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Abstract. Transcriptomics experiments are often
expressed as scientific workflows and benefit from
high-performance computing environments. In these
environments, workflow management systems can allow
handling independent or communicating tasks across
nodes, which may be heterogeneous. Specifically,
transcriptomics workflows may treat large volumes of
data. ParslRNA-Seq is a workflow for analyzing
RNA-Seq experiments, which efficiently manages
the estimation of differential gene expression levels
from raw sequencing reads and can be executed
in varied computational environments, ranging from
personal computers to high-performance computing
environments with parallel scripting library Parsl. In
this work, we aim to investigate CPU and I/O metrics
critical for improving the efficiency and resilience of
current and upcoming RNA-Seq workflows. Based
on the resulting profiling of CPU and I/O data
collection, we demonstrate that we can correctly identify
anomalies of transcriptomics workflow performance
that is an essential resource to optimize its use of
high-performance computing systems.
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1 Introduction

In recent years, a deluge of large-scale
transcriptomics data from high-throughput
sequencing is increasingly raising the demand
in computing power and storage. Processing
this enormous amount of data requires the use
of specialized techniques such as scientific
workflow management systems (SWfMSs) and
high-performance computing (HPC) resources to
extract knowledge from data-intensive RNA-seq
experiments [1, 9].

Scientific workflows deal with automating the
execution of computational tasks and are needed
for improving reproducibility and productivity. They
have been used by scientists in a wide variety
of domains, including astronomy, bioinformatics,
physics, biology, biodiversity, among many others.
Scaling workflows on large HPC systems is not an
easy task due to the size and nature of data to be
processed, the inherent complexity of workflows,
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the number of workflow instances to be executed,
and the complexity of large HPC systems [9].

We identified the following capabilities of
SWfMSs relevant to transcriptomics analysis:
workflow modularity and automated elasticity
to enable checkpointing; scalability concerning
the use of the number of workflow tasks versus
the number of nodes per run; robustness and
fault tolerance due to data issues, resource
unavailability, or aborted executions; reproducibility
via data provenance recording; portability across
computing environments from desktops to parallel
and distributed clusters; interoperability of
metadata and the use in the same workflow
into several programming languages; and ease
of development by users with different skill levels
in informatics.

In this paper, we present how a collection
of performance metrics of well-established
transcriptomics software can be orchestrated to
optimize the performance behavior of current
scientific RNA-Seq workflows. Due to the massive
amount of scientific transcriptomics data, the
complexity of scientific applications, and the
features of distributed computing, the performance
analyses require data metrics, information of
the workflow execution, and to understand the
environmental system as a whole. This also can
include capturing the input and experimental
provenance data, optimizing the workflow
structure, and gathering and storing performance
information such as CPU and memory usage and
I/O operations at the system level.

Using the Parsl-RNASeq workflow, we are able
to execute data-intensive transcriptomics software
in HPC infrastructure to enable performance
optimization of the workflow execution in a useful
way. We have validated our approach by
executing a massive amount of cardiomyocyte
sequencing data of the evolutionary conserved
Wnt pathway, using normal and anomalous
conditions. Zelarayan et al. [7] used an in
vivo mouse model in which β-catenin is acutely
stabilized in adult cardiomyocytes, leading to
increased ventricular TCF7L2 expression and
activation of target genes. The aim is to understand
the consequences of increased Wnt signaling
pathway activity, comparing transcriptome profiles

of normal (Cre recombinase “positive” control with
a WT β-catenin locus) and β-catenin stabilized
murine adult cardiac ventricles.

Our main goal is to study the viability of
efficiently executing transcriptomics workflows on
large HPC systems. The main contributions
of this paper include 1. The collection and
analysis of performance data from transcriptomics
workflows; 2. The case study use of a real-world
RNA-Seq workflow; and 3. The analysis of HPC
performance metrics as CPU and memory usage,
I/O operations, job dependencies, among others.

This paper is organized as follows. Section 2
brings the background on RNA-Seq differential
gene expression. Section 3 describes the
specification and implementation of the
ParslRNA-Seq workflow. Section 4 presents
materials and methods. Section 5 shows
experimental results. Finally, Section 6
summarizes our findings and discusses
future work.

2 Background on RNA-Seq

RNA sequencing (RNA-Seq) uses the capabilities
of high-throughput sequencing methods to provide
insight into the transcriptome of a cell in a
given physiological or developmental condition
as diseases derived by genetic variation e.g.,
cancer. Beyond quantifying gene expression,
the data generated by RNA-Seq facilitate the
discovery of novel transcripts, identification of
alternatively spliced genes, and detection of
allele-specific expression. RNA-Seq investigates
different populations of RNA including the
study of alternative splicing, Single Nucleotide
Polymorphisms (SNPs), post-transcriptional
modifications, and changes in gene expression
over time or between treatment groups or
disease progression.

Differential Gene Expression analysis (DGE)
allows for elucidating the expression level between
different experimental conditions and establishing
whether there is a significant difference between
them. DGE of RNA-seq data generally consists
of three components: normalization of counts,
parameter estimation of the statistical model, and
tests for differential expression [4].
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The data count of samples is tabulated
containing the number of sequence fragments
assigned to each gene. The quantification and
statistical inference are established between
systematic changes and variability of different
conditions. Testing differential expression,
provided in the DESeq2 package, uses negative
binomial generalized linear models to estimate
dispersion and logarithmic changes and to
incorporate prior distributions based on data.

3 ParslRNA-Seq Scientific Workflow

This section presents the conceptual specification
of the ParslRNA-Seq workflow for differential
gene expression analysis (DGEs), available from
https://github.com/lucruzz/rna-seq. ParslRNA-Seq
receives four data information: the reference
genome of Mus musculus; the gene transfer
format (GTF) file used to hold information about
gene structure; the FastQ files designed to
handle sequence and quality scores represented
as single ASCII characters; and a CSV text file
containing the list of FastQs and metadata from
experimental conditions.

ParslRNA-Seq is composed of six activities
(illustrated in Figure 1). Activity 1 executes
the Bowtie2 package that maps and compares
genome readings, character by character. Activity
2 executes the Samtools program that orders
readings and generates a compressed binary
format. Activity 3 executes the Picard program
to handle and split the readings files into n =
24 subfiles, such as 24 is the number of
available threads.

Activity 4 runs the htseq-count program (HTSeq
package), which counts the overlap of reads with
genes in DGE. HTSeq sends the mapped reading
files to each of the n available cores in a multicore
execution. It generates a single output file with
n + 1 columns containing the genes in the first
column and the counts of each file in the remaining
columns. Activity 5 executes the HTSeq-Merge
Python script that joins the data information from
the previous HTSeq execution and generates a
file with a column containing the counts’ results.
Activity 6 executes the DESeq2 package to apply

Fig. 1. ParslRNA-Seq conceptual view

DGE statistics on the counts of the control and Wnt
Wingless pathway conditions.

Parsl [2], a parallel scripting library, provides an
easy-to-use model composed of Parsl-Python
functions and supports the management
and execution of transcriptomics software,
assuring reproducibility. Parsl manages the
parallel execution of ParslRNA-Seq by applying
parameter sweep mechanisms in HPC clusters.
Each processing unit operates on the data
independently via separate instruction streams.
ParslRNA-Seq provenance data is automatically
captured by Parsl. Parsl has already been
successfully experienced in other complex
computing-intensive bioinformatics experiments
in HPC environments [5, 6]. Experimental results
reinforce the importance of ParslRNA-Seq to help
scientists in detecting DEGs from raw sequencing
data, with Parsl supporting the management of
tasks and provenance data in HPC environments.

4 Materials and Methods

4.1 RNA-Seq Data

Activation of the evolutionarily conserved Wnt
pathway has been reported during maladaptive
cardiac remodeling. However, the function of
Wnt-transcriptional activation in the adult heart is
mainly unknown. Zelarayan et al. [7] performed
the transcriptome and genome analysis at the
University Medical Center, Goettingen. RNA was
isolated from mice cardiac tissue and RNA libraries
were prepared for sequencing using standard
Illumina protocols. Sequence reads were aligned
to the mouse reference assembly (UCSC version
mm9) using Bowtie 2.0. For each gene, the
number of mapped reads was counted using
htseq-count and DESeq2 was used to analyze
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the differential expression. Mus musculus GEO.ID
is GSE97763.

This study belongs to a real RNA-Seq1

experiment. It uses six FastQ sequencing data
files of cardiac ventricles deposited in Gene
Expression Omnibus2 (GEO) public repository
under accession GSE97763 and GSE97762
for RNA-seq datasets. FastQs accession
numbers of the control condition group are:
SRR5445794, SRR5445795, SRR5445796 and for
the Wnt pathway: SRR5445797, SRR5445798,
SRR5445799, including datasets of varying sizes
(1.8 to 3 GB).

4.2 Experiment Setup

We follow the same protocol adopted by
Zelarayan et al. 2018 [7] to validate and analyze
transcriptomics results obtained by the executions
performed with the ParslRNA-Seq scientific
workflow. The transcriptomics software used in
experiments are Bowtie23 program, Samtools4

program version 1.10, Picard5 program version
2.25.0, HTSeq6 framework version 0.13.5 with
the htseq-count script, HTSeq-Merge Python
homemade-script, and DESeq27 package. All
software, libraries and dependencies, Parsl and
Python components, Intel VTune Profiler8, and
Darshan9 tool were deployed at the top of the
Santos Dumont environment.

4.3 Santos Dumont Supercomputer

The Santos Dumont (SDumont) supercomputer,
one of the largest in Latin America, is located at
the National Laboratory for Scientific Computing
(LNCC/MCTI, Brazil). SDumont has an installed
processing capacity of 5.1 Petaflops with a total
of 36,472 CPU cores distributed across 1,134

1https://sfb1002.med.uni-goettingen.de/production/literatur
e/publications/201

2https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE
97763

3http://bowtie-bio.sourceforge.net/bowtie2/index.shtml
4http://www.htslib.org/doc/samtools.html
5http://broadinstitute.github.io/picard/
6https://htseq.readthedocs.io/
7https://bioconductor.org/packages/DESeq2/
8http://intel.ly/vtune-amplifier-xe
9https://www.mcs.anl.gov/research/projects/darshan/

compute nodes. SDumont has a Lustre parallel
file system, integrated into the Infiniband network,
with a raw storage capacity of around 1.7
PBytes and a secondary file system with a raw
capacity of 640 TBytes. For our experiments,
six nodes of SDumont were utilized, each node
uses two Ivy Bridge Intel Xeon E5-2695v2 CPUs
(12c @2.4GHz) and 64 GB of RAM. For more
information, visit http://sdumont.lncc.br.

4.4 Parsing RNA-seq Files Strategy

The NGS’s big challenge lies in the enormous data
size for every single sample analyzed. A strategy
to optimize parallelization in an HPC environment
is to split input data into small and equally-sized
portions. For parallelized read mapping, the
alignment is carried out in parallel either by
making use of array jobs or by distributing the
data across multiple threads using OpenMP or
across multiple compute nodes using the message
passing interface (MPI).

We propose strategies managed by Parsl that
scale to hundreds of threads better than single
processed workflows or pipelined approaches. We
explore how the FastQ file format, its unpredictable
record boundaries, in particular, can impede thread
scaling. We suggest a way to modify FastQ
files while dividing the file size into blocks and
how including these activities in workflow enables
further improvements in thread scaling.

In RNA-Seq, to improve thread scaling we
should restructure inputs and outputs, converting
standard FastQ (or SAM) files to blocked FastQ
files [8], where the number of input reads per
block (N) are 24, to make best use of the 24
threads per node used in SDumont. The number
of FastQ reads per thread must be chosen for each
ParslRNA-Seq configuration and system.

ParslRNA-Seq starts with Bowtie (first activity);
then the second activity Sort sorts the SAM or BAM
files. The third activity Split Picard retains the sort
order of reads matching to the original BAM, splits
files, separates files into Nth reads, and finally
creates an output directory for storing split BAM
files. In the fourth activity, HTSeq processes split
files by calling the “–nprocesses = 24” argument.
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4.5 Multithreading & Multiprocessing Strategy

We consider in this work that a Multiprocessor
(MP) is a system with more than one processor
that assigns separate memory and resources for
each process. Conversely, Multithreading (MT) is
a programming model in which multiple threads
run collaboratively in a single processor. Creating
multiple threads inside a single process often help
increasing performance. Moreover, we notice
that modifications in some ParslRNA-Seq activities
(mainly Bowtie2 and HTseq) are potential points
to explore MT or MP thread scaling, as they can
increase the computing speed of the system.

The ParslRNA-Seq workflow code (https:
//github.com/lucruzz/RNA-seq/blob/master/
RNA-seq.py) shows the software command
lines. While Bowtie2 creates MT processes,
HTSeq “–nprocesses” (MP argument) only works
to process different BAM files in parallel, i.e.,
htseq-count on one file is not parallelized. For
instance, let us consider the following context in
our ParslRNA-Seq processes. While we focus on
making the best use of threads in a single process,
an alternative is to run multiple simultaneous
processes, possibly with many threads each.
ParslRNA-Seq consumes six input FastQs, each
deployed in parallel in an independent node.

For each node, Bowtie2 sets the performance
option “-p/–threads NTHREADS” to launch the
number of parallel search threads (default: 1)
to process each FastQ. The threads will run on
separate processors/cores and synchronize when
parsing reads the output alignments, increasing
alignment throughput by approximately a multiple
of the number of the threads (linearly).

Split Picard “SplitSamByNumberOfReads”
option splits an input query-grouped SAM or
BAM file into multiple (e.g., 24) BAM files while
maintaining the sort order to parallelize alignment.
The HTSeq “–nprocesses” processes those
BAM files.

MP can suffer from load imbalance as some
batches take longer to execute than others, and the
job’s duration is determined by the longest-running
batch. Merge HTSeq suffers this impact whereby
some lock-holding threads are slow to finish their
works (and release the lock) due waiting threads

Fig. 2. Execution time in minutes of the ParslRNA-Seq’
activities on a single node

are using its resources. Finally, DESeq2 should
wait for Merge HTSeq finishes to be executed.

4.6 Profiling Strategy

A global overview of the CPU and I/O systems is
the first step to understanding the computational
demands on the machine and detecting
opportunities to optimize application performance,
system performance, and system configuration
for HPC.

We obtained and studied CPU and I/O
performance reports obtained on the Santos
Dumont supercomputer (SDumont). Those were
obtained with the Intel VTune and the Darshan10

I/O profiling tools, for CPU and I/O, respectively.
This choice was motivated by a previous study
of SDumont’s performance conducted by Bez et
al., 2020 [3], which provides details about how
to characterize the application I/O phases from
coarse-grained aggregated traces using Darshan.

Intel VTune provides insight into CPU and
threads performance, scalability, bandwidth,
caching, and more. VTune collects the tallies
from all the cores’ counters at frequent intervals;
when the run is over, it analyzes the collection
and presents the results via a GUI. The Darshan
tool version 3.1.4 profiles executions on I/O
metrics. Bowtie2 and HTseq are the most
representative CPU and time-consuming software
of ParslRNA-Seq executed in SDumont in 2021,
and they were the main focus in our case studies.

10https://www.mcs.anl.gov/research/projects/darshan/

Computación y Sistemas, Vol. 26, No. 4, 2022, pp. 1625–1633
doi: 10.13053/CyS-26-4-4437

Parallel Performance and I/O Profiling of HPC RNA-Seq Applications 1629

ISSN 2007-9737



5 Results and Discussions

In this section, we present the performance
and scalability of the parallel executions of
transcriptomics scientific workflows. We have
evaluated the CPU and I/O behavior of the
ParslRNA-Seq executions in the Santos Dumont
supercomputer. The CPU analyses are extensions
of [5, 3].

5.1 CPU Performance Results Using VTune

ParslRNA-Seq CPU Performance.
ParslRNA-Seq allocates, executes, and manages
each of the six FastQs in one node of 24 threads.
CPU and I/O influence the HPC scalability of the
workflow. The original workflow modeling -of three
activities- ([5, 6]) has been modified to optimize
parallel and distributed executions and improve the
total execution time (TET) (Figure 2, Figure 3, and
Figure 4). The actual ParslRNA-Seq workflow — of
six activities — was described in Figure 1.

Figure 2 presents the TET achieved by each
of the six activities of ParslRNA-Seq. Bowtie2,
Split Picard, and HTSeq are the activities with the
longest execution times (Figure 2), while Bowtie2
and Sort are the most I/O-intensive activities,
i.e., they spend more time computing I/O relative
to their total execution time (Figure 5). Then,
we focused on parsing files, multithreading, and
multiprocessing to improve the workflow behavior,
mainly for the Bowtie2 and HTSeq activities.
ParslRNA-Seq Multithreading Performance.
Figure 3 presents the workflow efficiency for the
multithreading performance. The figure plots the
node count on the horizontal axis and maximum
per-thread wall-clock time, i.e., the time required
to align all reads, on the vertical axis. The figure
shows both versions of ParslRNA-Seq with (a)
the previous version of three activities and (b) the
ParslRNA-Seq modified model of six activities.
We can see that the new model, while adding
activities, improved performance and efficiency.

In Figure 3(a) Bowtie2 multithreading executes
a task for each (not parsed) FastQ file in a node
(24 threads). In addition, HTSeq executes each
(not parsed) file in an entire node, i.e., no MT or
MP strategy was applied. In Figure 3(b), Bowtie2

(a) With three activities

(b) With six activities

Fig. 3. ParslRNA-Seq multithreading performance
(seconds) on a single node. The y axis is different for
each plot

multithreading also executes a task for each (not
parsed) FastQ in a node. Nevertheless, HTSeq
executes a task of each SAM block in a thread (a
SAM file was parsed in 24 blocks), i.e., each block
is assigned to a thread.

A better distribution in the use of CPU cores in
parallel was observed in Figure 3(b) due to the
use of MP and MT approaches. However, that
also required the insertion of extra activities in
the workflow modeling. So despite the parallel
execution of tasks performed by Parsl, there is still
a considerable number of idle CPUs in most of the
workflow execution. Figure 3(b) shows the use
of up to 20 CPUs has an effective average CPU
utilization considered as “poor” but over 20 CPUs
the simultaneous use of processors presented an
“ideal” utilization.
ParslRNA-Seq Multiprocessing Performance.
Figure 4 shows two multiprocessing scenarios
executed on SDumont: previous ParslRNA-Seq
version of three activities in red and the optimized
ParslRNA-Seq version of six activities in blue. With
a single node, the new ParslRNA-Seq version
(in blue) improves performance over the previous
version from 72 to 65 minutes.

We further increased the number of nodes from
1 to 6 (with 24 cores per node).

This experiment consumed six FastQs by
execution. The previous workflow version does
not scale with the number of nodes (the execution
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Fig. 4. Execution time of ParslRNA-Seq (in minutes)
varying the number of nodes

Fig. 5. Execution time of Bowtie2 and Sort I/O separated
by activity, as reported by Darshan

time remains the same). On the other hand,
the optimized workflow’s performance is improved
with more available nodes and cores. Time was
decreased from 65 minutes (using 24 cores) to
24 minutes (using 144 cores), which means a
speed-up (an acceleration factor) of 2.7.

5.2 I/O Performance Results Using Darshan

The workflow was executed with the Darshan
profiler to investigate its I/O behavior. For
discussion, we analyzed two input sizes, 1.8
and 3 GB. Figure 5 presents the distribution of
execution time, as reported by Darshan, in POSIX
read (in red, the first part of the bars on the

bottom) and write (in green, the middle part of
the bars) operations and other operations including
processing (in pink, the top portion of the bars).
The plots on the top show results for Bowtie2,
and on the bottom Sort due both activities present
the highest average I/O cost. On the left are the
results with the largest tested input size, and on
the right the smallest. HTSeq, Split, DESeq2, and
Merge HTSeq were omitted here because they
spent less than 10% of time in I/O.

For both applications, increasing the input size
increases the proportion of the execution time
spent on I/O. That indicates that the I/O limits
the scalability of these codes: as more data is
treated, most time is spent on I/O and thus the
CPU-focused optimizations presented earlier may
have less impact on performance.

I/O Analysis for Bowtie2. Changing the input
from 1.8 to 3 GB increases the run time from 152
seconds (80% on write operations) to 263 seconds
(90% on writes). This increase was only due
to I/O, with the write time increasing practically
linearly with the input size. The output size was
of 6 and 11 GB.

I/O Analysis for Sort. Time increased from 41
seconds (5% on read and 15% on write operations)
to 91 seconds (70% on reads and 10% on writes).
While the writing time remained relatively constant
(output size was 657 MB and 1.1 GB), the reading
time of Sort increased over 30 times by doubling
the input size, which indicates the reading portion
of this code is an important limitation factor for
its performance.

5.3 Biological Analysis

Our biological performance results were validated
to the reported by Zelarayan et al. [7] at the
Gottingen University, in a collaboration between
our research groups, reporting almost identical
biological results. In the present article, we
proposed the ParslRNA-Seq workflow and the
computational executions performed in SDumont.

Computación y Sistemas, Vol. 26, No. 4, 2022, pp. 1625–1633
doi: 10.13053/CyS-26-4-4437

Parallel Performance and I/O Profiling of HPC RNA-Seq Applications 1631

ISSN 2007-9737



6 Conclusions and Future Work

In this work, we have presented a
real-world workflow analysis for data-intensive
transcriptomics applications to enable performance
optimization of HPC systems. To this end, we have
evaluated various transcriptomics applications
from ParslRNA-Seq to analyze massive amounts
of RNA-seq data in a controlled environment.
We have used Parsl as a workflow management
system, VTune and Darshan as profiling tools,
and the SDumont as our machine. Moreover,
we have developed a new ParslRNA-Seq version
tailored to the needs of tracking a workflow
execution and identifying potential issues to
improve performance.

Our experiments demonstrate that this optimized
workflow can accurately orchestrate computation
resources, helping to pinpoint relevant metrics
to help identify performance problems. Our
results show performance improvements of up
to 63.08% of ParslRNA-Seq executions, from 65
minutes (24 cores) to 24 minutes (144 cores).
Additionally, we characterized the I/O behavior of
the workflow components, identifying I/O problems
in two of them, which will be the focus of future
optimization efforts.

Indeed, we plan on continuously improving the
ParslRNA-Seq modeling and performance. We
want to explore the possibility to stage intermediate
data on computing nodes to minimize parallel file
system activity. Furthermore, we want to include
system-level monitoring data in our analysis, which
may explain the observed behaviors, particularly
regarding I/O. Finally, we plan to provide a
mechanism to track data and metadata to enable
offline analysis. We aim to introduce a new
database automatically populated by Parsl or
another SWfMSs so that users can retrieve
workflow performance data. The data collected is a
valuable training resource for automated machine
learning analysis.
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