ (□A → □ (□A → □B)) ,b,□A,b ⊢NS4□ □A → □B (K-IMP) 4

6. □ (□A → □ (□A → □B)) ,b,□A,b ⊢NS4□ □A (4-IMP) 2

7. □ (□A → □ (□A → □B)) ,b,□A,b ⊢NS4□ □B (MP+) 5, 6

8. □ (□A → □ (□A → □B)) ,b,□A ⊢NS4□ □B (T-EXP) 7

9. □ (□A → □ (□A → □B)) ,b ⊢NS4□ □A → □B (→ I) 8

10. □ (□A → □ (□A → □B)) ⊢NS4□ □ (□A → □B) (K-EXP) 9

Fig. 4. Example derived in NS4□

– Exchange:

Γ,A,B, Γ′ ⊢NS4□ C

Γ,B,A, Γ′ ⊢NS4□ C (8)

– Contraction:

Γ,A,A, Γ′ ⊢NS4□ C

Γ,A, Γ′ ⊢NS4□ C (9)

Proof. Each rule is proved admissible by structural
induction on its premise.

It is worth noting that although these structural
patterns are stated in the usual way, and there are
not conditions about the presence or absence of
locks, they are still restricted since our contexts are
lists and not (multi)sets.

For instance, it is not possible to use the
exchange rule above to get Γ,B,b,A ⊢NS4□ C
from Γ,A,b,B ⊢NS4□ C since the formulas A and
B are not together.

This would not be the case if the contexts
were (multi)sets, which obviously would generate
unsound rules.

As stated the rules ensure that structural
reasoning is locally safe, that is it can be applied as
long as the assumptions involved appear together
in the context.

But observe that for the case of weakening it is
safe to add an assumption anywhere in the context.

Let us next show some structural reasoning
patterns involving modal formulas and locks.

These rules emphasize the unrestricted al-
teration of contexts when a derived formula is
somehow encapsulated by necessity (explicitly or
by the presence of a lock).

Proposition 3.2 (Specialized modal structural
rules). The next rules are admissible:

Γ ⊢NS4□ □A

Γ; Γ′ ⊢NS4□ □A
(WEAK-MODAL)

(10)

Γ ⊢NS4□ □A

Γ; Γ′ ⊢NS4□ A
(OPEN)

(11)

Γ,b; Γ′ ⊢NS4□ A

Γ; Γ′′; Γ′ ⊢NS4□ A
(LOCK-REPLACE)

(12)

Proof. (WEAK-MODAL) is proved by induction on
Γ′; (OPEN) is a direct consequence of (K-IMP) and
(T-EXP). Finally (LOCK-REPLACE) is proved by
structural induction on its premise.
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Proposition 3.3 (Substitution principle). The
following rule is admissible:

Γ,A ⊢NS4□ B Γ ⊢NS4□ A

Γ ⊢NS4□ B (13)

Proof. The rule is even derivable from modus po-
nens.

This finishes the section. In the following section
we show that the proposed sequent-style system
NS4□ is equivalent to the Fitch modal logic F□.

4 Equivalence between F□and NS4□

We present in this section a detailed equivalence
between the Fitch-style logic F□ and our sequent-
style system NS4□, to the best of our knowledge
this has not been done before.

The idea is intuitively clear: any (pseudo)proof π
in F□ corresponds to a sequent in NS4□ obtained
by translating every step Fi in π to a sequent
Γi ⊢NS4□ Fi where Γi keeps trace of all subordinate
proofs opened until step i.

In the other direction we construct a Fitch
pseudoproof of C from any given sequent
Γ ⊢NS4□ C in NS4□ using Γ to open all required
subordinate proofs.

Theorem 4.1. If Γ p∼F C then there exists a
context Γ′ such that Γ′ ⊢NS4□ C.

Proof. Let P = ⟨D,F , I⟩ witnessing the fact that
Γ p∼F C where Γ = {A1, . . . ,Aq, . . . ,Am} and Ai is
a hypothesis for 1 ≤ i ≤ q.

Let D = [1,n] with q ≤ n. We prove a stronger
statement, namely that for every 1 ≤ i ≤ n, there is
a context Γi such that Γi ⊢NS4□ Fi.

The idea behind the construction of Γi is that this
context will trace in order all intervals opened from
1 to i in the proof figure P: a formula A ∈ Γi

denotes the opening of an ordinary interval with
assumption A, whereas a b ∈ Γi denotes the
opening of a modal interval.

Further, the elimination of the last element in
a context corresponds to the closing of the last
opened interval. Since P is given we know all
intervals in the proof and are able to construct Γi.

The proof is by strong induction on n. If 1 ≤ i ≤ q
then we take Γn = Γ. This way Γi ⊢NS4□ Fi by rule
(HYP). This covers the base cases of the induction.

Let us assume now that for every q < i < n there
is a Γi such that Γi ⊢NS4□ Fi.

For the inductive step we consider first the
case when Fn is an assumption: If degM (Fn) =
degM (Fn−1) then we take Γn = Γn−1,Fn.

This way Γn ⊢NS4□ Fn by the (HYP) rule.
Otherwise we necessarily have degM (Fn) =
degM (Fn−1)+1 and take Γn = Γn−1,b,Fn, which,
by the (HYP) rule implies Γn ⊢NS4□ Fn.

Next we make a case analysis on the rule
applied to get Fn. In the following argumentation
we heavily use Definition 2.4.

– Modus ponens: We have Fk = A → E, Fl =
A, Fn = E where w.l.o.g k < l < n. By IH we
have Γk ⊢NS4□ Fk and Γl ⊢NS4□ Fl.

If deg(Fk) = deg(Fl) then necessarily Γk = Γl

and we take Γn = Γk. Thus by (MP) we get
Γn ⊢NS4□ Fn.

In other case we have o = degO(Fk) <
degO(Fl) = o′ which means that there are o′ − o
new assumptions added from Γk to Γl, that is
Γl = Γk,C1, . . . ,Co′−o.

By weakening we have Γl ⊢NS4□ Fk thus we
take Γn = Γl and by (MP) we get Γn ⊢NS4□ Fn.

– (→ I): We have Fk = A, Fn−1 = B and Fn =
A → B. By I.H. Γk ⊢NS4□ Fk and since Fk is an
assumption Γk = Γk−1,Fk.

Moreover, since deg(Fk) = deg(Fl) then Γl =
Γk and by I.H. Γk−1,Fk ⊢NS4□ Fl.

Then rule (→ I) yields Γk−1 ⊢NS4□ Fk →
Fl. Taking Γn = Γk−1 we have shown that
Γn ⊢NS4□ Fn.

– (K-IMP): We have Fn = E, Fj = □E with
j < n. By I.H. we have Γj ⊢NS4□ Fj with
deg(Fj) = (m, o).

Since m = degM (Fj) < degM (Fn) at least
one strict subordinate proof (modal interval) was
started after j, say the first of such intervals
starts at step l with j < l ≤ n. This means that
Γl = Γj , Γ

′,b.
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Thus we can take Γn = Γl, Γ
′′ = Γj , Γ

′,b
where Γ′′ witnesses the fact that maybe more
intervals were opened after step l and before
step n. We can now apply rule Open to get
Γn ⊢NS4□ Fn.

– (4-IMP) is analogous to the previous case.

– (K-EXP) is analogous to the next case.

– (T-EXP): In this situation there is a j ∈ D a
proposition A and intervals J ∈ M and K ∈ I
such that Fn−1 = A = Fn, Fn−1 ∈ J , Fn ∈ K.

By I.H. we have that Γn−1 ⊢NS4□ Fn−1 and
since degM (Fn) + 1 = degM (Fn−1) then the last
open interval was J , which is a modal interval.

This necessarily means that Γn−1 = Γ′,b.
Taking Γn = Γ′ we get Γn ⊢NS4□ Fn by
rule (T-EXP).

This finishes the proof. As a corollary we obtain
the desired proof translation from F□ to NS4□.

Corollary 4.1. If Γ ⊢F C then there exists a context
Γ′ such that Γ′ ⊢NS4□ C.

Now we deal with the other direction of the
equivalence. To this purpose let us first define,
given a NS4□-context Γ, the context Γ− in F□ as
Γ− = Γ ∩ Prop that is Γ− is obtained from Γ
eliminating all locks b.

Next we show how to construct a F□-
pseudoproof of a formula A declared as hypothesis
or assumption in NS4□. This task is not quite
trivial since the unrestricted reiteration rule is not
available in F□.

Lemma 4.1. If Γ,A; Γ′ ⊢NS4□ A is an instance of
the HYP rule then there is a pseudoproof P such
that Γ−,A; Γ′ p∼F A.

Proof. We show that Γ−,A; Γ′ p∼F A by induction
on Γ′. In the base case Γ′ = · and we need to show
that Γ−,A p∼F A. Let Γ = {Q1, . . . ,Qn} and define
D = [1,n+ 1].

For each 1 ≤ i ≤ n, if Qi ∈ Prop then Qi ∈ Γ−

and we define Fi = Qi and add the interval [i,∞)
to O, otherwise Qi = b and we add the interval
[i + 1,∞) to M . Finally we define Fn+1 = A and
add the interval [n+ 1,∞) to O.

This way we have built a proof figure that
testifies that Γ−,A p∼F A. Next, the I.H.
yields a proof figure P = ⟨[1,n],F , I⟩ testifying
that Γ−,A; Γ′ p∼F A.

For the inductive step we need to show that
if B ∈ Prop then Γ−,A; Γ′,B p∼F A. We do
this by defining a proof figure R = ⟨D+,F+, I+⟩,
extending the proof figure P, as follows:

– D+ = [1,n+ 4].

– F+
i = Fi, if 1 ≤ i ≤ n. F+

n+1 = A, F+
n+2 = B →

A,F+
n+3 = B,F+

n+4 = A, where F+
n+1,F

+
n+3 are

assumptions; F+
n+2 is obtained by (→ I) from

F+
n+1 (a vacuous discharge of B) and F+

n+4 is
obtained by MP of F+

n+2 and F+
n+3.

– I+ = M+ ∪ O+ where:

– M+ = M .

– O+ = O ∪ {[n+ 1,n+ 1], [n+ 3,∞)}.

This finishes the proof. We are now in
position of provide the desired proof translation
from NS4□ to F□.

Theorem 4.2. If Γ ⊢NS4□ A then Γ− p∼F A.

Proof. By structural induction on Γ ⊢NS4□ A.
Lemma 4.1 takes care of the base case of the
induction. Next we prove the inductive steps:

– Modus Ponens: By I.H. there are proof figures
P1 = ⟨[1,n1],F

1, I+1⟩, P2 = ⟨[1,n2],F
2, I2⟩

witnessing Γ− p∼F A → B and Γ− p∼F

A respectively.

We extend P2 to the interval [1,n2+2] with the
assumption F 2

n2+1 = A → B, adding [n2 + 1,∞)
to O2, and with F 2

n2+2 = B justified by modus
ponens of F 2

n2
and F 2

n2+1.

This yields a proof figure for Γ−,A → B p∼F

B. From this and P1 we can now apply
the substitution principle (Proposition 2.1) to
conclude Γ− p∼F B.
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– (→ I): By I.H. there is a proof figure
P = ⟨[1,n],F , I⟩ such that Γ−,A p∼F B.

Moreover, if the A in the context, which is the
last assumption in the figure, was introduced by
Fj = A then deg(Fj) = deg(Fn) and [j,∞) ∈ O.

We extend P to [1,n + 1] with Fn+1 =
A → B justified by (→ I) and replacing the
interval [j,∞) with [j,n + 1] ∈ O. This yields
Γ− p∼F A → B.

– (K-IMP): By I.H. there is a proof figure P =
⟨[1,n],F , I⟩ such that Γ− p∼F □A. We need to
show that Γ−, Γ′−, Γ′′− p∼F A. Let Γ′,b; Γ′′ =
{Q1, . . . ,Qp}.

We extend P to the interval [1,n+r+1] where
r = |(Γ′; Γ′′)−|, as follows: let 1 ≤ i ≤ p,
if Qi ∈ Prop then define Fn+i = Qi and add
[n+ i,∞) to O.

Otherwise define Fn+i = Qj where j =
min{k | k > i,Qk ∈ Prop} and add [n +
i,∞) to M.

Finally we define Fn+r+1 = A justified by
(K-IMP), which is correct since we add at
least one I ∈ M, which implies degM (Fn) <
degM (Fn+r+1) as required. This way we have
built a proof figure showing Γ−, Γ′−, Γ′′− p∼F A.

– (4-IMP). Is analogous to the previous case.

– (SHUT): By I.H. there is a proof figure
P = ⟨[1,n],F , I⟩ such that (Γ,b)− p∼F A.

We need to show that Γ− p∼F □A. Since the
original context in NS4□ has a lock as its last
element the last opened interval in I is modal
and indeterminate, say [j,∞) ∈ M.

We extend P to [1,n+ 1] replacing [j,∞) with
[j,n + 1] ∈ M and setting Fn+1 = □A. This is
justified by the rule (K-EXP) and yields a proof
figure for Γ− p∼F □A.

– (T-EXP) is analogous to the previous case.

This finishes our exposition. Let us close this
paper briefly mentioning some futures lines of re-
search such as the development of completeness
results, which in the case of a classical extension
of our formalisms seems to be straightforward, but

in the case of the here developed constructive
systems provides an interesting challenge.

An important future task is the actual mecha-
nization of our results in a modern proof assistant,
which is the main reason to depart here from the
diagrammatic reasoning and giving detailed proofs.

Another topic of interest is the extension of our
work to cover other modal logics, in particular the
full S4, including the possibility operator ♢, both in
the classical and constructive variants.
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