
Distributed Geometric Multigrid Method:
Analysis of a V Cycle Truncation Level Criteria

Matı́as Valdés, Sergio Nesmachnow

Universidad de la República,
Uruguay

{mvaldes,sergion}@fing.edu.uy

Abstract. This article presents the analysis of a V cycle
truncation level criteria in a parallel implemention of a
geometric multigrid method for solving partial differential
equations, developed over a distributed memory system.
The proposed system is implemented in C, using the
Message Passing Interface library. A theoretical analysis
of the proposed truncation level criteria is presented,
and its evaluation is reported for the Poisson problem.
The experimental analysis indicates that the proposed
method achieves accurate speedup and computational
efficiency, and shows a good scalability behavior to solve
large problems by properly using more processing units.

Keywords. Multigrid, distributed memory, truncated V
cycle, MPI.

1 Introduction

Multigrid methods are efficient numerical
algorithms for solving partial differential equations
by applying several discretization formulae,
hierarchically organized [8, 16]. They are
recognized within the most efficient techniques for
solving partial differential Eqs. [16]. Furthermore,
they can be expanded to employ higher level
data structures to implement powerful multilevel
methods, to address complex problems in various
research domains by properly handling different
matrix patterns, lattices, and other useful abstract
mathematical structures for arranging the set of
points that discretize a given problem domain.

Multigrid methods are also suitable for
parallelism. A typical approach is to take
advantage of the inherent parallel computations
on the multiple grid components [10]. However,
several important considerations must be taken

into account to achieve a proper computational
efficiency, including the sequential processing of
elements in each grid level and the granularity of
the parallel computations, which may be different
for different levels.

One of the most useful applications of multigrid
numerical methods is as solvers for elliptic
partial differential equations. In fact, they are
characterized as the fastest methods for elliptic
problems [16]. One of the most notorious elliptic
partial differential equation is Poisson equation.
This equation usually appears as part of dynamical
models for different physical phenomena. For
example, it is related to the Navier-Stokes
equations for incompressible flows, as it appears
as a sub-problem in the discretization of these
equations by using the MAC method, the projection
method, and the fractional-step method [7].
Also, the incompressible Navier-Stokes equations
may be reformulated into the Poisson pressure
equation [9]. Poisson equation is also widely used
as a test problem in numerical analysis and high
performance computing [5].

In this line of work, this article proposes and
analyzes the performance of a distributed memory
implementation of a goemetric multigrid method,
using truncated V cycles, and applied to a Poisson
problem. The proposed approach consists in
truncating each V cycle at the deepest possible
level l that also guarantees that each processing
unit is assigned a given constant number of
vertices N . This truncation criteria was mentioned
by Linden et al. [11], although it was not considered
for V cycles.

Computación y Sistemas, Vol. 26, No. 4, 2022, pp. 1611–1623
doi: 10.13053/CyS-26-4-4438

ISSN 2007-9737

We propose a theoretical analysis of the
aforementioned truncation criteria, which
characterizes the level reached in the truncated
V -cycle, and its number of vertices, in terms of
the problem size and number of processing
units. We then present an experimental
analysis of the computational performance of
the implemented multigrid method on a distributed
memory infrastructure.

The article is organized as follows. Section 2
describes the test problem and the main concepts
about geometric multigrid methods. Section 3
presents a review of related works. Section 4
describes the proposed truncated V cycle criteria
and the implementation details of the multigrid
solver. The experimental evaluation is reported
in Section 5. Finally, Section 6 presents the
conclusions and formulates the main lines for
future work.

2 Background and Theoretical
Foundations

This section presents the test problem and the
theoretical foundations for the proposed approach.

2.1 Test Problem: Poisson Equation

The Poisson problem was selected to test the
performance of the implemented multigrid method.
Poisson equation is an elliptic partial differential
equation with several applications in science,
which is commonly used for the evaluation of
multigrid solvers (see the review of related works
in Section 3).

The considered Poisson problem is defined on
the unit square as domain, and Dirichlet boundary
conditions are assumed, as expressed in Eq. 1.
There, ∆u(x, y) = uxx(x, y) + uyy(x, y) is the
Laplacian operator; v(x, y) is a known source
function; and g(x, y) is also a known function that
determines the boundary conditions. The Poisson
equation is discretized by using centered finite
differences, in a regular grid of n + 1 vertices per
dimension. The discretization generates a sparse
linear system, with (n−1)2 unknowns (one for each
interior vertex) [2]. The resulting linear system is

solved with multigrid to compute an estimation of
u(x, y) in the points of the grid:

find u : Ω = [0, 1]2 ⊆ R2 → R /{
−∆u(x, y) = v(x, y), ∀ (x, y) ∈ int (Ω) ,
u(x, y) = g(x, y), ∀ (x, y) ∈ ∂Ω.

(1)

2.2 Multigrid Methods

Multigrid methods work under the idea of
accelerating an iterative solver by using information
provided by a global correction procedure, which
operates on coarse grids to solve a fine grid
problem which in turn is easier to solve. The
recursive process, called the multigrid cycle, is
applied until a direct solver can be applied without
additional computation cost on the coarsest grid.
V -cycle is one of the most popular type of multigrid
cycles, characterized by computing the coarse grid
correction down levels (the restriction phase), until
finding a level where the direct method is applied.

Numerical computations on steps performed in
coarse grids are quicker, as few vertices are
considered, and the numerical error converges
faster as the method goes down levels [8]. Then,
an interpolation is applied (the prolongation phase)
to determine values on upper level grids, until the
finer grid is again reached. Multigrid methods are
recursive in nature and a V -cycle can be extended
to any number of levels.

In this article, geometric multigrid, implemented
with cycles of type V , is used as a solver for the
discretized Poisson problem. The problem domain
is first partitioned into a uniform grid, in which an
initial estimation is find by applying few iterations
from an iterative smoother method. The residual
of this initial estimation is then restricted into a a
coarser grid, where it is corrected by applying few
iterations of the smoother.

This process is repeated by taking successively
coarser grids. When the coarsest grid is reached,
estimations from the different grid levels are
combined by interpolation to the finer grids, until
the initial grid is reached. This process is illustrated
in Fig. 1, where h is the width of the initial grid, n
is the number of unknowns in each dimension of
this grid, and R and I represent the restriction and
interpolation operations, respectively.

Computación y Sistemas, Vol. 26, No. 4, 2022, pp. 1611–1623
doi: 10.13053/CyS-26-4-4438

Matías Valdés, Sergio Nesmachnow1612

ISSN 2007-9737

Width 0 1 2 3 4 5 6
n h • R2h

h Ih2h • Initial grid
n/2 2h • ↘ ↗ •
n/4 4h • •
n/8 8h • Coarsest Grid

Fig. 1. A non-truncated V cycle for MG

Algorithm 1 Recursive multigrid V cycle:
V h(Ah, rh,u0)

Require: h = 1/(m− 1), Ah ∈ Rm×m, rh ∈ Rm×1,
θ ∈ N+

1: if actual grid is not the coarsest then
2: xh = gs rb(Ah, rh, θ) . GS-RB from u0

3: r2h = R2h
h (rh −Ahx

h) . Restrict to coarser
grid

4: x2h ← V 2h(A2h, r2h,u0 = ~0) . Recursion
5: xh = xh + Ih2h(x2h) . Interpolate and correct
6: xh = gs rb(Ah, rh, θ) . GS-RB with u0 = xh

7: else
8: xh ← sor(Ah, rh) . SOR until convergence
9: end if

10: return xh

A recursive implementation for a multigrid V
cycle is presented in Algorithm 1, following the
idea by Briggs et al. [2]. The implementation
uses Gauss-Seidel (GS) as smoother method. GS
applies a Red-Black update order strategy and
executes a fixed number of iterations θ. R2h

h

represents the restriction of the grid vertices to the
next coarser grid; which is done by full-weighting
of adjacent vertices. Ih2h denotes the interpolation
to the finer grid, which is performed by bi-linear
interpolation of adjacent vertices. Finally, the
Successive Over-Relaxation (SOR) method is
applied as the coarse grid solver.

Gauss-Seidel Red-Black (GS-RB) is selected as
smoother method, since it is a more parallelizable
version of the traditional Gauss-Seidel solver.
GS-RB is obtained by modifying the order in
which grid vertices are updated. Vertices are
first separated into two colors: red and black,
intercalated. Then, they are updated with the usual
GS expression, first applied to all red vertices, and
then to the black ones [15]. This way, vertices of
the same color may be updated concurrently. An

important part of the smoother is the residual, as
it is used as the independent term of the linear
system solved by the multigrid method in each grid.
In the case of GS-RB, the residual for black vertices
is always null, as they are updated last. For
the red vertices update, the residual coordinates
associated to uk+1, are given by Eq. 2 (for i +
j = even):

rk+1
i+j = vi,j +

uk+1
i,j−1 + uk+1

i,j+1 − 4uk+1
i,j

h2
+

uk+1
i+1,j + uk+1

i−1,j

h2
. (2)

When solving a discretized Poisson linear
system, GS-RB requires O(n4) operations in
order to estimate a solution satisfying ‖rk‖ <
ε‖r0‖, ε > 0. More efficient methods are Conjugate
Gradient or Successive Over-Relaxation (SOR);
both with O(n3) operations [4]. For the proposed
implementation, SOR was chosen as coarse grid
solver, as it may be obtained easily from the GS
implementation. Specifically, SOR with Red-Black
order (SOR-RB) is used. The linear system of
interest is symmetric and positive definite, which
implies that SOR-RB is convergent for any w ∈
(0, 2) [4]. The value of w was chosen to maximize
the convergence speed, as wopt = 2/(1 + sin (πh)).
The coordinates of SOR residual, associated to
uk+1, are given by Eq. 3 (valid for red and
black vertices):

rk+1
i,j = vi,j +

uk+1
i,j−1 + uk+1

i,j+1 − 4uk+1
i,j

h2
+

uk+1
i+1,j + uk+1

i−1,j

h2
. (3)

Each multigrid iteration applies one V cycle, with
initial condition taken as the previous V cycle final
estimation: uk+1 = V h(A, b,uk).

When developing a parallel implementation of
a multigrid method in a distributed memory
system, the number of vertices assigned to each
processing unit decreases exponentially while
descending in a V cycle. Thus, the cost of
message passing may start to prevail over the

Computación y Sistemas, Vol. 26, No. 4, 2022, pp. 1611–1623
doi: 10.13053/CyS-26-4-4438

Distributed Geometric Multigrid Method: Analysis of a V Cycle Truncation Level Criteria 1613

ISSN 2007-9737

cost of computations, producing a degradation of
the overall computational efficiency. A technique
to overcome this problem is, instead of reaching
the coarsest grid, using truncated V cycles [16],
as illustrated in Fig. 2. When using a truncated
V cycle, Algorithm 1 iterates until reaching
the coarsest grid, which is determined by the
truncation criteria.

The truncated V cycle strategy has a specific
drawback: if the cycle is truncated too soon,
the (truncated) coarse grid may have too many
vertices, and solving the coarse grid linear system
may become a bottleneck, affecting the overall
computational efficiency of the solver. Thus,
selecting an appropriate truncation level that takes
into account the resulting trade-off is one of the
most important challenges when implementing
distributed memory multigrid methods [10].

3 Related Works

Sterk and Trobec [14] presented a parallel
implementation of a multigrid method applied to
solve the 3D Poisson equation, within a fluid
flow simulation. The proposed algorithm was
implemented in MPI and executed on a cluster
of workstations. The authors performed several
configuration experiments, including finding the
grid size for switching from parallel to sequential
execution. A comparison with a SOR method
was reported. Both methods achieved similar
sub-linear speedup values (i.e., below 0.8), but the
results confirmed that the parallel multigrid method
had a better scalability behavior than parallel SOR.

Gradl and U. Rüde [6] studied multigrid
implemented over the Hierarchical Hybrid
Grids framework for finite element problems
and using the Metis mesh partitioning software.
A specific algorithm design was proposed to
lower the communication overheads, by reducing
the number of messages exchanged between
parallel processes.

The time per V cycle and the time to
the overall solution were analyzed in weak
scalability experiments. Results showed a good
parallel scalability of the implemented multigrid
method, but authors acknowledged that further
improvement were needed for a full optimization of

the communication patterns. The data structures
used for calculation also allow applying adaptive
mesh refinement methods, e.g., using hanging
nodes or red-green refinement, to expand the
applicability of the proposed solver.

Daley et al. [3] proposed two parallel
mapping algorithms for addressing the scalability
limitations of multigrid methods due to excessive
communication costs in the coarser grids.
Improved communication algorithms were
conceived to map the mesh back and forth
between an uniform grid and an adaptive mesh
refinement procedure. The performance of
the proposed parallel mapping algorithms was
analyzed for a case study involving a multigrid
Poisson solver using octrees block structures
in FLASH, a multiphysics/multiscale method for
flows simulations.

Experiments were performed in a Virtual Node
with 4 MPI tasks per node and 512 MB
of memory per MPI task, on a IBM BG/P
platform. Results indicated that the proposed
implementation allowed obtaining an increase
on performance when increasing the number of
computing resources, depending on the level used
for switching from a refined mesh in the octree to
a uniform grid (the higher the refinement level, the
better the performance gain).

Müller and Scheichl [12] studied the scalability
of numerical methods for solving elliptic partial
differential equations for atmospheric fluid
dynamics. Solvers based on Krylov subspaces and
multigrid algorithms were categorized as the most
efficient methods, after an experimental evaluation
performed in the national supercomputer from the
UK. Several algorithms were evaluated, already
implemented in two well known libraries of routines
for scalable parallel linear systems resolution:
Distributed and Unified Numerics Environment
(DUNE) and the Parallel High Performance
Preconditioners (hypre).

In turn, two custom implementations were
developed: a Conjugate Gradient solver
using vertical line relaxation preconditioner
and a tensor-product geometric multigrid
algorithm. Results demonstrated that the overall
computational efficiency of the tensor-product
geometric multigrid method was better

Computación y Sistemas, Vol. 26, No. 4, 2022, pp. 1611–1623
doi: 10.13053/CyS-26-4-4438

Matías Valdés, Sergio Nesmachnow1614

ISSN 2007-9737

Width 0 1 2 3 4 5 6
n h • R2h

h Ih2h • Initial grid
n/2 2h • ↘ ↗ •
n/4 4h • → • Coarse grid
n/8 8h ◦ Coarsest Grid

Fig. 2. A truncated V cycle for MG

that standard algebraic multigrid methods.
Furthermore, the implemented multigrid solver
was more robust than one-level methods when
considering parameter variations.

The scalability of multigrid solvers available
in hypre was also studied by Baker et al. [1].
Several multigrid algorithms were compared,
including PFMG, SMG, SysPFMG, BoomerAMG,
and AMS, to solve three benchmark problems:
a 3D Laplace (i.e., Poisson with v(x, y) =
0) equation with Dirichlet boundary conditions,
a system of two 3D Laplace equations with
weak inter-variable coupling, and a simple 3D
electromagnetic diffusion problem. The main
results demonstrated the usefulness of considering
assumed partition instead of global partitions,
and both a distributed memory implementation
using MPI and a hybrid distributed/shared memory
MPI/OpenMP implementation were able to achieve
accurate scalability values when solving large
problem instances.

The truncation criterion proposed in this article
is aimed to improve load balancing, by truncating
each V cycle at the deepest possible level
l that also guarantees that each processing
unit processes a given constant number of
vertices N . This criterion was suggested by
Linden et al. [11], in their analysis of scalability
aspects of parallel multigrid, but instead of using
V cycles, they implemented a full multigrid
method with W cycles in the intermediate grids.
Experimental results indicated that the (truncated)
coarsest grid calculations are determinant for
scalability performance.

In a more recent article, Dexuan and Ridgway
analyzed the convergence and efficiency of
multigrid methods with truncated V-cycle, which
they call U-cycle [17]. However, authors did not
propose a specific criteria for selecting the coarsest
grid, which was generally defined as “fine enough

so that all processors are productively busy in
doing the coarse-grid solver”.

4 The Proposed Parallel Geometric
Multigrid Solver

This section describes the proposed parallel
multigrid method over distributed memory systems.

4.1 Truncated V Cycle: Criteria and Properties

The proposed method is based on choosing a
truncation level which is deep enough to have few
vertices per processing unit, but not as few as to
have idle processing units. The formal definition is
presented next.

Definition 1 (Truncation criteria). Consider an
initial grid with n = q × 2r vertices per dimension,
where q is odd. In this case, each V cycle
has a maximum of r levels. Given N ≥ 1
and p processing units, truncate the V cycle at
the deepest possible level l ≤ r, which also
satisfies: n2l /p ≥ N , where nl = n/2l is the
number of vertices per dimension in the (truncated)
coarse grid.

Algorithm 2 presents a pseudocode for the
proposed truncation criteria. Two conditions (line
3) control the iterative descending procedure.
When using this criteria with an ideal load
balancing, no processing unit is idle at the
coarsest (truncated) grid. To compensate for some
unbalance, the value of N should be chosen
greater than one.

The level reached by the proposed criteria
depends on the initial size n, the number of
processing units p, and the value chosen for N .
Theorem 1 characterizes this dependence.

Computación y Sistemas, Vol. 26, No. 4, 2022, pp. 1611–1623
doi: 10.13053/CyS-26-4-4438

Distributed Geometric Multigrid Method: Analysis of a V Cycle Truncation Level Criteria 1615

ISSN 2007-9737

Algorithm 2 Proposed criteria for truncating a V
cycle of geometric multigrid

Require: n = q × 2r, q odd, r ≥ 0, r ∈ N, N ≥ 1,
N ∈ N

1: l = 0 . Initial level of V cycle
2: nl = n . Vertices per node at level l
3: while l < r and (nl/2)

2 ≥ Np do
4: nl+1 = nl/2
5: l = l + 1
6: end while
7: return l, nl

Theorem 1. Let assume that the initial number of
vertices per dimension is n = q × 2r, q odd, r ∈
N, r ≥ 0. Then, the level l of the truncated V
cycle reached with the proposed criteria, is (for
p ∈ N, p ≥ 1):

l =

0, if n√

Np
< 2

blog2

(
n√
Np

)
c ∈ [1, r − 1], if 2 ≤ n√

Np
< 2r

r, if n√
Np
≥ 2r.

Proof.

1. If n/
√
Np < 2, the second iteration condition

(line 3 in Algorithm 2) is not satisfied at level l =
0, and the method does not descend any level.

2. To reach a given level 1 ≤ l ≤ r, both iteration
conditions must be satisfied at level l − 1. The
first condition holds, as l − 1 < r. The second
condition is:

n2l−1 =
(n

2l−1

)2
≥ 4Np⇔ n

2
√
Np
≥ 2l−1

⇔ n√
Np
≥ 2l.

The reached level l is the last level, whenever
the first or second stopping condition is satisfied
at this new level. That is: if l = r, or:

n2l =
(
n/2l

)2
< 4Np⇔ n

2
√
Np

< 2l.

3. Thus, level r is reached, if and only if:

n√
Np
≥ 2r.

4. In the rest of the cases, level l is reached, with
1 ≤ l < r. For those cases:

n

2
√
Np

< 2l ≤ n√
Np
⇔ log2

(
n

2
√
Np

)
< l

≤ log2

(
n√
Np

)
= 1 + log2

(
n

2
√
Np

)

⇔ l = b1 + log2

(
n

2
√
Np

)
c = blog2

(
n√
Np

)
c.

Example 1. Consider n = 10240 = 5×211 = q×2r

and p = 64 = 26. Without truncating the V cycle,
the deepest possible level is l = 11; resulting in a
coarse grid with nc = 5 vertices per dimension, and
n2c/p = 25/64 < 1 vertices per processing unit (for
an ideal load balance). Now consider truncating
each cycle with the proposed criteria, using N = 4.
In this case: n/

√
Np = 5× 27 < 211. Therefore, by

Theorem 1, the value of l is given by Eq. 4:

l = blog2

(
n√
Np

)
c = blog2

(
5× 27

)
c =

blog2 (640)c = b9.3219c = 9. (4)

The number of vertices per dimension at this
level is nl = n/29 = 20. Assuming an ideal load
balance, the number of vertices per processing unit
is n2l /p = 6.25. Fig. 3 shows the reached level
l, coarse grid vertices per dimension nl, and per
processing unit n2l /p, for different values of p and
N , as given by Theorem 1. Corollary 1 bounds the
number of vertices in the coarse grid, independent
from n and p.

Corollary 1. For a truncated coarse grid reached
at level l ∈ {1, ...,r−1}, the total number of vertices
is bounded by Np ≤ n2c < 4Np, and the number
of vertices per processing unit is bounded by N ≤
n2c/p < 4N (for ideal load balance).

Proof. From the proof of Theorem 1:
n/2
√
Np < 2l ≤ n/

√
Np ⇔

√
Np ≤ nc = n/2l <

2
√
Np⇔ Np ≤ n2c < 4Np.

Computación y Sistemas, Vol. 26, No. 4, 2022, pp. 1611–1623
doi: 10.13053/CyS-26-4-4438

Matías Valdés, Sergio Nesmachnow1616

ISSN 2007-9737

Fig. 3. Truncated V cycle for n= 5× 211, when using the
proposed criteria: level reached (l), coarse grid vertices
per dimension (nl), and per processing unit n2

l /p

4.2 Design and Implementation Details

This subsection presents the design
considerations and implementation details of
the proposed method.

4.2.1 Design Considerations

The discretization of the Poisson problem results
in a square linear system with (n − 1)2 unknowns,
n = 1/h. The solution of the system approximates
the exact solution u(x, y) in the selected grid
vertices. Thus, to obtain a good spatial resolution,
the value of n must be taken sufficiently large.
This decision imposes two practical limitations:
(1) the calculation time required to process an
increasing number of vertices, and (2) the required
memory to store the partial and final estimations
of each vertex. A distributed memory parallel
implementation is applied to overcome these
practical limitations.

4.2.2 Domain Decomposition and Processing

The decomposition approach is based on dividing
the domain grid into rectangular sub-domains,
to be assigned to each of the available
processing units. A Cartesian grid is created
and the optimal number of processing units per
dimension (Nx and Ny) is determined using the
MPI Dims create function of MPI. The output
information is then used to create a new MPI
communicator with Cartesian topology, by using
the MPI Cart create function.

The grid vertices are then distributed along the
processing units. Let (qx, qy) the coordinates
of a generic processing unit q in the Cartesian
communicator, processing unit q receives the inner
grid vertices with coordinates in the two intervals
Iqx and Iqy , as defined in Eqs. 5 and 6, where the
integer division operator is used:

Iqx =

[
qx(n− 1)

Nx
+ 1,

(qx + 1)(n− 1)

Nx

]
, (5)

Iqy =

[
qy(n− 1)

Ny
+ 1,

(qy + 1)(n− 1)

Ny

]
. (6)

Once the data is partitioned, each processing
unit applies the same MPI multigrid code to its
own assigned vertices. The numerical resolution
is performed in a coordinate way with other
processing units, by exchanging halo layers of
ghost vertices, as explained in the next subsection.
Halo layers act as boundary values for each
sub-domain, and contain values estimated by
adjacent processing units. Fig. 4 illustrates an
example of the domain decomposition.

4.2.3 Communications

Halo layers are exchanged by message passing
between neighboring processing units, i.e., those
adjacent to each other in the defined Cartesian
communicator. The MPI Cart shift function is
used to determine neighbors. Each processing unit
updates its halo layers after receiving data from
its neighbors, and then sends its updated vertices
to act as halo layers for its neighbors. Message
passing is done using the combined exchange
mechanism implemented in the MPI Sendrecv

Computación y Sistemas, Vol. 26, No. 4, 2022, pp. 1611–1623
doi: 10.13053/CyS-26-4-4438

Distributed Geometric Multigrid Method: Analysis of a V Cycle Truncation Level Criteria 1617

ISSN 2007-9737

� � � � � � � � �
� ◦ ◦ ◦ ◦ ◦ ◦ ◦ �
� ◦ ◦ ◦ ◦ ◦ ◦ ◦ �
� ◦ ◦ ◦ ◦ ◦ ◦ ◦ �
� ◦ ◦ ◦ ◦ ◦ ◦ ◦ �
� ◦ ◦ ◦ ◦ ◦ ◦ ◦ �
� ◦ ◦ ◦ ◦ ◦ ◦ ◦ �
� ◦ ◦ ◦ ◦ ◦ ◦ ◦ �
� � � � � � � � �

→

� � � � � � � � � � �
� ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ �
� ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ �
� ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ �
� • • • • • • • • • �

� • • • • • • • • • �
� ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ �
� ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ �
� ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ �
� ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ �
� � � � � � � � � � �

Fig. 4. Example of domain decomposition into four sub-domains, with an overlap region (halo layers) of width one. Inner
vertices (white circles), boundary vertices (white squares), and ghost vertices (black circles/squares) are distinguished

function, which has the specific advantage of
avoiding deadlocks between processes.

In order to improve the efficiency of the halo
layers exchange, all the information is packed into
MPI datatypes. Halo layers corresponding to a
grid row are grouped into a contiguous datatype
using the MPI Type contiguous function. In turn,
for packing column halo layers, which are not
contiguous, a vector datatype is created by using
the MPI Type vector function. The exchange of
halo layers is performed in the following stages:
at every iteration of GS-RB and SOR-RB, after
updating black or red vertices; after calculating the
final residual vector of each GS-RB call; at the end
of each restriction or interpolation operation.

Besides exchanging halo layers, a reduction
operation (using MPI Reduce) is applied: (1) to
compute the residual, needed for the stopping
criteria, after each multigrid cycle or SOR-RB
iteration; (2) to compute the norm of the
independent term at the beginning of the multigrid
main iteration; and (3) to determine the overall
execution time, as the maximum execution time of
all processes.

4.2.4 MPI-IO Storage

During the multigrid execution, each processing
unit stores in local memory the estimated values
for its assigned vertices. In the developed
implementation, the final estimation is stored
concurrently into a unique binary file, by using

MPI-IO. Each processing unit writes the solution
of its sub-domain to the unique binary file using
function MPI File write all. The time spent in I/O
operations is not included in the overall execution
time when analyzing the performance of the
proposed multigrid implementation, since it heavily
depends on the capabilities (technology, transfer
speed) of the hard disk. In turn, omitting the I/O
times allows providing a baseline for comparison
with other proposals.

4.2.5 Time Measurement

Execution time is measured as the difference
between two calls of functions time (sequential)
or MPI Wtime (parallel). The parallel time is
the maximum of all times of processing units,
obtained with an MPI Reduce() directive. The
following initial steps are included in the overall
execution time: determining the optimal number
of processing units per grid dimension, creating
a Cartesian communicator, assigning vertices to
the processing unit, and determining neighboring
processing units.

5 Experimental Evaluation

This section describes the experimental evaluation
of the proposed truncation level criteria and
discusses the main results.

Computación y Sistemas, Vol. 26, No. 4, 2022, pp. 1611–1623
doi: 10.13053/CyS-26-4-4438

Matías Valdés, Sergio Nesmachnow1618

ISSN 2007-9737

5.1 Development and Execution Platform

The proposed multigrid method was implemented
in the C programming language, using the
MPICH implementation of the MPI standard
(www.mpich.org). All floating point calculations use
double precision.

The experimental evaluation was performed on
HP ProLiant DL380 G9 servers with two Xeon
Gold 6138 processors with 20 cores at 2.00
GHz each, and 128 GB of RAM, connected
by Ethernet 10 Gbps, and running the Linux
CentOS 7 OS, from National Supercomputing
Center (Cluster-UY), Uruguay [13].

5.2 Test Problem, Convergence Criterion and
Parameters

Tests were performed considering the Poisson
problem defined in Eq. 1, whose exact solution
given by Eq. 7:

u(x, y) = e−((x− 1
2)

2+(y− 1
2)

2)+

5

100
(sin(10πx) + sin(4πy)) . (7)

The source function is taken as v(x, y) =
−∆u(x, y), and boundary values g(x, y) are
obtained by restricting the exact solution to the
domain boundary.

Regarding the convergence criterion, SOR-RB
stops execution when the residual of the
corresponding linear system at step k satisfies
‖rk‖2/‖r0‖2 ≤ 10−6. The same criteria is used for
the multigrid main iteration, but with b instead of
r0. For multigrid the maximum number of iterations
is set to 15 V cycles. For SOR-RB this is set to
5nc iterations; where nc is the number of vertices
per dimension in the coarse grid. The truncation
criteria uses N = 5.

The first multigrid iteration (first V cycle) uses
u0 = ~0. For subsequent cycles, the initial
estimation is taken as the final estimation of
the previous cycle (“warm restart”). The GS-RB
smoother does θ = 2 iterations before descending
to a coarser grid (pre-smooth), and after ascending
to a finer grid (post-smooth).

5.3 Execution Time, Speedup and Efficiency

The algorithmic speedup metric is applied to
analyzed the performance of the proposed method.
Five independent executions were performed
to reduce bias due to the utilization of a
non-dedicated hardware platform. The chosen
values for n are of the form q×2r, with q ∈ {1, 3, 5}.

Table 1 reports the average execution times of
the proposed method (Tp), with their corresponding
coefficient of variation (v̂ (%)), using an increasing
number of computing units (p, up to 70) and cluster
nodes (c), for different problem sizes (n from 8192
to 20480).

The execution time results reported in
Table 1 Results demonstrate that the proposed
implementation was able to steadily reduce the
execution times of the multigrid method, as p
increases. In particular, for n = 20480, the
execution time reduced from 781 seconds for the
sequential implementation to 14.0 seconds with
p = 70. Despite using a non dedicated cluster,
a robust behavior was observed in the execution
times, with coefficients of variation less than 5%
for most cases.

Table 2 reports the corresponding algorithmic
speedup values (Sp) for the execution times
reported in Table 1. A graphical analysis of
speedup values is presented in Fig. 5.

The efficiency results in Table 2 indicate that the
best speedup (S70 = 55.6) was obtained for the
two largest problems. Constant speedup intervals
are observed at different values of p; particularly
for [48, 50] and [56, 60], possibly explained by
the transition from 2 to 3 computing nodes,
and the corresponding increase in communication
latencies. In general, speedup is always increasing
for the selected range of processing units, which
may indicate that communications do not prevail
over computations, which is the main objective of
the proposed truncation level criteria.

Table 3 reports the computational efficiency of
the proposed method, defined by the normalized
value of the speedup when using p computing
resources (Equation 8):

Ep =
Sp

p
. (8)

Computación y Sistemas, Vol. 26, No. 4, 2022, pp. 1611–1623
doi: 10.13053/CyS-26-4-4438

Distributed Geometric Multigrid Method: Analysis of a V Cycle Truncation Level Criteria 1619

ISSN 2007-9737

Table 1. Average execution time (T̄p seconds) and coefficient of variation (v̂ (%)) for different problem size (n) and
number of computing resources (p, c)

problem size (n)
p (c) 8192 10240 12288 14336 16384 18432 20480

Tp v̂(%) Tp v̂(%) Tp v̂(%) Tp v̂(%) Tp v̂(%) Tp v̂(%) Tp v̂(%)

1 (1) 91.6 0.53 142 0.35 206 0.84 276 0.53 380 7.70 549 0.59 781 0.48
2 (1) 50.8 0.13 79.0 0.35 115 0.87 154 0.09 204 0.93 256 0.64 360 1.05
4 (1) 25.8 0.45 40.5 1.08 58.0 1.41 78.3 0.27 103 0.46 130 0.16 182 0.39
8 (1) 15.8 0.90 24.4 2.35 34.9 1.97 47.6 2.36 65.2 3.51 77.2 1.85 109 0.67

12 (1) 8.74 1.00 13.8 3.60 20.2 5.57 26.5 0.20 35.2 1.22 44.0 0.54 61.9 0.42
16 (1) 8.14 1.20 12.8 0.65 18.4 1.02 24.9 0.99 32.4 0.46 41.0 0.51 57.4 0.53
20 (1) 6.33 0.57 10.1 1.34 14.5 0.17 19.9 1.73 26.6 4.60 33.2 0.31 46.1 0.75
24 (2) 5.27 0.35 8.23 0.37 12.0 0.31 16.0 0.64 20.9 0.48 26.7 0.89 36.9 3.05
28 (2) 5.10 11.9 8.45 14.1 11.8 17.1 16.0 9.16 19.3 6.43 24.0 4.08 32.6 0.52
32 (1) 4.21 1.38 6.64 2.76 9.47 0.70 12.9 3.10 16.8 0.56 21.2 0.60 30.1 0.42
36 (1) 3.64 0.86 5.71 0.46 8.43 0.38 11.3 0.41 14.7 0.57 19.3 1.57 26.4 0.77
40 (2) 3.41 0.30 5.23 0.53 7.59 0.82 10.1 0.31 13.3 0.69 17.2 4.95 27.0 25.6
44 (2) 3.14 1.32 4.84 0.83 6.91 0.27 9.34 0.40 12.0 0.42 15.2 0.43 24.0 22.8
48 (2) 2.86 5.03 4.30 0.66 6.20 0.54 8.37 0.88 10.9 0.66 13.6 0.50 19.2 0.88
50 (3) 2.79 0.39 4.33 0.94 6.49 12.3 8.24 0.82 10.6 0.36 13.6 1.13 19.5 5.52
56 (2) 2.48 1.09 3.73 1.21 5.33 0.63 7.17 0.59 9.44 0.60 11.8 0.96 16.5 0.76
60 (3) 2.40 1.05 3.63 0.41 5.12 0.67 7.15 6.03 8.97 0.44 13.2 11.8 15.9 0.68
64 (2) 2.22 0.88 3.32 0.69 4.89 1.38 6.47 0.73 8.63 1.15 10.7 0.47 15.5 3.78
70 (2) 2.14 4.09 3.40 13.5 4.53 2.09 6.00 0.36 7.82 0.42 9.89 0.53 14.0 0.46

Table 2. Algorithmic speedup values for the execution times reported in Table 1

n
computing resources (p)

2 4 8 12 16 20 24 28 32 36 40 44 48 50 56 60 64 70
8192 1.8 3.6 5.8 10.5 11.2 14.5 17.4 18.0 21.8 25.2 26.9 29.2 32.0 32.8 37.0 38.1 41.3 42.7

10240 1.8 3.5 5.8 10.2 11.1 14.0 17.2 16.8 21.3 24.8 27.1 29.3 33.0 32.7 38.0 39.0 42.7 41.6
12288 1.8 3.6 5.9 10.2 11.2 14.2 17.2 17.4 21.8 24.5 27.2 29.9 33.3 31.8 38.7 40.3 42.2 45.6
14336 1.8 3.5 5.8 10.4 11.1 13.9 17.2 17.3 21.4 24.6 27.4 29.6 33.0 33.5 38.5 38.6 42.7 46.0
16384 1.9 3.7 5.8 10.8 11.7 14.3 18.2 19.6 22.6 25.8 28.5 31.6 34.9 35.7 40.2 42.3 44.0 48.6
18432 2.1 4.2 7.1 12.5 13.4 16.6 20.6 22.9 26.0 28.5 31.9 36.1 40.3 40.4 46.8 41.7 51.2 55.6
20480 2.2 4.3 7.2 12.6 13.6 16.9 21.2 23.9 25.9 29.5 28.9 32.5 40.6 40.0 47.4 49.1 50.4 55.6

The computational efficiency values ranged from
0.9 to 0.6. From p = 16 to p = 70, efficiency
remained almost constant, in the order of 0.8 for
the two largest problems, and 0.7 for the rest.

The best efficiency was 0.88, obtained for
n = 20480, when using p = 24 in a two
nodes environment.

A graphical analysis of efficiency values is
presented in Fig. 6.

5.4 Scalability Analysis

A scalability analysis was performed to determine
the capability of solving problems in rather similar
execution times.

The setup for the analysis consisted in
increasing the number of processing units p,
together with the problem size n, whereas
keeping constant the initial number of vertices per
processing unit.

Computación y Sistemas, Vol. 26, No. 4, 2022, pp. 1611–1623
doi: 10.13053/CyS-26-4-4438

Matías Valdés, Sergio Nesmachnow1620

ISSN 2007-9737

Table 3. Algorithmic efficiency for speedup values of Table 2 (Ep = 100 × Sp/p)

n
computing resources (p)

2 4 8 12 16 20 24 28 32 36 40 44 48 50 56 60 64 70
8192 90.0 88.8 72.6 87.3 70.3 72.3 72.4 64.1 68.0 69.9 67.2 66.4 66.7 65.6 66.0 63.6 64.6 61.0

10240 89.5 87.5 72.5 85.3 69.3 69.9 71.7 59.8 66.7 68.8 67.7 66.5 68.6 65.4 67.9 65.0 66.7 59.4
12288 90.0 89.0 73.9 85.2 70.3 71.2 71.9 62.3 68.1 68.1 68.0 67.9 69.4 63.6 69.1 67.2 65.9 65.1
14336 89.5 88.2 72.5 86.8 69.4 69.6 71.8 61.7 67.0 68.2 68.6 67.2 68.8 67.0 68.8 64.3 66.7 65.7
16384 93.0 92.0 72.9 89.9 73.3 71.5 75.8 70.2 70.5 71.6 71.2 71.7 72.7 71.4 71.8 70.6 68.7 69.4
18432 107 106 88.9 104 83.8 82.8 85.6 81.7 81.1 79.1 79.8 82.0 83.9 80.8 83.5 69.5 80.0 79.4
20480 109 107 89.4 105 85.0 84.6 88.2 85.4 81.0 82.0 72.3 73.8 84.5 79.9 84.6 81.8 78.7 79.5

Table 4. Average execution time (T̄p in seconds) and its coefficient of variation (v̂ (%)), for different number of computing
resources (p, c), and problem size (n)

problem size (n)
4096 8192 10240 12288 16384 20480 24576 32768

p (c) 1 (1) 4 (1) 6 (1) 9 (1) 16 (2) 25 (2) 36 (3) 64 (4)
Tp 24.9 26.4 28.8 24.7 28.0 37.7 37.7 38.1

v̂ (%) 0.00 0.01 0.01 0.01 0.00 0.01 0.01 0.00

Fig. 5. Algorithmic speedup of the multigrid method with
truncated V cycle (N = 5)

The value n2/p = 40962 was chosen to have
p = 1 for the smallest problem size, to fit in 1GB of
RAM. Values of n are of the form q× 2r, q ∈ {1, 3}.

Table 4 reports the average execution times
and coefficients of variation of the proposed

Fig. 6. Efficiency of the proposed multigrid algorithm with
truncated V cycle (N = 5)

multigrid implementation. Results demonstrate
a good scalability behavior of the proposed
implementation.

The execution time only increased 53% when
the problem size n increased in a factor of 8

Computación y Sistemas, Vol. 26, No. 4, 2022, pp. 1611–1623
doi: 10.13053/CyS-26-4-4438

Distributed Geometric Multigrid Method: Analysis of a V Cycle Truncation Level Criteria 1621

ISSN 2007-9737

(from 4096 to 32768). Also, the execution time
remained constant for n in 4096 to 12288 and
20480 to 32768.

6 Conclusions and Future Work

This article presented a truncating strategy for
the V cycle of a parallel geometric multgird
method. A theoretical analysis computed an
explicit expression of the coarse grid level reached,
and a bound for the number of vertices in the
coarse grid, both in terms of the problem size and
number of processing units.

The multigrid method with the proposed
truncation criteria was implemented and evaluated
in a distributed memory, non-dedicated cluster,
for a Poisson problem. Accurate speedup and
efficiency values were obtained for different
problem sizes. Also, a weak scalability analysis
revealed that problems of very different size
may be solved in similar times by increasing the
processing units.

The main lines for future work are related to
analyze the performance with other coarse grid
solvers, e.g., Conjugate Gradient or Chebyshev
preconditioned with SSOR, which has fewer
operations than SOR and CG. However, it uses
two SOR steps per iteration, implying more
communications. Thus, it may be interesting to
analyze the computation-communication trade-off.

References

1. Baker, A. H., Falgout, R. D., Kolev, T. V.,
Yang, U. M. (2012). Scaling hypre’s multigrid
solvers to 100,000 cores. High-Performance
Scientific Computing, Springer, pp. 261–279.
DOI: 10.1007/978-1-4471-2437-5 13.

2. Briggs, W. L., Henson, V. E., McCormick,
S. F. (2000). A multigrid tutorial. Society for
Industrial and Applied Mathematics.

3. Daley, C., Vanella, M., Dubey, A., Weide,
K., Balaras, E. (2012). Optimization of
multigrid based elliptic solver for large scale
simulations in the FLASH code. Concurrency
and Computation: Practice and Experience,

Vol. 24, No. 18, pp. 2346–2361. DOI: 10.1002/
cpe.2821.

4. Demmel, J. W. (1997). Applied numerical
linear algebra. Society for Industrial and
Applied Mathematics.

5. Dongarra, J., Heroux, M. A., Luszczek, P.
(2015). HPCG benchmark: a new metric for
ranking high performance computing systems.
Knoxville, Tennessee, pp. 42.

6. Gradl, T., Rüde, U. (2008). High performance
multigrid on current large scale parallel
computer. 9th Workshop on Parallel Systems
and Algorithm–workshop of the GI/ITG special
interest groups PARS and PARVA, pp. 37–45.

7. Guermond, J. L., Minev, P., Shen, J.
(2006). An overview of projection methods for
incompressible flows. Computer Methods in
Applied Mechanics and Engineering, Vol. 195,
No. 44–47, pp. 6011–6045. DOI: 10.1016/j.
cma.2005.10.010.

8. Hackbusch, W., Trottenberg, U. (1982).
Multigrid methods: Proceedings of the
conference held at köln-porz. Lecture Notes in
Mathematics, Springer, Vol. 960 , pp. 23–27.

9. Henshaw, W. D. (1994). A fourth-order
accurate method for the incompressible
navier-stokes equations on overlapping
grids. Journal of Computational Physics,
Vol. 113, No. 1, pp. 13–25. DOI:
10.1006/jcph.1994.1114.

10. Hülsemann, F., Kowarschik, M., Mohr,
M., Rüde, U. (2006). Parallel geometric
multigrid. Numerical Solution of Partial
Differential Equations on Parallel Computers,
Springer, Vol. 51, pp. 165–208. DOI:
10.1007/3-540-31619-1 5.

11. Linden, J., Lonsdale, G., Ritzdorf, H.,
Schüller, A. (1994). Scalability aspects of
parallel multigrid. Future Generation Computer
Systems, Vol. 10, No. 4, pp. 429–439. DOI:
10.1016/0167-739X(94)90007-8.

12. Müller, E. H., Scheichl, R. (2014). Massively
parallel solvers for elliptic partial differential
equations in numerical weather and climate

Computación y Sistemas, Vol. 26, No. 4, 2022, pp. 1611–1623
doi: 10.13053/CyS-26-4-4438

Matías Valdés, Sergio Nesmachnow1622

ISSN 2007-9737

prediction. Quarterly Journal of the Royal
Meteorological Society, Vol. 140, No. 685,
pp. 2608–2624. DOI: 10.1002/qj.2327.

13. Nesmachnow, S., Iturriaga, S. (2019).
Cluster-UY: Collaborative scientific high
performance computing in Uruguay.
International Conference on Supercomputing
in Mexico, Springer, Vol. 1151, pp. 188–202.
DOI: 10.1007/978-3-030-38043-4 16.

14. Sterk, M., Trobec, R. (2003). Parallel
performances of a multigrid Poisson
solver. Parallel and Distributed Computing,

International Symposium on, pp. 238–238.
DOI: 10.1109/ISPDC.2003.1267669.

15. Strang, G. (2007). Computational science and
engineering. Wellesley-Cambridge Press.

16. Trottenberg, U., Oosterlee, C., Schüller, A.
(2001). Multigrid. Academic Press, an Elsevier
Science Imprint.

17. Xie, D., Scott, L. (2009). An analysis of
parallel U-cycle multigrid method.

Article received on 02/05/2022; accepted on 03/10/2022.
Corresponding author is Matı́as Valdés.

Computación y Sistemas, Vol. 26, No. 4, 2022, pp. 1611–1623
doi: 10.13053/CyS-26-4-4438

Distributed Geometric Multigrid Method: Analysis of a V Cycle Truncation Level Criteria 1623

ISSN 2007-9737

