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Abstract. This work is focused on implementing
and evaluating the Random Forest Classifier (RFC),
among other classical machine learning models, on
predicting the residues at the interface of protein-protein
interactions (PPI) that contribute most of the binding
free energy (called hot spots and hot regions). The
dataset comprises twenty-nine bone morphogenetic
proteins (BMPs) complexes from the Protein Data Bank
(PDB). We used just six features such as B-factor,
hydrophobicity index, prevalence score, accessible
surface area (ASA), conservation score, and the
ground-state energy of the amino acids, which were
calculated using the Density Functional Theory (DFT).
Proving and testing several machine learning methods,
we selected the RCF because of its better performance
using classical classification metrics and tests. An
optimal parameter selection of the RFC reached a better
performance using this dataset with around 90 % with
the correct class assigned (hot spot & hot region /
non-hot spot hot region) residues.
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1 Introduction

Protein complexes are compounded by several
amino acid chains binding by non-covalent
protein-protein interactions [28].

The Bone morphogenetic proteins (BMPs) are a
group of similar-structure proteins with short-length
amino acid chains and low molecular weight that
configures functional growth factors presented in
PPI zones [8, 33].

Identifying and classifying these zones, espe-
cially the amino acids that thermodynamically con-
vey these interactions, are critical for developing
new reaction mechanisms and discovering new
drugs inside the Protein complexes [25].

For these reasons, our work is focused on this
detection and classification, assuming that the
ground-state energy of the amino acids is affected
by their interacting zone.

This zone, in which these amino acids are
located, is the PPI. The interacting zones between
the chain in protein complexes are called interface
residues, as shown in Fig. 1, which forms a
region where two or more protein chains link
themselves by non-covalent interactions such as
Van der Waals, electrostatic, hydrogen bonding,
ionic, and other forces [12].

1.1 Hot Spots and Hot Regions Classification

The use of thermodynamics to reveal the residues
at the interface that mediates the biochemical
reaction between protein-protein interactions, com-
bined with machine learning techniques, is well
known [23].

These residues have been characterized by
employing their free energy ∆G, which contributes
to more binding free energy to the interactions than
the other ones [20].

A familiar strategy to detect these particular
residues is calculating the free energy change
∆∆G function [17, 30].
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Fig. 1. Interface residues of the 1M4U Protein Complex,
which contains two chains (ribbon representation) code
A (green) and code L (cyan), respectively. The
interface residues of the interaction between them
are represented by the red section (visualized using
Pymol [34])

Table 1. One entry corresponds to every residue or
amino acid (around 2920 entries for training) from the
29 BMPs Complexes

Features

ASA
Ground-State

Energy
Conservation

Score
B-factor

Å
2

Eh % Å
2

Features Target
Hydrophobicity

Index
Prevalence

Score
∆∆G ∆∆G

% % kcal/mol kcal/mol
2 >→ 1 2 <=→ 0

Alanine scanning mutagenesis (ASM) is a
method to predict ∆∆Gbind values using alanine
mutation between two non-covalent bonded chains
at their interface, measuring the change of free
energy in every amino acid [36].

Then, this method is employed for labeling the
dataset used in this work. Consequently, the amino
acids that obtain a change of free energy ∆∆G
more than 2 kcal/mol, are called hot spots [36].

Robetta server is a protein-structure prediction
service that calculates the free energy function ∆G
and also calculates the binding-mutation function

∆∆Gbind, n of a specific residue n between two
different chains [16].

Hot spots tend to form contact surface areas at
the interfaces called hot regions, which are found
when the distance between two of their Cα atoms
is ≤ 6.5 Å [9]. These regions are critical from a
biological activity point of view, so we identified
these amino acids by labeling them with these
server tools.

Due to the interdisciplinary approach to this
problem, identifying the hot spots and the
hot regions demands different techniques and
approaches. Some of these techniques have
been applied with several groups of proteins and
datasets using several models [38, 20, 23].

Among popular machine learning algorithms, the
Random Forest Classifier has been one of the
most useful and successful methods for non-linear
classification, and neuronal networks [27, 21].
Therefore, our goal is to show the capability of the
ground-state energy of the amino acid molecules
for identifying these active sites.

2 Materials and Methods

The general implementation for manipulating and
preprocessing the Protein Data Bank (PDB)
structures files (.pdb extension) was developed
and performed within a C++ framework.

The ASA calculation was supported by GPU
GeForce 840M with CUDA (Compute Unified
Device Architecture 8.0) API [29]. Part of the DFT
calculation and the training process was performed
in CPU Intel® Core ™, i7-4510U 2.00GHz (CPU 1).

The remaining DFT calculations were performed
in the CPU processors Intel® Core ™and Intel®

Core ™2 Quad Processor Q8200 2.33GHz.
To constitute the dataset, we fetched twenty-nine

BMP complexes files from the Protein data
bank [1] (three-dimensional crystallized structures
described in the previous work [7]). Then, this
dataset is completed by calculating extra features
per amino acid (such as ASA and DFT).

Consequently, even using a small number
of proteins, long execution times are required
(especially for DFT).
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Fig. 2. General training, preprocessing and evaluation processes based on supervised machine learning

2.1 Preprocessing

The preprocessing of the protein data can be
divided into the .pdb file processing and the
calculation and fetching of the training features
using either server tools or our methods inside the
framework implementation.

Firstly, the .pdb files were ordered, standardized
and the Hydrogen atoms were added through the
server tool Mol Probity [14] with the flip method
(Asn/Gln/His) using electron-cloud x − H bond
lengths and Van der Waals radii.

The biochemical properties of amino acids, such
as polarity, thermodynamic stability ,and chemical
structure, suggest a statistical prevalence between
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Table 2. Average performance rates of the additional
classifiers. The 0 corresponds to the non-hot spot & non-
hot region class, and 1 corresponds to the hot spots and
hot region class, respectively

Class Precision Recall F1-score
GB classifier

0 0.86 0.9 0.89
1 0.78 0.7 0.75

AdaBoost classifier
0 0.85 0.88 0.86
1 0.72 0.68 0.7

LDA classifier
0 0.78 0.86 0.82
1 0.6 0.5 0.55

Fig. 3. Average Micro F1-score performance comparison
between a single RFC and a Bagging RFC ensemble (50
estimators) as a function of the dataset size available

them to be more likely hot spots such as valine,
leucine and serine [2].

Furthermore, hydrophobicity is a feature that
represents the exclusion of solvent from the hot
spots and hot regions, which can be obtained as
a quantitative measure from [18, 19] for each
amino acid type.

Additionally, the evolutionary changes presented
in the linear sequence of amino acids of the

protein chains over time can be measured using
the conservation score, which is convenient
for discovering conformational functionality and
predicting hot spots under several steps [32].

We used the server ConSurf to calculate
this feature by selecting just one iteration for
the homolog search algorithm HMMER with
E-value=0.0001 of cut-off, using the automatic
homologs ConSurf analyses with MAFFT-L-INS-i
alignment method and Bayesian calculations.

On the other hand, B-Factor represents the
average of the flexibility of the crystallized
molecules and has been used to predict hot spots
in previous works [39].

The B-factor value is included in the PDB file for
every atom and is estimated for every residue using
the standardized function from [6].

2.2 DFT and ASA Calculation

The ASA of every amino acid is one of the most
important features that can characterize hot spots
& hot regions [27].

We implemented the Shrake & Rupley algorithm
to calculate the whole ASA protein complexes
according to the surface of the Van der Waals
atomic spheres [35].

We represent the atomic spheres with a set from
one hundred to one thousand points.

To evaluate the solvent exposure, every atomic
sphere is in contact with a spherical solvent probe
with standard water Van der Waals radii dw = 1.4 Å
(insight report is found at [7]).

Then, each ASA residue from each protein
complex is extracted and used as an input feature
for the classifiers.

An effective method to approximate the ground-
state energy (lowest energy value) of a many-body
particle system, as amino acids, is using its
electronic configuration (DFT procedure), which
has been reported with well-correlated results in
proteins [11].

In consequence, we used the python module
PyQuante2 to calculate the ground-state energy of
the individual amino acids of the interfaces with
STO-3G basis set, SVWN functional solver, and
0.00001 as tolerance value disregarding effects
from neighbor residues [26]. DFT algorithm
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is heavier and slower for customary scalar
processors, especially for large macromolecules
formed by amino acid chains.

Therefore, we combined the PyQuante2 meth-
ods with the Multiprocessing python module to run
the parallel subprocesses concurrently between
multiple CPU cores [22].

2.3 Labeling and Training

In total, it was fetched and processed roughly
12, 100 entries (one per amino acid that constitutes
each protein in the dataset).

These entries were filtered as interface residues
that were in contact between their polypeptide
chains using the rules given in [37], since hot
spots & hot regions are mandatory residues from
the interface.

The dataset of the protein complexes presents
24% of the interface residues, from which
32.4% of these residues are hot spots and hot
regions. For training and testing, it is used only the
interface residues.

These entries are described in Table 1. Hot
spots & hot regions residues were labeled using
the ASM computational method from the Robetta
server and the HotRegion database [17, 16, 9],
following the preprocessing described in Fig. 2.

Comparing several machine learning tech-
niques, we trained a neural network (multilayer
perceptron model) with five layers, tanh(x)
activation function, Adam optimization, and binary
cross-entropy as loss function using three-hundred
epochs with extra data scale preprocessing [13].

Also, we trained a support vector classifier with
a radial basis function (rbf): e−γ||x−x′||2 , in which
γ = 0.01 in this kernel and the regularization
parameter of ρ = 10.

A hyperparameter-grid search optimization was
performed over the parameters of these models
using Scikit-learn in the training data.

Fig. 4. Average performance comparison between
the five performance metrics used, based on the
number of estimators or trees in the RFC, in which
every point represents a train/test evaluation using 70
and 30, respectively

Fig. 5. Comparison of the average performance of the
five metrics as a function of the maximum depth of all
the trees (fixed as 500 trees) in the RFC, in which every
point represents a train/test evaluation using 70 and 30
repeated ten times, respectively

This optimization was performed in the following
classification algorithms: Gradient Boosting (GB),
with 1000 estimators, a maximum depth of 100,
and a learning rate of 1, the AdaBoost using 1000
estimators and the Linear Discriminant Analysis
(LDA) with a Singular value decomposition.
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Fig. 6. Average OOB error rates in function of different
percentages of data used for training for an RFC with
500 trees and a depth value of 60

Table 3. Average performance rates of the RFC. The
mean of the accuracy or micro-F1-score was ≈ 0.89, with
Std. Dev. ≈ 0.00145 and MCC=0.75 with σ = 0.004.
The 0 corresponds to the non-hot spot & non-hot region
class, and 1 corresponds to the hot spots and hot region
class, respectively

Class Precision
µ σ

0 0.92 0.0017
1 0.82 0.0035

Class Recall
0 0.91 0.0019
1 0.84 0.004

Class F1-score
0 0.92 0.0013
1 0.83 0.003

Besides, an RFC was trained with different
parameters and configurations, such as a bagging
ensemble estimator [5]. Regarding the whole
dataset, we split it randomly (hold-out technique
with ten-folds), where 70% and 30% of this dataset
were for training and testing, respectively.

3 Results and Discussion

3.1 Accelerated Performance

We implemented CPU/GPU hardware acceleration
techniques during the preprocessing as parallel
programming to speed up the ASA and DFT cal-
culations.

Our parallel ASA implementation improves the
performance in execution time in contrast with the
scalar Python Pdbremix API [31] implementation
based on the number of points used to represent
the Van der Waals atomic spheres (Shrake &
Rupley approximation).

In the ASA calculation case, the parallel GPU
implementation gets a speed-up ratio between
three to twenty-two times, reducing the execution
time as the protein chains become larger in relation
to the number of atoms.

These were possible by locally distributing a
load of data in each available core using a
three-dimensional spatial box, calculating the ASA
between the adjacent atoms and residues inside
these boxes [7].

This implementation is still not as fast as some
applications, such as FreeSasa [24]. However,
adapting ASA calculation algorithms such as
the Linear Combinations of Pairwise Overlaps
(LCPO), using these schemes presented, enables
scalability on the calculations according to the
protein size.

On the other hand, the DFT calculation showed
a slight speed improvement of 3.5 to 4 times
(according to the number of CPU cores), as
reported in [7].

3.2 Models Testing

The classification models were evaluated with
the Accuracy, Precision, Recall, F1-score, and
Matthews correlation coefficient (MCC) rates using
both micro-average and macro-average methods,
respectively [20, 3].

In the same way, we assessed the binary classifi-
cation with the Receiver Operating Characteristics
(ROC) curves and the Area Under The Curve
(AUC).
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Previously, some machine learning algorithms,
such as Support Vector Classifier (SVC) and
Neuronal Networks, were tested and assessed, as
well as the RFC.

Their respective average AUC values denoted
that the better method is the RFC [7]. The results of
the GB, AdaBoost, and LDA classifiers are shown
in Table 2:

These classifiers do not reach enough perfor-
mance in comparison with classifiers based on
decision trees as the RFC.

The results report of the NN, the SVM, and
the Logistic Regression classifiers is found in
[7]. Furthermore, a single RFC obtained an
AUC ≈ 0.95.

The feature importance for this classifier from
the most to the least important was: ASA
(0.31), ground-state energy (0.18), conservation
score (0.16), B-factor (0.12), hydrophobicity index
(0.11), and prevalence score (0.09) of feature
importance respectively.

3.3 Bagging Random Forest Classifier Test

RFC can be assembled into a bootstrap aggregat-
ing ensemble (decision trees), especially when it is
necessary to obtain variance reduction [5].

Fig. 3 shows the comparative performance
between a single RFC and a Bagging RFC
ensemble in the function of the training data
percentage, where one hundred percent of the
training set represents seventy percent of the total
data assigned randomly.

These experiments show the bagging classifiers
based on RFC estimators are less efficient than
the single RFC, particularly when the total amount
of training data available is used (the 100 percent
obtained in both techniques is the best result).

This indicates that many estimators based on
trees are over-trained with a loss of generalization
for this particular problem. Then, we suggest
applying a single RFC model to have better results.
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Fig. 7. Confusion matrix of the average RFC. Combining
both the true negative (TN) and true positive (TP )
values we obtained roughly 90% (correct prediction) of
the total evaluation

3.4 RFC Validation

The parameters used in the RFC model were
the number of estimators or trees and the depth
(maximum of samples per tree in the splinted
leaves [4]).

In this particular case, we found that applying
more than the minimal number of samples per leaf
(one) reduces the accuracy of the prediction.

Therefore, to search for the best parameter
values and to see the effect of this variation, we
followed the next steps:

Firstly, we measured the average of F1-score,
MCC, and the OOB error (defined only for
RFC) metrics with the whole dataset, varying
the number of estimators using a depth value
of 50. We searched from one hundred to one
thousand estimators.

Fig. 4 expresses non-significant changes in
the general performance (µ ≈ 0.89,≈ 0.878,
and ≈ 0.748) for F1-score, OOB error, and
MCC respectively), so we propose the application
of 500 estimators.

Secondly, by fixing the number of estimators and
varying the depth of the RFC, the metrics reveal a
stable behavior after a depth value of 20, reaching
an average of µ ≈ 0.89, 0.875, 0.75 for F1-score,
OOB error, and MCC, respectively.
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Fig. 8. Average ROC curve performance of ten train/test evaluations. A µ = 0.95 is obtained by interpolating the curves.
Y-axis is the True Positive Rate (TPR), and X-axis is the False Positive Rate (FPR)

Subsequently, it is possible to set a depth value
of 60, from which is obtained a minimal variation
(Fig. 5). Using these RFC parameters, the dataset
for training and testing was validated with the OOB
error varying the total train data as previously.

This metric also relates the usage of enough
quantity of data for the estimators in the RFC
[15]. Therefore, the OOB error reveals an average
performance of 0.87, starting at 40% of the training
data, showing better stability of the testing output
results when we used the training data (see Fig. 6).

Thirdly, the K-fold cross-validation showed the
average data consistency between the training and
testing proofs. It was applied ten splits repeated
ten times (one hundred in total) throughout the
whole dataset, obtaining an interpolated ROC
curve with an AUC metric of 0.94, which expresses
a correlation with low variation.

According to the previous results, the ASA and
the ground-state energy areas of the hyperplane
of the two-dimensional projection are shown in
[7]. This projection supports that the ground-state
energy improves the classification.

Besides, training an RFC without the ground-
state energy feature obtains an AUC ≈ 0.9, which
is a worse performance. The results of the optimal
parameters using the six features are shown in
Table 3.

Likewise, the average values of (TN, TP, FN,
FP) are represented in the confusion matrix in Fig.
7, as well as the respective ROC curve (Fig. 8),
using these parameters.

We should emphasize that the conservation
score is kept as the third and the B-factor as the
fourth in feature importance in the whole training
process, indicating that these features contribute to
the total estimation function of the classifiers also.

The training and testing process using the
balanced data does not improve the performance
since the F1-score has an accuracy of 0.814 for
the hot spot & hot region class, and 0.893 for
the complementary.

Since almost 70% are not hot spot & hot regions
class, the balance data lost relevant information.
An advantage of this model is that the RFC training
time is faster than the others.
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Conversely, the execution time of the DFT
algorithm is the main disadvantage of this
method. This problem is treated by applying
High-performance computing (HPC) or hardware
acceleration techniques using deeper parallel im-
plementations.

In addition, DFT can reveal the relation
between the electronic configuration energy in the
ground state and the binding free energy of the
amino acids.

Moreover, we compared the label test data with
the foldX ASM framework [10] (for each complex
protein in the test data), in which we got ≈ 0.71
and ≈ 0.79 for precision and recall, respectively.

The method for labeling hot spots (ASM from
Robetta) has a similar principle [16]. However,
the high deviation corresponds to the addition of
hot regions (which foldX ASM does not estimate),
so a direct comparison is not allowed in this
particular case.

Consequently, the RF comparison with foldX test
data was ≈ 0.733, 0.79 and ≈ 0.8 for accuracy,
precision, and recall, respectively. The detection
of the active amino acids (class 1) is a crucial part
of the work, so a higher TP rate is preferred. Thus,
the recall metric should be prioritized.

4 Conclusion and Future Work

The RFC proved to be a suitable method for
predicting and detecting hot spots and hot regions
using this fetched dataset.

A single RFC brings the best results over the
rest of the machine learning models applied with
this set of features and configurations, including the
Bagging RFC classifier ensemble.

Notable advantages of this method are its
non-linearity capability separation and the easy
and light implementation according to the metrics
used in this work.

The main limitation of this work was the
completion of the dataset, which needs the DFT
calculation in interface residues.

In this sense, DFT calculation is still a hard
computational chemistry challenge, which needs
several computational strategies to reduce the
execution calculation time.

Consequently, the development of acceleration
techniques in software and hardware for calculat-
ing protein parameters and model refinement is
crucial because of the constant increase of data
and the current higher computational resources
demanded.

A strong result of this work is that the ground-
state energy was the second most relevant feature
scored, used by the RFC to classify hot spots & hot
regions.

This highlight that this feature reveals important
energetic information about the protein-protein
interactions of BMPs and could help to clear
up biological activity. Therefore, expanding
the dataset to continue extracting information
(especially adding the ground-state energy) should
be reinforced.

Consequently, we explored the parallelization via
GPU of the ASA calculation (Shrake and Rupley
approximation), improving the execution time in
contrast with the scalar process. However, the
parallelization of newer ASA calculation algorithms
should be adapted to obtain better performance.

Finally, a single RFC trained with the six features
mentioned above can describe hot spots and hot
regions at the protein-protein interfaces with opti-
mal parameter selection with enough performance
described by the classification metrics.
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