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Abstract. Distributional Semantics Models are one
of the most ubiquitous tools in Natural Language
Processing. However, it is still unclear how to
optimize such models for specific tasks and how to
evaluate them in a general setting (having ability
to be successfully applied to any language task in
mind). We argue that benefits of intrinsic distributional
semantic models evaluation could be questioned since
the notion of their “general quality” possibly does not
exist; distributional semantic models, however, can be
considered as a part of Semantic Maps framework which
formalizes the notion of linguistic representativeness on
the lexical level.
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1 Introduction

The Semantic Maps framework in linguistics
aims to describe patterns of multifunctionality of
grammatical units without grounding to monosemic
and polysemic analyses [38]. The core concept
of this framework is a semantic map, geometrical
representation of grammatical functions (such as
uses, meanings, and contexts of grammatical
morphemes) as interlinked constituents a so-called
“semantic space”, a structure that implies graph
theory mechanisms and claims to generalize the
configuration of functions shown by the map across
linguistic phenomena and different languages.

This structure could be viewed as a
representation of conceptual similarity between
different semantic functions [39], certain scholarly
studies, though, do not impose such attribution,
and interpret Semantic Maps as a compact
description of attested variation, imposing

a question of whether this framework may
reflect extra-cognitive factors (diachronic or
communicative) [37].

Semantic Maps are constructed with a core
principle of “contiguity / connectivity requirement”
in mind, functions that are often associated
with one and the same linguistic expression are
represented as nodes adjacent to each other,
or as a contiguous region in a semantic map
[73], but it does not imply that one and the
same linguistic expression represented through
an association with several nodes should be
analyzed as polysemic.

Therefore, Semantic Maps claim that
multifunctionality of a gram occurs only when
the various functions of the gram are similar, for
example, as one of the possible application of
Semantic Maps is separation of polysemy from
accidental homonymy, where formally identical
elements have unrelated meanings [28].

Ideally, a complete theory of grammatical
meaning would allow us to deductively leverage
Semantic Maps for deriving language-independent
functions as well as their relative positions at the
map structure, as functions in Semantic Maps
are distributed in a way that allows each gram
from each language to occupy a contiguous
area on a map.

However, given the data of only one
language, we can not be sure which functions
to represent on the map in the first place
[88]. All in all, Semantic Maps have become
a popular method in grammatical typology, being
used for capturing both synchronic facts and
patterns of development [41].
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One of the types of Semantic Maps on which
we focus in this article is called Probabilistic
Semantic Maps, a way of constructing Semantic
Maps through statistical methods based on
correspondence analysis of relative occurrences
of particular linguistic expressions in different
contexts across one or multiple languages [88].
“Semantic space” operated by this type of
Semantic Maps is expressed topologically by
closeness of nodes in the Semantic Map graph.
WordNet [48] is one of the most well-known
examples of Probabistic Semantic Maps.

It is manually constructed using heuristic
judgments on the similarity concepts as a medium
of multifunctionality. Recent scholarly studies
propose an alternative to the manual construction
of such maps with a Distributional Semantics
theory, a context-based, non-compositional
approach to meaning [40], following the claim that
the meaning of a word can be determined based
on patterns of co-occurrence in a corpus [53].

The fundamental assumption in Distributional
Semantics is that the word meaning is
distributed across contexts of its use, and lexical
representations are quantitative functions of their
global distributions, which can be viewed as so
called Word Vectors.

Given metric as a measure of similarity of
words corresponding to given vectors, one can
use it as a proxy for semantic relations between
corresponding words. This metric can be formally
represented with an any kind of similarity measure
between vectors, like cosine similarity:

cos(x, y) =
x · y

||x|| · ||y||
. (1)

Here x and y are compared vectors.
Distributional Semantics has a number of features
that make it different from other semantic theories
and made it able to become the most ubiquitous
semantic concept nowadays:

1. Distributional word representations
are context-sensitive: linguistic contexts
in which words occur construct their
semantic constitution.

2. Distributional word representations are
inherently distributed, i.e., captured word
meaning lies in overall distributional history of
this word rather than in certain set of explicitly
observable features.

3. Distributional word representations are
gradual, so the captured meaning differs not
merely for the contexts they appear, but also
for how saliently these contexts describe the
combinatorial behavior of these words.

Far from being a “theory-neutral” approach
to semantics, Distributional Semantics has been
used to test linguistic hypotheses, and there
is some evidence supporting the view that
semantic associations and textual co-occurrences
are related [96]. Distributional Semantics is
particularly well suited to describing those aspects
of meaning that interact with syntax, such as
argument structure.

Usually scholars distinguish two taxonomic
classes of distributional semantic models [13].
The first one is based on explicit counts of word
co-occurrences in a corpus. Such counts can
be done by finding all word-per-word occurrences
and measuring the degree of mutual information
inheriting from this connection.

Ubiquitous example of a distributional semantic
model based on such counts is a model of
Latent Semantic Analysis [92] which actually builds
sparse word-word matrix for pointwise mutual
information of word co-occurrences and applies
dimensionality reduction on this matrix. This class
of distributional semantic models is therefore called
count-based distributional semantics.

Models from the second taxonomic class are
based on sampling the training corpus with a
sliding window, so each word is initialized with
a feature vector which values are optimized
to accurately predict sequence of words in
the corpus given an input sequence of words
(language modeling). Since usually this task
is resolved with the help of artificial neural
networks, such distributional semantic models are
usually called neural-based (or prediction-based)
distributional semantic models.

Meaning representations captured as input
weights of these networks are called word
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embeddings [35]. Despite such taxonomy
is nominal, several recent works have proven
the effectiveness of predictive models against
count-based models [13].

Nowadays the neural-based architectures
gained the most popularity in the community
along with such algorithms as Continuous
Skip-Gram or Continuous Bag-of-Words [106],
Global Vectors [118], FastText [24], and others.
Despite distributional hypothesis gained most
attention after Harris’s work [71], the pre-requisites
and early versions of this hypothesis were
formulated by other post-Bloomfieldian American
structuralists: Martin Koos, Charles Hockett and
George Trager [125].

To this end, distributional hypothesis has
much connection with structuralist hypothesis, or
formal approach to linguistic in general [50].
As in structural models, words in distributional
hypothesis are defined according to their features
in the lexicon, and the meanings are defined by
contrasts in these sets of features: in distributional
hypothesis words’ contexts of use play the role of
these features, while structuralist hypothesis relies
on manually handcrafted properties.

This leads to lower linguistic motivation
of distributional hypothesis comparing to
the structuralist one: unsupervised feature
construction is more convenient for downstream
tasks, but they can lack an intrinsic meaning [25].
This issue of intrinsic vagueness grows from the
application purpose of distributional hypothesis:
as [125] puts it, the structuralist distributional
procedure was originally introduced for phonemic
analysis, and only after few time turned into a
general methodology able to be applied to every
linguistic level.

This procedure was a way for linguists to
ground their analyses on firm methodological base,
avoiding any argument based on meaning as an
identity criterion for linguistic elements [64]. But
mapping distributional hypothesis to word studies
can go against semantic theories relying on precise
identity criteria for semantic content of words since
distributional semantics build this criteria on a
generalization of paradigmatic relations built upon
on linguistic distributions.

For example, we can formulate distributional
hypothesis as the ability of the degree of semantic
similarity between two linguistic expressions A
and B to be considered as a function of
the similarity of linguistic contexts in which A
and B can appear [96]. One can observe
that this actually inherits Bloomfield’s refusal of
meaning as an linguistic explanans [23], defining
meaning as a similarity of words’ distribution
(in other words, it supports the idea that
an exploration of a number of contexts of
a word can evidence some of its semantic
properties). But while Bloomfield assumes
that research of meaning goes beyond linguistic
research, the distributional hypothesis implicitly
puts a solid empirical (statistical) foundation
for meaning analysis.

However, we assume that meaning becomes
a part of empirical studies only at those aspects
that can be defined through distributional analysis
procedures. From the position of cognitive
linguistics, many more aspects of meaning
are not ever fixed in written traditions [63].
Through the view of conceptual hypothesis and
prototypical hypothesis (or functional approach
in general), the distributional theory also could
be motivated through the same methods that
appear as ingredients of human conceptualization
(particularly, the linguistic contexts).

According to [93], contexts intrinsically embody
conceptual representation of aspects of the
world. Such representations commonly propose
a functional explanation in terms of the principles
governing the process of conceptualizing the word.
Therefore linguistic distributions and meaning
proposed by them are explained in many cases by
embodied conceptualisation.

Certain psycholinguists, e.g. [109], assume that
repeated encounters of a word in various linguistic
contexts eventually determine the formation of a
contextual representation. This view on meaning
highly relates with that Wittgenstein puts as
“meaning of word is its use in the language” [143].

However, formal (Harris’) and functional (Miller’s)
views on distributional theory have a few in
common. While Harris puts distributional analysis
as a purely empirical method of linguistic research,
Miller assumes a cognitive background of meaning
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and claims that it goes beyond purely statistical
investigation. To this end, linguistic motivation of
distributional semantic models relies on dichotomy
of these theories, and can be explained from both
these sides (either as be criticized).

If we want to support the claim of Distributional
Semantics as a legit linguistic framework that can
be viewed from the perspective of Semantic Maps
theory, we should accept assumptions of one of
these views. From the structural views, we must
posit that language is a system of inter-related
units and structures and that every unit of language
is related to the others within the same system.
From the conceptual views, we should assume that
mental representations which encode the human
understanding of the world contain the primitive
conceptual elements of which meanings are built.

However, despite all this recent progress,
structural and conceptual theories are still much
more heuristics than practice and yet lack a strong
experimental basis. Therefore, the possibility to
support the legitimacy of Distributional Semantics
as a linguistic framework can be doubted.

To this end, we suggest to turn the investigations
of linguistic legitimacy of distributional semantics
to the computational side, which proposes more
objective framework. As probabilistic semantic
maps can be viewed as modeling the semantics
of linguistic diversity (and they do so to the extent
that the sample, which is an underlying typological
database, is representative of the populatio, which
is the entire linguistic diversity), we can pose a
general question is whether semantic maps based
on linguistic data can model universal semantic
space, claimed to be the ultimate aim of Semantic
Maps framework in the beginning of this article.

If semantic space is both mental and universal, it
must be both comprehensive and robust. Robust
means that different samples of languages and
of semantic functions are assumed to yield
highly similar maps representing the full range
of semantic diversity encountered in natural
languages. Comprehensive means that all
semantic categories encountered in the database
must be well-represented [141].

While being more focused on “the semantics
of individual lexical items, their configurations
in lexical field or individual processes of word

formation” rather than on “typologically relevant
features in the grammatical structure of the lexicon”
[95], we assume that the primary benchmark for
distributional semantic models as semantic maps
can be proposed from the perspective of evaluation
of their features as models of lexicon. Existing
approaches to evaluation of distributional semantic
models divide on perspectives of extrinsic
evaluation (evaluation on downstream tasks)
and intrinsic evaluation (evaluation of inner
properties of the models) [128].

Former methods are based on the ability of
distributional word vectors to be used as the
feature vectors of supervised machine learning
algorithms used in one of various downstream
natural language processing tasks. On the
opposite, methods of intrinsic evaluation are
experiments in which word vectors are compared
with human judgements on words relations.
Manually created sets of words are often used
to get human assessments, and then these
assessments are compared with word vectors.

Intrinsic evaluation relies on in vivo experiments
to obtain human judgments from assessors. Such
an estimate could be used as an absolute measure
of the quality of word vectors since it reports
the similarity of lexical semantics inferred by
a distributional semantic model to the lexical
semantics determined by humans. To this
end, I consider distributional semantic model
representative of language only in case they
demonstrate decent evaluation performance.

Intrinsic evaluation approaches like the “word
semantic similarity task” (will be covered
in more detail in the next section) do not
use such formalizable a strict notion of the
model’s performance. From an intrinsic
evaluation perspective, word embeddings
are usually assessed using our (humans’)
understandings of relationships between
words (and other lexical units), for example,
by collecting human annotations of a so-called
“word semantic similarity”.

Usually, intrinsic evaluation relies on
psycholinguistic tasks which collect human
judgments on the “gold standard” of different
properties of the lexicon. These tasks (
experiments) are conducted either in the laboratory
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with a limited set of examinees (judgments
collected in-house) or on crowd-sourcing Web
platforms like Mechanical Turk, attracting an
unlimited number of participants (judgments
collected through crowd-sourcing) [98].

Sometimes the assessors are asked to evaluate
the quality of word embeddings directly, for
instance, when different models produce different
judgments on word relations, and the task of an
assessor is to tell which model works better. This
type of intrinsic evaluation is called comparative
intrinsic evaluation [128], in opposite to the
regular or “absolute” intrinsic evaluation, it allows
not to estimate the absolute quality of the word
vectors, but to find the most adequate vectors in
a given set.

As it was mentioned, unlike “extrinsic”
evaluation, the “intrinsic” approach tries to
assess a more general notion of word embeddings
performance (particularly, can DSMs be used as
a proper formalization of a lexicon?) but at the
same time, it relies on less formalizable and more
vague concepts. Particularly, is unclear which
type of relationships the word embeddings should
reflect (synonymy? co-hyponymy? something
else), and if the model takes into account not the
type of relationships that we know (like synonymy),
but other types of relationships, how should we
assess it [47].

Scholar works on this topic tend to face various
methodological problems, such as lack of proper
test sets (resulting in adjusting the models to the
data trying to increase their quality) or absence
of the statistical significance tests. One of the
main issues with most of the scholarly research
on this topic is that there is no strict definition of
an evaluation method in the field of distributional
semantics (after all, if the notion of word meaning
could not be even defined properly, how the notion
of its modeling evaluation could be defined?).

Therefore, we consider by the method of
word embeddings evaluation any way or attempt
of finding a link (correlation) between a DSM
and any data that hypothetically could carry
information about lexical semantics. The evaluation
representativeness obviously depends on the
degree of plausibility of the hypothetical amount of
lexicon information in the data one tries to use for

evaluation, but the general intuition is that we are
not able to strictly evaluate this amount.

2 Empirical Benchmarks

2.1 Semantic Similarity

The most well-known benchmark of word
semantic similarity directly assesses the ability of
DSMs to report representative distance between
the word vectors in terms of the ability of this
distance to be grounded to human assumptions on
that distance between corresponding words.

For example, if the so-called “distance” between
cup and mug (defined in a continuous interval 0, 1)
predicted by the model is 0.8, then we assume
that the distance is reported correctly by the
model of the human assessor asked to estimate
the “distance” between these words (whatever it
means depending on the annotation guidelines)
outputs a similar value.

These distances, both DSM’s and human’s one,
are collected on a range of pairs of words, and
we expect to find a meaningful correlation between
these two sets (usually, more than one assessor
is used for the sake of reliability of the provided
scores). Having two different models, we consider
the better model the more correlated are the
predictions [13].

Word similarity benchmark is also one of the
oldest ones, its roots go back to 1965 when
the first experiments on human judgments on
word semantic similarity were conducted to test
the distributional hypothesis from the psychology
perspective [124] (in 1978 a similar work was
carried out in [112]).

Despite the strong psycholinguistic background
of this method, it is one of the most frequently
criticized in the community, obviously for
subjectivity and vagueness [54, 47, 18], there
are a lot of potential linguistic, psychological [85]
and social factors [117], which could introduce
bias in the assessments [61].

The task is also very much dependent on
possible connotations in the word lists [98],
and the ambiguity of the overall assessment,
different works propose different definitions of
semantic similarity, while some scholars define
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it as co-hyponymy (like the relation between the
words machine and bicycle) [137], others define it
as synonymy (like in a word pair mug and cup) [77].

It was also argued that the notion of semantic
similarity inherits not only semantic connections of
words but also some morphological and graphemic
features of word representations [87].

Among other criticized features of word semantic
similarity, there is also the lack of correlation
between these human assessments and the
performance of word embeddings on extrinsic
methods [33, 132], the low inter-rater agreement
between annotators [77], the factor of assessors
getting tired when annotating a large number of
pairs [27], poor ability of numerical labels to fully
describe all types of relations between words (it
is suggested that it will be better to describe the
degree of word similarity in a natural language
[108]), and the misconduct of thematic roles
relations [44].

It is also unclear whether such embeddings
reflect enduring properties of language or if they
are sensitive to inconsequential variations in the
source documents [6, 8]. Datasets:

1. SimVerb-3500, 3 500 pairs of verbs assessed
by semantic similarity (that means that pairs
that are related but not similar have a fairly low
rating) with a scale from 0 to 4 [59].

2. MEN (acronym for Marco, Elia and Nam), 3
000 pairs assessed by semantic relatedness
with a discrete scale from 0 to 50 [27].

3. RW (acronym for Rare Word), 2 034 pairs
of words with low occurrences (rare words)
assessed by semantic similarity with a scale
from 0 to 10 [100].

4. SimLex-999, 999 pairs assessed with a strong
respect to semantic similarity with a scale from
0 to 10 [77].

5. SemEval-2017, 500 pairs assessed by
semantic similarity with a scale from 0
to 4 prepared for the SemEval-2017 Task 2
(Multilingual and Cross-lingual Semantic Word
Similarity ) [30]. Notably, dataset contains not
only words, but also collocations (e.g. climate
change).

6. MTurk-771 (acronym for Mechanical Turk),
771 pairs assessed by semantic relatedness
with a scale from 0 to 5 [69].

7. WordSim-353, 353 pairs assessed
by semantic similarity (however, some
researchers find the instructions for assessors
ambiguous with respect to similarity and
association) with a scale from 0 to 10 [51].

8. MTurk-287, 287 pairs assessed by semantic
relatedness with a scale from 0 to 5 [122].

9. WordSim-353-REL, 252 pairs, a subset of
WordSim-353 containing no pairs of similar
concepts [3].

10. WordSim-353-SIM, 203 pairs, a subset
of WordSim-353 containing similar or
unassociated (to mark all pairs that receive a
low rating as unassociated) pairs [3].

11. Verb-143, 143 pairs of verbs assessed by
semantic similarity with a scale from 0 to
4 [12].

12. YP-130 (acronym for Yang and Powers), 130
pairs of verbs assessed by semantic similarity
with a scale from 0 to 4 [144].

13. RG-65 (acronym for Rubenstein and
Goodenough), 65 pairs assessed by semantic
similarity with a scale from 0 to 4 [124].

14. MC-30 (acronym for Miller and Charles), 30
pairs, a subset of RG-65 which contains
10 pairs with high similarity, 10 with middle
similarity and 10 with low similarity [109]. Also,
there is a subset of MC-30 called MC-28
which excludes 2 pairs not represented in
WordNet [123].

2.1.1 Synonym Detection

The so-called Synonym Detection task is very
close to the previously described task of Semantic
Similarity, but while it also assesses the ability of
DSMs to provide reliable distances between words,
it does not rely on an absolute degree of similarity
in terms of a scalar value. Instead, we assume that
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we can do the thing by finding the most similar word
relative to a set of other words.

So, given a word a and a set K = b1, b2, b3, the
task is to find bi which is the most synonymous
(semantically similar in terms of the word semantic
similarity task) to a [13].

For example, for the target levied one must
choose between imposed (correct), believed,
requested and correlated. The task of a DSM is
to find the word vector with the smallest distance to
the vector of the specified word.

Taking into account all the criticism of the
word semantic similarity method, moving from
the absolute measure to the relative measure
could probably exclude a lot of problems of
this task (score bias, lack of assessments
interpretability, etc.).

On the other hand, the creation of a dataset
for evaluation in this task is more complicated
and raises certain new questions (for example,
how to properly choose the words to form the set
K). Datasets that could be used for evaluation
on this task presented in a form of 5-word tuples
in which one word is a target word, and 4 words
are potential synonyms where the only one is a
correct answer:

1. RDWP (acronym for Reader’s Digest Word
Power Game; also mentioned as RD-300),
300 synonym questions (5-word tuples) [82].

2. TOEFL (acronym for Test of English as a
Foreign Language), 80 questions [92].

3. ESL (acronym for English as a Second
Language), 50 questions [134].

2.2 Word Analogy

The task of Word Analogy (in some works
being also called analogical reasoning, linguistic
regularities and word semantic coherence)
implies the intuition that the arithmetic operations
in a word vector space should have a common
sense reasoning.

Given a set of three words, a, a∗ and b, the task
is to identify such word b∗ that the relation b:b∗
is the same as the relation a:a∗ [133, 119, 13].
For instance, having a = Paris, b = France,

c = Moscow, the target word would be Russia
since the relation a : b is capital : country, so one
needs need to find the capital of which country is
Moscow. There are different metrics that can be
used in this benchmark, though:

— 3CosAdd (and a similar metric 3CosMul)
proposed in the original Word2Vec paper
is based on arithmetic operations in
vector space (addition and multiplication
of cosine distances) [107].

— PairDir modifies 3CosAdd, taking into account
the direction of the resulting vectors in
these operations [97].

— Analogy Space Evaluation metric compares
the distances between words directly without
finding the nearest neighbors [32].

This task was also criticized and investigated
at [110]. A theoretical investigation of analogy
phenomena of word vectors was presented in [60].
There was a concept of temporal word analogies
also introduced [131].

[52] also gives much attention to the problem of
analogy solving. We also provide a list of datasets
which could be used for evaluation on this task. As
[62] notes, datasets designed for semantic relation
extraction task could also be used to compile a
word analogy set.

In this case, it also worth looking at the Lexical
Relation set which is a compilation of different
semantic relation datasets including BLESS [16]
(12 458 word pairs with a relation comprising 15
relation types) [140] and the Semantic Neighbors
set (14 682 word pairs with a relation comprising 2
relation types, meaningful and random) [115].

1. WordRep, 118 292 623 analogy questions
(4-word tuples) divided into 26 semantic
classes, a superset of Google Analogy with
additional data from WordNet [57].

2. BATS (acronym for Bigger Analogy Test
Set), 99 200 questions divided into 4
classes (inflectional morphology, derivational
morphology, lexicographic semantics and
encyclopedic semantics) and 10 smaller
subclasses. [62].
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3. Google Analogy (also called
Semantic-Syntactic Word Relationship
Dataset), 19 544 questions divided into 2
classes (morphological relations and semantic
relations) and 10 smaller subclasses (8 869
semantic questions and 10 675 morphological
questions) [105].

4. SemEval-2012, 10 014 questions divided
into 10 semantic classes and 79 subclasses
prepared for the SemEval-2017 Task 2
(Measuring Degrees of Relational Similarity)
[86].

5. MSR (acronym for Microsoft Research
Syntactic Analogies), 8 000 questions divided
into 16 morphological classes [107].

6. SAT (acronym for Scholastic Aptitude Test),
5 610 questions divided into 374 semantic
classes [136].

7. JAIR (acronym for Journal of Artificial
Intelligence Research), 430 questions divided
into 20 semantic classes. Notably, dataset
contains not only words but collocations (like
solar system) [135].

8. New analogical reasoning dataset [72].

2.3 Thematic Fit

The method of Thematic Fit (also called selectional
preference in [13]) is to separate different thematic
roles of arguments of a predicate and to find
how well the word embeddings could find most
semantically similar noun for a verb that is used in
a specific role.

For humans, a certain verb could cause a person
to expect that a certain role must be filled with a
certain noun (e.g., for the argument to cut the most
expected argument in the object role is pie) [127].

Experiments propose assessments of adequacy
score of the tuple {verb, noun, thematic role} (for
example, people eat is more common phrase than
eat people, so the pair people and eat would have
the higher score) [139].

Some researchers consider another variation of
this method, proposing the task of assessing a
pair of words n (noun) and v (verb) by the most

frequent role in which n used with v (e.g., pair
people, eat would be classified as the subject since
it is more common to use people as a subject with
that verb) [15].

It is unclear, though, which method of obtaining
an embedding for a thematic role to distinguish
different roles of the argument is the most
adequate, some researchers propose a method of
vectorization of “slots” for certain thematic roles,
which are obtained by averaging several most
frequent nouns encountered in a given role [15].

1. MSTNN (abbreviation mentioned in [127]), 1
444 verb-object-subject pairs [103].

2. GDS (acronym for Greenberg, Sayeed and
Danberg), 720 verb-object pairs. The dataset
is additionally divided into a subsample
containing only polysemous verbs (GDS-poly )
and a subsample containing monosemous
verbs (GDS-mono) [65].

3. F-Inst & F-Loc (acronym for
Ferretti-Instrument and Ferretti-Location),
522 verbs pairs which are split to a subset of
248 verbs with associated instruments (F-Inst)
and a subset of 274 verbs with associated
locations (F-Loc) [49].

4. P07 (acronym for Pado), 414
verb-object-subject pairs [114].

5. UP (acronym for Ulrike and Pado), 211
verb-noun pairs, the set of roles is
unlimited [113].

6. MT98 (acronym for McRae and Tanenhaus), a
subset of 200 verbs from MSTNN where each
verb has two nouns, one is a good subject, but
a bad object, and one which is a good object,
but a bad subject [104].

2.4 Concept Categorization

The method of Concept Categorization assesses
a word vector space’s ability to be split into
distinguishable categories, i.e., clusters. Given
a set of words, we want to map each word into
a meaningful category which can have common
sense reasoning (for example, for words dog,
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elephant, robin, crow, the first two make one
cluster which is mammals and the last two form
another second cluster which is birds; the cluster
name is not necessary to be formulated) [13].

Lexical-typological research typically asks
questions such as how languages categorize
particular domains (human body, kinship relations,
color, motion, perception, etc.) by means of lexical
items, what parameters underlie categorization,
whether languages are completely free to “carve
up” the domains at an infinite and arbitrary number
of places or whether there are limits on this, and
whether any categories are universal (e.g., say
‘relative’, ‘body’, or ‘red’).

The critique of such a method addresses the
question of either choosing the most appropriate
clustering algorithm or choosing the most
adequate metric for evaluating clustering quality.

A different way to approach this evaluation
method was introduced in the works related to
categorical modularity, which is a graph modularity
metric based on the k-nearest neighbor graph
constructed with embedding vectors of words from
a fixed set of semantic categories, in which the goal
is to measure the proportion of words that have
nearest neighbors within the same categories [31].

The underlying principle is that in good
embeddings, words in the same semantic category
should be closer to each other than to words in
different categories.

The authors quantify this by building the
k-nearest neighbor graph with a fixed set of
words’ semantic categories and computing the
graph’s modularity for a given embedding space.
Modularity measures the strength of division of a
graph with densely connected groups of vertices,
with sparser connections between groups [55].
The datasets for the Word Categorization task
are presented with sets of words classified into a
number of certain categories.

1. BM (acronym for Battig and Montague), 5 321
words divided into 56 categories [17].

2. AP (acronym for Almuhareb and Poesio), 402
words divided into 21 categories [4].

3. BLESS (acronym for Baroni and Lenci
Evaluation of Semantic Spaces), 200 words
divided into 27 semantics classes [16].
Despite the fact that BLESS was designed for
another type for evaluation, it is also possible
to use this dataset in a word categorization
task, as in [83].

4. ESSLLI-2008 (acronym for the European
Summer School in Logic, Language and
Information), 45 words divided into 9
semantic classes (or 5 in less detailed
categorization); the dataset was used in a
shared task on a Lexical Semantics Workshop
on ESSLI-2008 [14].

2.5 Outlier Word Detection

This method of Outlier Word Detection evaluates
the same feature of word embeddings as the
word categorization method (it also proposes
clustering), but the task is not to divide a set
of words into a certain amount of clusters, but
to identify a semantically anomalous word in an
already formed cluster (for example, for a set
{orange, banana, lemon, book, orange} which are
mostly fruits, the word book is the outlier since it is
not a fruit) [29].

Some researchers propose a very similar
method called evaluation of coherence in semantic
space. The idea of this method is, given a set of
three words – word a, the two words a1 and a2
which are the closest to a in an embedding space
are found, – a word b is chosen randomly from
the model’s dictionary (this word probably would
not be so semantically similar to a), and the task
of a human assessor is to correctly identify b (the
outlier) in the set a, a1, a2, b [128]. The more words
are identified correctly, the better is the model.

1. 8-8-8 Dataset, 8 clusters, each is represented
by a set of 8 words with 8 outliers [29].

2. WordSim-500, 500 clusters, each is
represented by a set of 8 words with 5 to
7 outliers [20].
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3 “Subconcsious” Experimental
Evaluation Tasks

As we mentioned in the previous section, because
the notion of DSMs quality is not bounded only
by standard benchmark performance, extending
to the territory of a more global question of
building a lexicon model, we also attempt to
overview experimental evaluation tasks that might
not be industry applicable (yet), but which can
provide important insights from linguistic and
scientific points of view on distributional semantics.
Moreover, with the recent trends in the community,
these methods start to get out of the “experimental”
zone and started to get more attention from
different researchers both from cognitive sciences
and from language technology [7].

Later in this section, we describe different ways
of collecting cognitive data and their application to
DSMs evaluation in more detail.

3.1 Semantic Priming

A semantic priming behavioral experiment is based
on a hypothesis that a human should read a word
faster if it is preceded by a semantically related
word (which can introduce an association in a
brain). Within the experiment, the time of reading
a specified word a (called the target word) is
compared with the time required to read it when
it occurs after a word b1 and with the time required
to read it in a case it occurs after a word b2.

If the reading time of the word b1 is lower than
the reading time of the word b2, than the word
b1 is claimed to be semantically related to a (b1
is called prime, or prime word, or stimulus word)
[46, 9]. Reading time is tracked using eye-tracking
or safe-paced reading [101, 94], [84, 76, 102, 126].

The most notable dataset used for semantic
priming experiments is the Semantic Priming
Project, containing 6 337 pairs of words. The
data is collected from 768 subjects for 1 661
target words. Every word pair is presented in
four versions: first, depending on the time interval
on the demonstration of the target and non-target
words which is 70 and 200ms (this interval is called
stimulus onset asynchronies, SOA), and, second,

depending on the task for the priming, naming task
or lexical decision task [79].

3.2 Functional Magnetic Resonance Imaging

One of the most ubiquitous ways to analyze neural
activity in a human brain is functional magnetic
resonance imaging (functional MRI, fMRI), which
records changes in blood level on the brain cortex (
bloodoxygen-level-dependent (BOLD) responses),
while the brain is presented with certain stimuli.
BOLD responses are commonly represented as
dense 4-D arrays of the measured data, where time
series of the blood flow-related activity measured
in tens of thousands of voxels (which are small
areas of size equal to approximately 2x2x2 mm3)
are measured across the brain.

These excitations are hypothesized to be elicited
primarily by the presented stimulus (with minor
background contamination due to respiration,
heartbeat, or movement). Hypothetically, the
stimuli find their representations in these voxel
patterns, and the works aiming to map DSMs
data and fMRI data usually rely on matching these
two types of data in different ways, particularly,
to use word embeddings to try to predict voxel’s
activation [80, 78].

The evaluation method is based on using as a
gold standard the data of fMRI experiments which
measures changes associated with blood flow in
certain parts of the brain by fixating regions of
the blood flow at certain time intervals (once a
second, for instance).

The idea is that the blood flow and the neuronal
activation patterns correlate, so one could identify
parts of the brain that are activated. In the field of
neurolinguistics, reading or listening to the text is
usually considered to be a stimulus for this activity.
The obtained data is presented as a set of voxels
reporting the level of neuronal activity in different
small parts of the brain.

It is not clear how to obtain data on reading
single words, since the minimum time interval
on fixating blood flow is about 1 second; some
researchers try to train a regression model to
compute the average brain activation vectors for
each word or to use aggregate statistics to obtain
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vector representations of fMRI data using it is as a
gold standard [130, 1].

One could try to use StudyForrest [70] dataset
which offers data on listening to the audio track
of the “Forrest Gump” movie in German, or the
Word Processing dataset which contains readings
for various natural language words on English [43].
Most of the studies, though, do not try to compare
different word embeddings models to each other,
but just try to figure out whether they are capable
to encode abstract information [138].

3.3 Electroencephalography

Electroencephalography (EEG) records the
electrical activity of the brain, and the idea is that
the amplitude of the impulses in the brain that
occur on words (such response is called N400,
it is an early response elicited by every word
of a sentence) stores information about lexical
semantics since the interpretation of the response
is usually generalized by the hypothesis that the
worse the word fits the context (which could be
both sentence context and word context), the
higher is the amplitude of the signal.

The amplitude differences of a tuple of words
are able to be simulated through the average
cosine distances of word embeddings, so it is
hypothetically could be used as a gold standard
data for evaluation [116, 45, 129].

3.4 Eye Movement Data

This evaluation method is based on using
as a gold standard the data of human eye
movement obtained. Such data could be obtained
through an instrument called eye-tracker which
tracks the movement of a pupil and a time of
fixation on certain words while a person reads
text from the computer screen, and such data
hypothetically could carry some information about
lexical semantics.

The eye-tracker assigns to each word a set of
features reporting characteristics of its reading:
how many milliseconds the gaze was fixated on
this word, how many times the gaze returned to it,
etc. Such feature sets can be compared with word
embedding vectors, considering word vectors as
another “feature set”, the correlation between such

vectors and word embeddings (for instance, on
predicting k nearest neighbors to a certain word)
can report the quality of a DSM [130, 10].

We are aware only of two publicly available
English eye movement datasets that one could
use in their experiments. The first is the Provo
Corpus [99] which consists of data of reading 55
paragraphs from 84 native speakers. This dataset
could be converted into a list of 1 185 words
each of which is associated with a set of 26 eye
movement features.

The second dataset is the Ghent Eye-Tracking
Corpus (GECO) [36] containing data of reading
5 000 sentences from monolingual and bilingual
English speakers (33 participants overall). After
converting one could obtain a dataset of 987
words, each associated with 48 features.

4 Experimental Data-Driven Evaluation
Methods

4.1 QVEC

Building the inverted index of a collection of
documents in which each is responsible for
a certain category of human knowledge like
super-senses in WordNet (e.g. food, animal,
etc.), we can construct the so-called “thesaurus
vectors” and use them a proxy for evaluating
word embeddings.

The dimensionality of these “thesaurus vectors”
is the size of the document collection, and each
component in these vectors reports the number of
occurrences of the word in a certain document.

For the sake of computational efficiency (to
process the large collections), we can also map
one component of an embeddings vector to
multiple components of thesaurus vectors (or vice
versa if the collection is too small) [132].

In the original paper presenting this method, the
authors used a so-called “conceptual thesaurus”
based on WordNet, but we believe that a set of
documents that claims to contain a comprehensive
set of the knowledge categories can be used to
obtain the “thesaurus vectors”.

For instance, Wikipedia, which was already
similarly used for document vectorization, referring
to a method of Explicit Semantic Analysis
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[56] which was considered for the task of
cross-language information retrieval.

4.2 Dictionary Definition Graph

Co-occurrences of words in dictionary definitions
could carry information about their relationships
[2], we construct a digraph from the set of
dictionaries where the nodes are represented by
the words, and the values of the edges connecting
the word a to the word b are represented by the
number of all occurrences of the word b in all the
definitions of the word a.

Transforming this graph to a matrix, we
obtain a “dictionary vector” for each word, and
use these vectors as a proxy of evaluation.
Alternatively, one can represent the edges not with
simply frequencies of the co-occurrences but the
amounts of time when b was encountered as a
head in the dependency syntax tree (such an idea
can help to identify similarities based on phrases
like a cat is an animal).

4.3 Cross-Match Test

A Cross-match test is a technique of finding
similarity between two high-dimensional sets used
to compare blood samples in medicine, and we can
use this method for evaluating word embeddings
as well.

Determining whether the two sets of values are
sampled from the same distribution, we measure
the statistical significance of a model, if the
correlation of a sample of vectors of two different
word vector models is low, then the two compared
models probably use different features of the
corpus, so it is probably a good result [67].

4.4 Semantic Difference

Characterizing words of the distinctive features
(attributes), we consider each word in a pair
associated with a certain set of attributes.
The distance between words is calculated as
the difference between the Cartesian product
multiplied by the attributes of the word vectors,
we can select a pair of attributes of the same
category for each pair of non-abstract words (e.g.

the category could be size, and the distinctive
attributed could be big and small) [90].

There is a certain amount of databases where
words are associated with sets of different
attributes. One of the examples of such bases
is a previously mentioned BLESS dataset, which
contains 200 pairs of words (for example, for
the [motorcycle, moped ] word pair these are the
two sets of attributes: [large, small ] and [fast,
slow ]) [16].

Another example is Feature Norms Dataset
containing 24 963 pairs of words, for which a
least one pair of distinctive features is selected
(for example, for the pair [airplane, helicopter ] the
existence of wings is selected) [90].

4.5 Semantic Networks

In manually constructed knowledge graphs like
WordNet [74], semantic networks, the words
are organized following their semantic distinctive
features based on judgments of the linguists.
These graphs provide a measure of similarity for
word pairs based on the shortest path in a graph,
so such similarity measure can be used as a
proxy for the similarity measure of the same pair
calculated by word embeddings to evaluate its
quality [3].

4.6 Phonosemantic Analysis

The general (and very heuristic) intuition is that
the form of a linguistic sign is not arbitrary and
has a relationship to its meaning. If that is
true, we can use phonosemantic patterns of the
word (its phonemes or characters) as a proxy
for its meaning. To calculate the phonosemantic
difference between two words, one could measure
using Levenshtein distance measure, and such
metric could be used as a gold standard for
evaluation [68]. Notably, this observation was
confirmed not only for the Latin alphabet but also
for Cyrillic [91].
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4.7 Bi-Gram Co-Occurrence Frequency

The distance between the words vectors
representing words of a phrase group (e.g. noun
+ adjective) should correlate with the frequency
of this group in a corpus (bi-gram co-occurrence
frequency). In other words, bi-gram co-occurrence
frequency could be used as a gold standard [89].

4.8 Image-Based Evaluation

The method relies on image vectors for word
embeddings evaluation and explores whether the
similarity spaces generated by two disparate
algorithms give rise to similar similarities among
high-frequency items [5].

4.9 Closed Domain Evaluation

The method aims at the evaluation of word (and
sentence) embeddings from specialized corpora
in concept-focused domains [111]; the authors
suggest using so-called “ground truths” as a proxy
for evaluation [19].

Based on a QUINE corpus, the evaluation
consists of a semi-formal definition of the relations
of some key terms to other terms, and by defining
these interrelations between terms in the corpus,
the expert knowledge of the meaning of a term
within the corpus is reflected by how the term
relates to other terms.

In the case of our Neo-Latin corpus, the
domain expert identified that definition (definition)
and axioma (axiom) are functional synonyms of
principium (principle). Similar to the task discussed
above, to successfully complete this task, the
cosine distance of the vector of a given target term
has to be nearer to the vectors of their functional
synonyms than alternative terms.

In the case of principium, definitio and axioma,
the cosine distance of the vectors of these terms is
expected to be nearer to each other than to other
terms. Such a conceptual evaluation grounded in
expert knowledge provides a method to evaluate
word embeddings intrinsically and, thereby, the
quality of their consistency [22].

4.10 Consistency Evaluation

The model is considered consistent if its output
does not vary when its input should not trigger
variation (i.e., because it is sampled from the same
text). Thus, a model can only be as consistent
as the input data it is trained on and it requires
the experimenter to compute data consistency in
addition to vector space consistency.

To evaluate data consistency, we create vectors
for target terms in a domain corpus under two
conditions: a) random sampling; b) equal split.
The “equal split” condition simply corresponds to
splitting the data in the middle, thus obtaining two
subcorpora of equal size and in diachronic order.
Given a pre-trained background space kept frozen
across experiments, the vector representation of a
target is generated by simple vector addition over
its context words.

Therefore, the obtained vector directly
represents the context the target term occurs
in, and consequently, similar representations (in
terms of cosine similarity) mean that the target
term is used similarly in different parts of a
book/corpus, and is thus consistently learnable.
Crucially, though, this measure may interact with
data size [21]. A similar metric considered as
“reliability“ was checked in [75].

5 Conclusion

The core concern of lexical typology, i.e., how
languages express meanings by words, can be
approached from slightly different perspectives.
We can start from the meanings, or concepts,
and ask how these are expressed in different
languages, among other things, how semantic
domains are distributed among the lexical items
across languages.

Lexico-typological research can also start from
the expressions (lexemes) and ask what different
meanings can be expressed by them or by lexemes
that are related to them synchronically and/or
diachronically. In this survey we systematized
the existing attempts to answer a question of
what is a good distributional semantic model and
we highlighted that this question always implicitly
supposes a question of what is a good model
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of the lexicon, and therefore another question of
what lexicon is.

We tried to make this paper useful for engineers
from the industry as well as linguistics from
academia, so we extensively described both
well-known “empirical” evaluation methods
(such as word similarity task and word analogy
task) and experimental methods based on
the use of thesauri, semantic networks, or
even neuroimaging data.

To not extend this paper to a monstrous size,
we tried to focus on overviewing and discussing
only those works which were dedicated to both a)
“traditional” distributional semantic models aiming
to produce representations of lexical units (e.g.
Word2Vec), b) the problem of evaluation of the
quality of such models or the representations
produced by such models, nevertheless what was
meant by “quality” by the authors of such works.

What we believe is that the notion of the
quality of distributional word representations is
heavily tied to the notion of their linguistic
representativeness, i.e., the degree of being a
proper model of a lexicon. Despite this notion of
representativeness being grounded to theoretical
linguistics and the legacy of formal analysis of
semantics, we have shown in Section 3 dedicated
to the so-called subconscious evaluation methods
that the exploration of cognitive dynamics could
be a promising direction towards understanding
mechanisms of distributional semantics.

Another view on the quality of the DSMs that
we consider important for further studies (despite
it has not been included in this survey) considers
the reliability of distributional semantic models from
the position of fairness and prejudices [11] a
representative model should not contain prejudices
against certain groups of people (by their gender,
ethnicity, sexual orientation, etc.).

If we accept this assumption, we should
understand how underlying mechanisms of such
fairness bias look like, and how to automatically
remove bias from vector spaces. We consider that
this fairness property is also an important feature
of distributional semantics, and experiments
grounding either to DSM’s quality, performance,
reliability, linguistic motivation, or whatnot, also
should have such issue in mind.

As we mentioned in the first section of the paper,
the trends in NLP are now heavily shifted towards
sentence embeddings, and traditional word vector
representations became a “niche” topic. However,
we assume that algorithms like ELMo [120], BERT
[42] and GPT-2 [121] do not provide so much
of scientific interest from the position of the
lexicon as traditional word embeddings, as they
are not relying on single words, but adopt a more
“syntactically savvy” notion of linguistic contexts,
in which word semantics are reconstructed by
specific syntactic configurations.

There is a hypothesis that such evaluation of
representation in context is more reliable, and
experiments on such context-based models would
be more representative. But context-based setting
just grounds to one of the semantic views which
are not assumed to be absolutely correct [58].

The theory that lexical semantics is not grounded
to the context [81] gains motivation from cognitive
studies. It basically gives the main attention to how
words obtain meaning in human cognition and
interact with other linguistic units, while the
context-sensitive approach is not compatible with
the idea that syntax a priori acts as the scaffolding
that guides distributional analysis. This survey
could be considered as a small step forward
to bigger planned research of computational
formalisms for lexical semantics.

We plan to give more attention to other
semantic theories and their theoretical background
to propose a more detailed exploration of
distributional semantics, for example, the
referential one. One of the possible directions
of further work on the topic of this survey goes
to the intersection of referential and distributional
theory. Taking roots from structural theory, certain
theories try to ground distributional hypothesis to
an interpretable framework [26].

Probably one of the most notorious works in
this field goes to Compositional Distributional
Semantic framework [34], DisCoCat, which
suggests construction representations of
sentences or documents not through arithmetic
operations on word vectors, but by categorical
logical operators.

Recent studies propose its experimental support
[66] and we assume that such approach could be
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more efficient than common distributional theory
on certain downstream tasks like anaphora and
ellipsis resolution [142].

We hope that the work done by writing this
survey at least could be helpful to scholars to
look at distributional semantics from a new scope
and start to treat word vectors not only as
black-box tools for resolving downstream tasks but
as linguistic formalisms that have their benefits and
limitations from the language perspective.

Despite most of the experimental studies on
a similar topic doubting the generalizing ability
of distributional semantics, we do not suggest
refusing it! In opposite, we argue that we should
give more attention to its detailed investigation.
But as a matter of fact, we should not narrow the
computational semantics research to this theory.

As we know the limitations of this theory, we
can draw ideas from other semantics theories
to overcome them. Maybe it is time to shake
off the dust from abandoned semantics theories
and revise their ideas since feasibly the forgotten
evening/morning star is the one that leads us
to clarity.
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