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Abstract. We investigate the two agents approximate
agreement problem in a dynamic network in which
topology may change unpredictably, and where consen-
sus is not solvable. It is known that the number of
rounds necessary and sufficient to guarantee that the
two agents output values 1/k3 away from each other
is k. We distil ideas from previous papers to provide
a self-contained, elementary introduction, that explains
this result from the epistemic logic perspective.
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1 Introduction

Problems of reaching agreement are central
to distributed computing. Often consensus is
needed to agree on the same value, for example,
when agents need to agree on whether to
commit or abort the results of a distributed
database transaction. However, in many situations
consensus is impossible to achieve, such as
networks where agents may crash and delays are
unpredictable [15], or read/write shared memory
models [22], or certain dynamic networks [11].
All these impossibility results are due to the
same reason: the indistinguishability graph [2]
of the global states of a protocol trying to
solve consensus is connected, while that of the
consensus task is not [5, 18, 23].

In this paper we are interested in many
other situations, where approximate agreement is
sufficient; for example, when sensors estimate
a certain measurement or clock synchronization
where agents maintain similar time estimates.
Many variants of approximate agreement, and in
various message passing and shared memory
models have been considered since early on,
e.g., [14].

Approximate agreement is an interesting weak-
ening of consensus that can be solved in many
more situations. The task is parametrized by a real
number ε > 0, and the agents must decide values
that are at most ε away from each other. The
time to reach a decision however, will be a function
of how small ε is. Many algorithms have been
proposed to try to minimize the time until decision
is reached, e.g. in shared memory models [20], in
networks [10], and others.

Consensus has been thoroughly studied from
the epistemic logic perspective, and the close
connection with common knowledge is well-
known [24]. Approximate agreement has been
less studied from the epistemic logic perspective.
It was recently shown that it is closely related to
k-iterated knowledge in a certain shared memory
model [25], roughly, meaning that the agents must
know, that they know, that they know that they
know, and so forth (k times), each other’s inputs,
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in order to reach certain degree of approximation
of their decisions. This was shown within a
general simplicial complex model for multi-agent
epistemic logic for task solvability. In this paper
we are interested in studying in more detail this
result, as well as providing a self-contained, more
elementary introduction to the topic.

We focus on one specific distributed computing
model, that has received much attention recently,
dynamic networks (see surveys [6, 8, 21, 27]).
There is a fixed set of agents that operate in
rounds communicating by sending messages to
each other. Rounds are synchronous in the sense
that the messages received at some round have
been sent at that round. At each round, the
communication graph is chosen arbitrarily among a
set of directed graphs, G. This set G determines the
network model. Hence the communication graph
can change unpredictably from one round to the
next.

Dynamic networks are interesting for various
reasons, in particular because they include as
special cases other classic models, such as
shared memory models [19], so results in
dynamic networks can often be extrapolated to
other models.

Approximate agreement is solvable in a dynamic
network model G if and only if each communication
graph in G has a rooted spanning tree [9]
(e.g. [5, 7]). In this work we consider such
a G, where approximate agreement is solvable,
but not consensus. Two agents, starting with
binary input values, are to decide values in the
interval of their inputs, which are at most 1/3k

apart from each other1. We rephrase this problem
epistemically, as requiring that the agents reach
k-iterated knowledge about their respective inputs.
This knowledge can be achieved, if and only if,
the protocol runs for k rounds. We show these
results in the dynamic epistemic logic (DEL) [4]
framework of [25], instantiated to a dynamic
network. We follow recent work, in using the
dual of a Kripke graph, a simplicial complex,
as a model for multi-agent epistemic logic, that
exposes the topological features that determine if

1Fixing the constant in ε to 1/3k facilitates the presentation,
avoiding collateral details, and can be done without loss of
generality.

a task is solvable [17, 26]. While the results we
present here have been shown in these papers,
we instantiate the results using graphs instead
of simplicial complexes, making the development
more accesible.

Organization. Before getting into epistemic logic,
in Section 2 we present two algorithms that solve
approximate agreement. In Section 3 we overview
the DEL framework. In Section 4 we give the
formal epistemic logic semantics to our dynamic
network model, and we do the same for tasks, in
Section 5. The solvability results are in Section 6.
The conclusions are in Section 12. Additional
details and proofs are in the Appendix.

2 Approximate Agreement Algorithms

We start by presenting algorithms, to guide
the reader’s intuition before diving into the
formal semantics considerations of the subsequent
sections.

Two agents, g,w (for gray, white), communicate
with each other exchanging messages in a
sequence of k rounds. In a round, each agent
sends a message to the other agent, receives
the message sent by the other agent, and then
updates its local state. In each round, at most one
of the two messages sent may be lost.

Let N = 3k, k ≥ 0. In the N -approximate
agreement task, after k rounds, agents decide
values dg, dw, resp., of the form i/N , for an integer
i, 0 ≤ i ≤ N . Each agent starts with an input value
from the set {0, 1}:

The decisions must be such that if the two
input values are equal, then both output values
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AVERAGING N -APPROXIMATE AGREEMENT (`)

round r from 1 to k do
send(`)
m = receive() /* receive m ∈ {0, 1,⊥} */
if m 6= ⊥ then

` = `/3 + 2m/3 /* else ` does not change */
ouput `

Fig. 1. Each agent p ∈ {g,w} runs this code. The
input is ` ∈ {0, 1}. A message m = ⊥ indicates that
no message was received from the other process

ONE-BIT N -APPROXIMATE AGREEMENT (`) /* input ` ∈ {0, 1} */
view = () /* start with empty view */
nbMsg = 0 /* total messages received until now */
round r from 1 to k do

send((nbMsg + `) mod 2) /* send nbMsg + `’s parity */
m = receive() /* receive m ∈ {0, 1,⊥} */
if m 6= ⊥ then nbMsg = nbMsg + 1 /* update nbMsg */
view = view ·m /* append m to the view */

output δ(`, view)

Fig. 2. Approximate agreement with 1-bit messages.
Each agent runs this code with input ` ∈ {0, 1}; the
output function δ(`, view) is detailed in Figure 3

are equal to the input value. Otherwise, the
output values dg, dw satisfy |dg − dw| ≤ 1/N .
The algorithm in Figure 1 solves N -approximate
agreement in k rounds (e.g [10, 16] and [18]
Chapter 2). A simple induction argument on the
number of rounds proves its correctness. The
examples on the right show two 4-round executions
where agents agree on values 1/34 = 1/81 away
from each other. The first example (represented
in the top two rows) represent an execution where
all messages from w are lost. The first column,
with labels 0 and 1, corresponds to the initial input
values. Then each subsequent column shows the
values of the processes after each round. An edge
indicates that a message was received. In the
second execution (bottom two rows of the picture),
both messages arrive in the first two rounds, but in
the 3rd round the message from g to w is lost, and
in the 4th round the message from w to g.

The algorithm of Figure 1 can be used by the
agents to decide values arbitrarily close to each
other, by running enough rounds, k. However, the
size of messages sent grows with k. Remarkably,
there is an algorithm that solves the problem

sending 1-bit messages, see Figure 2, which is a
reformulation and small adaptation of the algorithm
given in [12]. In a 1-bit protocol, each message
received from the other process can be either 0,
1 or ⊥. Thus, in a k-round computation, we
call the view of a process the sequence v ∈
{0, 1,⊥}k of messages that were received. For
instance with four rounds, v = (0, 0,⊥, 1) indicates
that the process received message “0” in the first
two rounds, no message in the third round, and
message “1” in the fourth round. To reduce
notation, we often write such a view as a word,
e.g. v = 00⊥1. Given a view v and a message
m ∈ {0, 1,⊥}, we write v ·m for the new view where
we append m at the end of v.

The algorithm in Figure 2 below is generic, in
the sense that both processes simply collect their
view during the computation, and at the very end a
decision function δ computes the output depending
on the view. To choose which bit to send, at each
round, the process counts how many messages
were received until now, nbMsg = #{m ∈ view |
m 6= ⊥}, adds its input ` ∈ {0, 1}, and sends
the parity of the result. The computation of δ is
done locally at the end of the protocol, and does
not involve communication between the processes.
It is adapted from [12], except that we deal with
all four combinations of inputs in {0, 1} instead of
fixing in advance one input edge. We use the
following facts:

— The first time a process p receives a message,
it can immediately guess the input of the
other process p′. Indeed, since all previous
messages were lost by p, we know for sure
that all messages were received by p′.

— Process p can then use this information
to “decode” the subsequent messages, and
behave like in the algorithm of [12].

The rest of the paper is devoted to answering
the question: what do the agents learn about their
inputs after running protocols like these ones? For
these two specific cases, do they learn something
different? We will give a formal semantics based on
dynamic epistemic logic to answer such questions.
And as an application, we will show that these two
algorithms are optimal in the number of rounds: in
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LOCAL COMPUTATION OF δ(`, view)

other = ⊥ /* other’s input value */
d = 0 /* distance to move towards the other */
for i = 1 to k do

nbMsg = #{x ∈ view[1...(i− 1)] | x 6= ⊥}
m = view[i]
if m 6= ⊥ then /* if m = ⊥, keep the same d */

if other = ⊥ then
other = (m+ i+ 1) mod 2 /* find other’s input*/
if other = ` then return `

m = (m+ other) mod 2 /* decode the message */
if (m = nbMsg and i mod 2 = 1) or
(m 6= nbMsg and i mod 2 = 0)

then d = d+ 2/3i

else d = d− 2/3i

if ` = 0 then return d
else return 1− d

Fig. 3. Decision function δ(`, view) used at the end of
the one-bit algorithm of Figure 2

less than k rounds, it is impossible for the agents
to produce outputs closer than 1/3k.

This result has been proved using combinatorial
arguments e.g. [16, 18], here we will see a different
explanation: in less than k rounds, they cannot
acquire sufficient knowledge about their inputs.

Also, while the two algorithms seem rather
different, the agents learn exactly the same
information about their inputs in both.

3 Fundamentals about Dynamic
Epistemic Logic (DEL)

3.1 A Simplicial Model for Epistemic Logic

We describe here the model for epistemic logic,
based on chromatic simplicial complexes [25, 26].
This reformulates the usual semantics of formulas
in Kripke models, in terms of simplicial models.
See Appendix 8 and Theorem 8.2.

Syntax Let AP be a countable set of proposi-
tional variables and A a finite set of agents. The
language of epistemic logic formulas LK(A,AP ),
or just LK if A and AP are implicit, is generated by
the following BNF grammar:

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | Kaϕ p ∈ AP , a ∈ A.

Fig. 4. Protocol complex of the 1-bit protocol from
Figure 2, for 1 and 2 rounds of computation. Process
names are represented by colors; inputs ` ∈ {0, 1}
are written inside the vertices; and views are written
next to the vertices. For the two-round protocol, the
value of δ(`, view) at each node is given by projecting
vertically downwards. These pictures represent protocol
complexes in the usual sense of distributed computing,
but also in the sense of the product-update model
construction defined later

The proof theory of epistemic logics can be
found in [13]; in the rest of the paper, we focus
on studying models. In the following, the number
of agents A is two and we let A = {g,w}. The
agents will be represented as colors, gray and
white. We can then use terminology of graphs,
a specialization of the case of larger number of
agents that requires using simplicial complexes,
see Appendix 8.

Given a set V , an (undirected) graph2 C over a

2Our non-traditional notations, C for a graph and F(C) for
the set of edges of C, come from the general setting for n
agents where graphs are replaced by simplicial complexes,
and edges are replaced by facets. This is consistent with the
notations of previous papers [25, 26].
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set of vertices V is defined by a non-empty finite
set of edges. Each edge is a set of two vertices.
The set of vertices of C is noted V(C), and the set
of edges F(C). A chromatic graph C,χ > consists
of a graph C and a coloring map χ : V(C) → A,
such that for all X ∈ F(C), the two vertices of X
have distinct colors.

Simplicial Models. Let be some countable set
of values, and AP = {pa,x | a ∈ A,x ∈} be the
set of atomic propositions. Intuitively, pa,x is true if
agent a holds the value x. We write AP a for the
atomic propositions of agent a.

A simplicial model M =< C,χ, ` > consists of
a chromatic graph < C,χ >, and a labeling ` :
V(C) → P(AP ) that associates with each vertex
v ∈ V(C) a set of atomic propositions concerning
agent χ(v), i.e., such that `(v) ⊆ APχ(v). Given an
edge X = {v0, v1} ∈ C, we write `(X) = `(v0) ∪
`(v1).

Binary Input Model. Each agent gets an input
value from the set {0, 1}. Each agent knows its own
input value, but doesn’t know which value has been
received by the other agents. The figure below
from [25] shows the binary input simplicial model
and its associated Kripke model for two agents,
and for comparison also for three agents (although
we will not use it in this paper). Notice that every
possible combination of 0’s and 1’s is a possible
world.

In the Kripke model, the agents are called
b, g,w, and the labeling L of the possible worlds
is represented as a sequence of values, e.g.,
101, representing the values chosen by the agents
b, g,w (in that order). In the 3-agents case, the
labels of the dotted edges have been omitted to
avoid overloading the picture, as well as other
edges that can be deduced by transitivity.

In the simplicial model, agents are represented
as colors (black, grey, and white).

The labeling ` is represented as a single value in
a vertex, e.g., “1” in a grey vertex means that agent
g has chosen value 1.

The possible worlds correspond to edges in the
2-agents case, and triangles in the 3-agents case.
Note that the simplicial model depicted on the right,
with three agents, is out of the scope of this paper.

Indeed, here we only work with two agents, so
that the simplicial complex is nothing more than a
graph.

Semantics. The definition below mimics the
usual semantics of formulas in Kripke models,
reformulated here in terms of simplicial models:

Definition 3.1 We define the satisfaction relation
M ,X |= φ determining when a formula ϕ is true in
some epistemic state (M ,X). Let M = C,χ, ` >
be a simplicial model, X ∈ F(C) an edge of C and
ϕ ∈K :

M ,X |= p iff p ∈ `(X),
M ,X |= ¬ϕ iff M ,X 6|= ϕ,
M ,X |= ϕ ∧ ψ iff M ,X |= ϕ ∧M ,X |= ψ,
M ,X |= Kaϕ iff ∀Y ∈ F(C), a ∈ χ(X ∩ Y ),

⇒M ,Y |= ϕ.

Group Knowledge. For a formula ϕ, we write
Eϕ = Kgϕ ∧ Kwϕ for the group knowledge of
ϕ among the agents {g,w}. Let Ek denote k
nested E operators. An edge path is a sequence
of (not necessarily distinct) edges, such that each
two consecutive edges in the sequence intersect
in a vertex. For an edge X let Nk(X) be the set
of edges reachable from X by an edge path of
at most k edges. Thus, N1(X) = {X}, denoted
by N(X). Also, N2(X) is equal to X together
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with the edges that intersect X, and in general
Nk(X) = N(Nk−1(X)).

Lemma 3.1 For a simplicial model M , edge X,
and any ϕ ∈ LK, we have that M ,X |= Ekϕ, iff
M ,Y |= Eϕ for every Y ∈ Nk(X).

The figure below is an illustration of the cases
k = 1, 2. It shows that M ,X |= Eϕ states that ϕ
should hold in X and in its two neighboring edges,
namely, in the edges that belong to N2(X), and
analogously for k = 2.

Morphisms Between Models Let C and D be
two graphs. A simplicial map3 f : C → D maps
the vertices of C to vertices of D, such that if X is
an edge of C, f(X) is an edge of D. A chromatic
simplicial map between two chromatic graphs is a
simplicial map that preserves colors, i.e. χ(f(v)) =
χ(v) for all v.

Lemma 3.2 Let f : C → D be a simplicial map.
If C ′ is a connected subgraph of C then f(C ′) is a
connected subgraph of D.

A morphism of simplicial models f : M →
M ′ is a chromatic simplicial map that preserves
the labeling: `′(f(v)) = `(v). The next theorem
from [25] states that morphisms of simplicial
models cannot “gain knowledge”.

Lemma 3.3 (Knowledge Gain) Consider simpli-
cial models M = C,χ, ` > and M ′ = C ′,χ′, `′ >,
and a morphism f :M →M ′. Let X ∈ F(C) be an
edge of M , a an agent, and ϕ ∈ LCK a positive
formula, i.e. which does not contain negations
except, possibly, in front of atomic propositions.
Then, M ′, f(X) |= ϕ implies M ,X |= ϕ.

3A simplicial map is usually called a homomorphism in graph
theory.

3.2 Dynamic Epistemic Logic Basic Notions

Dynamic epistemic logic (DEL) is the study of
modal logics of model change [4, 13]. A modal
logic studied in DEL is obtained by using action
models [3]. An action can be thought of as
an announcement made by the environment (not
necessarily public). An action model describes
all the possible actions that might happen, as
well as how they affect the different agents.
The product-update operation takes an epistemic
model M and an action model A, and creates
a new model M [A] that describes all the new
possible worlds after an action from A has
occurred in M . This classic version is described in
Appendix 10, here we present the simplicial model
version [25, 26].

Action Models A simplicial action model
T ,χ, pre > consists of a chromatic graph T ,χ >,
where the edges F(T ) represent communicative
actions, and pre assigns to each edge X ∈ F(T )
a precondition formula pre(X) in K.

Given two chromatic graphs C and T of
dimension n, the Cartesian product C × T is the
following chromatic graph. Its vertices are of the
form (u, v) with u ∈ V(C) and v ∈ V(T ) such
that χ(u) = χ(v); the color of (u, v) is χ((u, v)) =
χ(u) = χ(v). Its edges are of the form X × Y =
{(u0, v0), . . . , (uk, vk)} where X = {u0, . . . ,uk} ∈
C, Y = {v0, . . . , vk} ∈ T and χ(ui) = χ(vi).

Let M = C,χ, ` > be a simplicial model, and
A = T ,χ, pre > be a simplicial action model.
The product update simplicial model M [A] =
C[A],χ[A], `[A] > is a simplicial model whose
underlying graph is a sub-graph of the Cartesian
product C×T , induced by all the edges of the form
X × Y such that pre(Y ) holds in X, i.e., M ,X |=
pre(Y ). The valuation ` : V(C[A]) → P(AP ) at a
pair (u, v) is just as it was at u: `[A]((u, v)) = `(u).

4 An Action Model for Dynamic
Networks

Distributed Computing Model For two pro-
cesses, the model G where approximate agree-
ment is solvable, but not consensus, is unique: It
consists of the three digraphs Gg,Gw,Ggw on two
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r0.22 Gw Gg Ggw

vertices, g,w, one with the antiparallel arrows, and
the other two with an arrow from one vertex to the
other, meaning that either both messages arrive, or
only one. It is easy to see that in any submodel
of G consensus can be solved (if it has at least
one arrow). The model G is equivalent to several
message passing and shared memory models that
have been previously considered, see e.g. [1, 18].

Each agent has some input value, and they
communicate r rounds. In each round an agent
sends a message to the other agent, and the
message arrives by the end of the round, or not
at all. Which messages arrive depends on which
graph from G is selected (it is convenient to assume
that each vertex of a graph of G has a loop; an
agent learns its own messages. But we do not
draw the loops in the figures). In every round, any
of the three graphs in G can be selected.

Input Model An input model, I, represents all the
possible input values. To illustrate the ideas, we
use the input simplicial model of Section 3.1 where
two agents A = {g,w} each has an input value
from the set {0, 1}.

Actions An action4 t ∈ T̂ is given by b0, b1, c,
where c is a sequence of r digraphs from G and
b0, b1 ∈ {0, 1} are binary values, representing the
inputs of both processes. Such an action is written
cb0b1 . The precondition pre(cb0b1) of this action is
a formula expressing the fact that the inputs of
the agents g,w are respectively b0, b1. Formally, if
inputxa denotes the atomic proposition expressing
that agent a has input value x, then pre(cb0b1) =
inputb0g ∧ inputb1w .

4For the moment, an action is simply an element of the set
T̂ ; we will later define a simplicial action model < T ,χ, pre >
whose set of edges is in bijection with T̂ .

Distributed Algorithm An action t = cb0b1

includes all the information about the inputs and
message deliveries of an execution, but not about
the actual algorithm being executed by the agents.
Namely, an algorithm specifies the contents of
messages sent in each round, and the state
transition of each agent. Each agent starts in an
initial state, determined by its input value. At the
end of a round, each agent changes to a new
state following a deterministic transition function,
based on its current state, and on the message
received. The new state of the agent determines
the message sent in the new round. The local
state of agent a at the end of execution t is denoted
viewa(t).

For example, consider the execution c =
Gw,Ggw,Gg, meaning that in the first round only
w receives a message; in the second round both
processes receive a message; and in the last
round only g receives a message. Picking b0 = 0
and b1 = 1 gives us the action c01, where g starts
with value 0 and w starts with value 1. This is
independent of the algorithm. In the algorithm
of Figure 1, local states are simply the value of
variable `, so this action leads to the local states
viewg(c

01) = 4/27 and vieww(c
01) = 3/27. In the

one-bit algorithm of Figure 2, the local states are
the views, so this action leads to the local states
viewg(c

01) = ⊥01 and vieww(c01) = 00⊥.

Indistinguishability The indistinguishability re-
lation t ∼a t′ is a function of both the actions
t, t′ and the algorithm. It is defined as t ∼a t′ iff
viewa(t) = viewa(t

′).

Action Model For a given algorithm, we can
reformulate the indistinguishability relation as a
simplicial action model T ,χ, pre > where T ,χ >
is a chromatic graph whose vertices are V(T ) =
{a, viewa(cb0b1) >| a ∈ A, cb0b1 ∈ T̂} and whose
edges are of the form, for each action cb0b1 ∈ T̂ ,
X = {< b, vieww(c

b0b1) >,< g, viewg(c
b0b1) >

}. The precondition of such a facet is pre(X) =
inputb0w ∧ inputb1g .

We write Ar for the simplicial action model of
the r-round averaging algorithm of Figure 1, and
OBr for the action model of the r-round one-bit
algorithm of Figure 2. We also write DN r for
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a generic r-round dynamic network action model
over an unspecified algorithm. The action models
OB1 and OB2 are depicted in Figure 4 (as we
mention below, DN r and I[DN r] are always
isomorphic). For r = 1, each of the four input
edges has been subdivided into 3 “smaller” edges:
one for each possible graph of G. The colors white,
grey, of the vertices correspond respectively to
agents w, g. The view of each vertex is written next
to it. The precondition of the three top edges is true
exactly in the top edge of the input model I on the
left, and similarly for the other sides of the square.
For r = 2, the situation is similar except that each
edge of I is subdivided into 32 = 9 edges.

Perhaps surprisingly, the product update models
I[Ar] and I[OBr] are isomorphic, meaning that
both algorithms from Figures 1 and 2 acquire the
same knowledge. They both subdivide each edge
of the input complex into exactly 3r edges, thus
they are both also isomorphic to the well-known
full-information protocol complex.

Theorem 4.1 Let I be the binary input model for
two processes. For any number of rounds r,
the product update models I[Ar] and I[OBr] are
isomorphic.

Properties about the Action Model One last
thing to notice about this construction is that, when
we compute the product update model I[DN r], we
obtain a simplicial model whose underlying graph
is the same as the one of DN r. So, starting from
the input model I, the effect of applying DN r is to
subdivide each edge of the input (the same thing
happens for any other input model). Remarkably,
the topology of the input graph is preserved.
And in fact, there is a rate of subdivision speed,
determined by the constant 1/3. These are the two
basic properties that we will need in the analysis of
approximate agreement (known in several specific
contexts e.g. [12, 18]). Remarkably, they hold for
any algorithm, not only full information algorithms.

Theorem 4.2 For any algorithm for two agents, if
the input model I is connected, then the product
update model I[DN r] is connected. Furthermore,
each edge is subdivided into at most 3r edges.

We have seen that the two properties mentioned
in this theorem hold for a full information algorithm.
It is not hard to see that they hold for any algorithm,
since the indistinguishability relation of a non-full
information algorithm is a coarsening of the full
information indistinguishability algorithm.

5 Tasks

The action models of the previous section, Ar and
OBr, describe how the knowledge of the processes
evolve when we execute a specific algorithm.
Both of those algorithms are solving the same
distributed task, namely, approximate agreement.
In this section, we introduce the notion of task,
which is an abstract specification of the goal
that we are trying to solve, independently of the
particular algorithm used to solve it. Informally, a
task specifies for each possible input configuration,
what are the possible output values that the
agents may decide. This is once again formalized
using the notion of action model; however, in the
case of tasks, the actions do not correspond to
communicative events, but to decisions taken by
the processes. Tasks have been studied since
early on in distributed computability [5]. The DEL
semantics that we use here was first introduced
in [25].

Consider a simplicial model I = I,χ, ` >
called the initial simplicial model. Each edge of
I, with its labeling `, represents a possible initial
configuration. We fix I, the binary inputs model of
Section 3.1.

A task for I is a simplicial action model T =<
T ,χ, pre > for agents A, where each edge is of
the form X = {< w, dw >,< g, dg >}. The values
dw, dg are taken from an arbitrary domain of output
values. Each such X has a precondition that is
true in one or more facets of I, interpreted as “if
the input configuration is a facet in which pre(X)
holds, and every agent a ∈ A decides on the value
da, then this is a valid execution”.
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r0.2

I[A]

I[T ]I
π I δ

πI

5.1 Semantics of Task Solvability

Given the simplicial input model I and a
communication model A such as DN r, we get the
simplicial protocol model I[A], that represents the
knowledge gained by the agents after executing A.
To solve a task T , each agent, based on its own
knowledge, should produce an output value, such
that the edge with the output values corresponds
to an edge of T , respecting the preconditions of
the task.

The following gives a formal epistemic logic se-
mantics to task solvability. Recall that a morphism
δ of simplicial models is a chromatic simplicial
map that preserves the labeling: `′(δ(v)) = `(v).
Also recall that the product update model I[A]
is a sub-graph of the Cartesian product I × A,
whose vertices are of the form (i, ac) with i a
vertex of I and ac a vertex of A. We write πI for
the first projection on I, which is a morphism of
simplicial models.

Definition 5.1 A task T is solvable using the
algorithm A if there exists a morphism δ : I[A] →
I[T ] such that πI ◦ δ = πI , i.e., the diagram of
simplicial complexes below commutes:

The justification for this definition is the following.
An edge X in I[A] corresponds to a pair (i, ac),
where i is an edge of I representing input value
assignments to the agents, and ac is an edge
of A codifying the communication exchanges that
took place. The morphism δ takes X to an edge
δ(X) = (i, dec) of I[T ], where dec is the edge
of T defining the set of decision values that the
agents will choose in X. Moreover, pre(dec)
holds in i, meaning that dec corresponds to valid
decision values for input i. The commutativity of
the diagram expresses the fact that both X and

δ(X) correspond to the same input assignment
i. Now consider a single vertex v ∈ X with
χ(v) = a ∈ A. Then, agent a decides its value
solely according to its knowledge in I[A]: if another
edge X ′ contains v, then δ(v) ∈ δ(X) ∩ δ(X ′),
meaning that a has to decide on the same value
in both edges.

Two observations about the diagram. First, by
Lemma 3.3, we know that the knowledge of each
agent can only decrease (or stay constant) along
the δ arrow. So, any (positive) formula which is
known in I[T ] should already be known in I[A].
In other words, the goal of the agents is to improve
knowledge through communication, by going from
I to I[A], in order to match the knowledge required
by I[T ]. Second, the possibility of solving a task
depends on the existence of a certain simplicial
map from the graph of I[A] to the graph of
I[T ]. We have already seen the appearance of a
topological property in Theorem 4.2. Here again
topology appears: a simplicial map is the discrete
equivalent of a continuous map, thus connectivity is
preserved by simplicial maps (Lemma 3.2); hence
the topological nature of task solvability.

5.2 Approximate Agreement

Recall that in the approximate agreement problem
agents are required to decide on values which are
close to each other. We have seen in Section 2 that
no matter how close to each other one requires the
agents to decide, this task is solvable in the DN r

model, taking a sufficiently large r. Many versions
of this task have been considered e.g. [10]. We
present here the version of [25], for two agents
g and w, which is at the core of previously
considered situations.

The input complex is the binary input complex
for two agents of Section 3.1: so, every possible
combination of 0 and 1 can be assigned to the two
agents. Their goal will be to output real values
in the interval [0, 1], such that: (i) if their input is
the same, they both decide the same output, and
(ii) if their input is different, they both decide on
values dg and dw such that |dg − dw| ≤ ε, for some
fixed parameter ε ∈ [0, 1]. A discrete version of
this task is N -approximate agreement, where the
output values are only allowed to be of the form
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k/N for 0 ≤ k ≤ N . The two decision values should
be within 1/N of each other: |dg − dw| ≤ 1/N .
And to simplify the presentation, let us assume N
is odd, without loss of generality, in the sense that
to solve ε-agreement, one has to select N large
enough, so that 1/N ≤ ε.

Let I =< I,χ, ` > be the input simplicial model
for two agents with binary inputs, and T =<
T ,χ, pre > be the following action model. The
set of vertices of T is V(T ) = {(a, k/N) | a ∈
A and 0 ≤ k ≤ N}. The facets of T are edges
Xk,k′ = {(g, k/N), (w, k′/N)} with |k−k′| ≤ 1. The
color of a vertex is χ(a, k/N) = a. The precondition
pre(X0,0) is true in the worlds 00, 01 and 10 of I; the
precondition pre(XN ,N ) is true in the worlds 11, 01
and 10; and all the other preconditions pre(Xk,k′)
are true in the worlds 01 and 10. In the figure below
are the input model I (left) and the action model T
(right), for N = 5:

I

0

0 1

1

T

1/5

1/5

3/5

3/5

2/5

2/5

4/5

4/5

0

0

1

1

The product update simplicial model I[T ] is
depicted in the next figure, for N = 5.

I[T ] for N = 5

1

0

0

1

1

0

0

1

1

0

0

1

1

0

0

1

0

1

1

0

1

0

0

1

X

Y

The numbers depicted in the nodes are the
atomic propositions describing the input values
from I. The decision values (of the form k/5) are
implicit, the first column of nodes corresponds to
the decision value 0, the second column is decision
value 1/5, and so on.

6 Approximate Agreement Solvability

The world X on the figure is the one with the most
knowledge in the following sense. We write φ01
for the formula expressing that the two inputs are
different. Recall (Section 3.1) thatEφ = Kgφ∧Kwφ
for the group knowledge of φ among the agents
{g,w}. Then, we have I[T ],X |= E3φ01. On the
other hand, the world Y has less knowledge: we
have I[T ],Y |= E2φ01, but I[T ],Y 6|= E3φ01.

Lemma 6.1 In the simplicial model I[T ] for the
N -approximate agreement task, there are two
worlds X,Y which satisfy the formula Ekφ01, for
k = dN/2e.

Proof. We choose the worlds in the “middle”
of the model I[T ], as shown in the picture
above. More formally, recall that the vertices
of I[T ] are defined as tuples (a, i, d) where
a is an agent, i its input value and d its
decision value. The world X is defined as
the edge {(g, 1, bN/2c/N), (w, 0, (bN/2c+ 1)/N)},
and Y = {(w, 1, bN/2c/N), (g, 0, (bN/2c+ 1)/N)}.
Checking that the formula is satisfied in these
worlds simply consists in computing the length of
the shortest path to one of the 00 or 11 edges on
the sides (Lemma 3.1).

Solvability of Approximate Agreement We
now study the solvability of approximate agreement
in the r-round dynamic graph model DN r. Recall
that each round subdivides each edge into three
edges (Theorem 4.2). The picture below shows the
input model I, the model I[DN ] after one round,
and the model I[DN 2] after two rounds:
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I

0

0 1

1

I[DN ]

0

0 1

1

0

0

01

1 0

1

1

I[DN 2]

0

0 1

1

0

0

01

1 0

1

1

Lemma 6.2 In the r-round model I[DN r], there is
no world X such that I[DN r],X |= Ekφ01, for k =
d3r/2e.

Proof. After r rounds each of the four edges of the
input model I has been subdivided into 3r edges.
Thus, every world is at a distance at most k − 1
from the nearest world with inputs 00 or 11.

Putting the two lemmas together, we get the
following result:

Theorem 6.1 The N -approximate agreement task
is not solvable in the r-round model I[DN r], when
N ≥ 3r + 1.

Proof. Assume for contradiction that the task
is solvable. Then, we would have a map δ :
I[DN r]→ I[T ]. Our goal is to find a contradiction
using Lemma 3.3. To achieve this, we should find a
formula φ and a world Z of I[DN r], such that φ is
false in Z but true in δ(Z). We choose the formula
φ := Ekφ01 for k = dN/2e. SinceN ≥ 3r+1 implies

dN/2e ≥ d3r/2e, we know by Lemma 6.2 that this
formula is false in every world Z of I[DN r]. All
that remains to do is prove that there exists a world
of I[T ], which is in the image of δ, and where the
formula φ is true.

Since I[DN r] is connected, its image δ(I[DN r])
is connected (by Lemma 3.2). Moreover, the
world 00 and the world 11 of I[T ] must both be
in the image of δ, because of the commutative
diagram of Definition 5.1. By connectedness, at
least one of the middle worlds X,Y of Lemma 6.1
must belong to the image of δ. By Lemma 6.1, this
world satisfies φ, which concludes the proof.

Conversely, we have seen in Section 2 that
N -approximate agreement is solvable in r rounds
whenever N = 3r. The proof of the above
theorem sheds light on the required knowledge to
solve approximate agreement: while consensus is
about reaching common knowledge, approximate
agreement is about reaching some finite level of
nested knowledge.

7 Approximate Agreement Algorithms

Here we provide additional details about the cor-
rectness of the algorithms described in Section 2.
Recall that N = 3k, agents start with values in
0, 1, and they have to decide values at most 1/N
apart, unless their inputs are equal, in which case
their outputs should be equal to their inputs. First
we show that the algorithm in Figure 1 solves
N -approximate agreement in k rounds.

Theorem 7.1 The algorithm Averaging Approxi-
mate Agreement is correct.

Proof. Let mep be the initial value of agent p.
For k = 1, suppose w.l.g. that the message from
g arrives, then the final value of agent w is dw =
(mew + 2meg)/3. If both messages arrives then
dw = (meg+2mew)/3 so |dw−dg| = |(2meg−meg+
mew − 2mew)/3| = |(meg −mew)/3| ≤ 1/3. If just
one message arrives then dg = meg, so |dw−dg| =
|(mew+2meg−3meg)/3| = |(mew−meg)/3| ≤ 1/3.
Let dkp be the final value of agent p after k rounds,
and suppose that |dkw−dkg | ≤ 1/3k for some k, then,
if message from g arrives in round k + 1 (w.l.g.),
dk+1
w = (dkw + 2dkg)/3. The rest of the proof is

Computación y Sistemas, Vol. 26, No. 2, 2022, pp. 769–785
doi: 10.13053/CyS-26-2-4234

Two-agent Approximate Agreement from an Epistemic Logic Perspective 779

ISSN 2007-9737



analogous to induction base, analysing both cases
whether message from w gets lost or not.

To prove the correctness of the One-Bit
Messages algorithm of Figure 2, we rely on
Theorem 4.1. So let us prove it first:

Theorem 4.1. Let I be the binary input model
for two processes. For any number of rounds
r, the product update models I[Ar] and I[OBr]
are isomorphic. Proof. Recall that I[Ar] is the
product update model for r-rounds of the Averaging
algorithm in Figure 1, and I[OBr] is the product
update model for r-rounds of the One-Bit algorithm
of Figure 2.

It is well known that I[Ar] is isomorphic to the
full-information protocol complex, which subdivides
each edge of the input into 3k edges, preserving
the topology. Thus, we show that I[OBr] does the
same thing.

We proceed by induction on r. For the one-round
algorithm, I[OB1] is depicted in Figure 4, and
indeed each edge of the input complex has been
subdivided into three.

Let us now assume that I[OBr] is indeed
isomorphic to I[Ar], i.e., that each edge of I has
been subdivided in 3k small edges.

Consider an arbitrary vertex of I[OBr] (a grey
vertex w.l.o.g.), of the form < g, viewg(t) > for
some action t = cb0,b1 . Let us write v = viewg(t) for
the view of this vertex.

Moreover, let us assume that the two neighbors
of this vertex, with views u and w, are about to send
two distinct messages, 0 and 1 respectively. (One
can check that this property is true everywhere in
I[OB1]: every vertex has neighbors that will send
different messages in the next round.)

After one more round of the one-bit algorithm,
we obtain six edges in I[OBr+1] as depicted below
(we assume w.l.o.g. that the grey vertex sends the
message “0”; the same picture can be drawn with
a 1 instead). Moreover, we can check that the five
vertices in the middle at round r + 1 still have the
inductive property that both neighbors will send a
different message at the next round.

This local reasoning can be done around each
node of I[OBr]. Thus, every edge is subdivided
into 3,which concludes our proof.

Now we can show that the algorithm in Figure 2
solves N -approximate agreement in k rounds.

Theorem 7.2 The algorithm One-Bit Messages
Approximate Agreement is correct.

Proof. Since I[OBr] is isomorphic to I[Ar], and
we have shown in Theorem 7.1 that I[Ar] solves
3r-approximate agreement, we know that the One-
Bit algorithm can solve approximate agreement as
long as we choose the right decision function δ.

This is precisely what the algorithm from Figure 3
does: δ(`, view) simulates the Average Approx-
imate Agreement algorithm via the isomorphism
exhibited in Theorem 4.1. A detailed proof of
correctness can be found in [12].

8 Simplicial Models and Epistemic
Logic

Here we include generalized notions for any
number of agents from section 3.

Generalizing graphs to complexes Given a set
V , a simplicial complex C is a family of non-empty
finite subsets of V such that for all X ∈ C, Y ⊆ X
implies Y ∈ C. We say Y is a face of X. Elements
of V (identified with singletons) are called vertices.
Elements of C are simplexes, and those which
are maximal w.r.t. inclusion are facets. The set of
vertices of C is noted V(C), and the set of facets
F(C). The dimension of a simplex X ∈ C is
|X| − 1, and a simplex of dimension n is called
an n-simplex. A simplicial complex C is pure if
all its facets are of the same dimension, n. In this
case, we say C is of dimension n. A graph without
isolated vertices is a pure sumplicial complex of
dimension 1. Given the set A of agents (that
we will represent as colors), a chromatic simplicial
complex < C,χ > consists of a simplicial complex
C and a coloring map χ : V(C) → A, such that for
all X ∈ C, all the vertices of X have distinct colors.
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Simplicial Maps Let C and D be two simplicial
complexes. A simplicial map f : C → D
maps the vertices of C to vertices of D, such
that if X is a simplex of C, f(X) is a simplex
of D. A chromatic simplicial map between two
chromatic simplicial complexes is a simplicial map
that preserves colors. Let SA be the category
of pure chromatic simplicial complexes on A, with
chromatic simplicial maps for morphisms.

Equivalence with Epistemic Logic A Kripke
frame M =< S,∼> over a set A of agents consists
of a set of states S and a family of equivalence
relations on S, written ∼a for every a ∈ A. Two
states u, v ∈ S such that u ∼a v are said to be
indistinguishable by a. A Kripke frame is proper if
any two states can be distinguished by at least one
agent. Notice that being proper means that the
intersection of all equivalence relations ∼a is the
identity; this may reveal interesting parallels with
distributed knowledge (a formula that is true in all
states in the intersection relation), see e.g. [24].
Let M =< S,∼> and N =< T ,∼′> be two Kripke
frames. A morphism from M to N is a function f
from S to T such that for all u, v ∈ S, for all a ∈ A,
u ∼a v implies f(u) ∼′a f(v). We write KA for the
category of proper Kripke frames, with morphisms
of Kripke frames as arrows.

The following theorem states that we can
canonically associate a proper Kripke frame with a
pure chromatic simplicial complex, and vice versa.
In fact, this correspondence extends to morphisms,
and thus we have an equivalence of categories,
meaning that the two structures contain the same
information.

Theorem 8.1 ([25]) SA and KA are equivalent
categories.

Example 8.1 ([25]) The picture below shows a
Kripke frame (left) and its associated chromatic
simplicial complex (right). The three agents,
named b, g,w, are represented as colors black,
grey and white on the vertices of the simplicial
complex. The three worlds of the Kripke
frame correspond to the three triangles (i.e.,
2-dimensional simplexes) of the simplicial complex.
The two worlds indistinguishable by agent b, are
glued along their black vertex; the two worlds
indistinguishable by agents g and w are glued
along the grey-and-white edge.

Simplicial Models Let be some countable set
of values, A be a finite set of agents and AP =
{pa,x|a ∈ A,x ∈ V} be the set of atomic
propositions. Intuitively, pa,x is true if agent a
holds the value x. We write AP a for the atomic
propositions concerning agent a. A simplicial
model M =< C,χ, ` > consists of a chromatic
simplicial complex < C,χ >, and a labeling ` :
V(C) → P(AP ) that associates with each vertex
v ∈ V(C) a set of atomic propositions concerning
agent χ(v), i.e., such that `(v) ⊆ APχ(v). Given
a simplex X ∈ C, we write `(X) =

⋃n
i=0 `(vi).

A morphism of simplicial models f : M → M ′

is a chromatic simplicial map that preserves the
labeling: `′(f(v)) = `(v). We denote by SMA,AP

the category of simplicial models over the set of
agents A and atomic propositions AP .

Equivalence with Epistemic Logic A Kripke
model M = < S,∼,L > consists of a Kripke frame
< S,∼> and a function L : S →P(AP ). Intuitively,
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L(s) is the set of atomic propositions that are true
in the state s. A Kripke model is proper if the
underlying Kripke frame is proper. A Kripke model
is local if for every agent a ∈ A, s ∼a s′ implies
L(s) ∩ AP a = L(s′) ∩ AP a, i.e., an agent always
knows its own values. Let M =< S,∼,L > and
M ′ =< S′,∼′,L′ > be two Kripke models on
the same set AP . A morphism of Kripke models
f :M →M ′ is a morphism of the underlying Kripke
frames such that L′(f(s)) = L(s) for every state s
in S. We write KMA,AP for the category of local
proper Kripke models.

[[25]] Given a simplicial model M and a facet
X, M ,X |= ϕ iff F (M),X |=K ϕ. Conversely,
given a local proper Kripke model N and state s,
N , s |=K ϕ iff G(N),G(s) |= ϕ, where G(s) is the
facet {vs0, . . . , vsn} of G(N).

We can now extend Theorem 8.1 to an
equivalence between simplicial models and Kripke
models.

Theorem 8.2 ([25]) SMA,AP and KMA,AP are
equivalent categories.

9 Knowledge in Simplicial Models

Here we include additional details about group
knowledge and knowledge gain from subsection
3.1.

Lemma 3.1 For a simplicial model M and edge
X, we have that M ,X |= Ekφ, iff M ,Y |= Eϕ for
every Y ∈ Nk(X).

Proof. For k = 1 the proof is immediate.
Let k such that M ,X |= Ekφ iff M ,Y |= Eφ for
every Y ∈ Nk(X). Then M ,X |= Ek(Eφ) iff
M ,Z |= E2φ for every Z ∈ Nk(X). Finally M ,Y |=
Eφ for every Y ∈ N2(Z) such that Z ∈ Nk(X), i.e.
Y ∈ Nk+1(X) (since Nk+1(X) = N(Nk(X))).

Lemma 3.3 Consider simplicial models M =<
C,χ, ` > and M ′ =< C ′,χ′, `′ >, and a morphism
f :M →M ′. Let X ∈ F(C) be an edge of M , a an
agent, and ϕ ∈ LCK a positive formula, i.e. which
does not contain negations except, possibly, in
front of atomic propositions. Then, M ′, f(X) |= ϕ
implies M ,X |= ϕ.

Proof. Suppose that φ is atomic, then
M ′, f(X) |= φ iff φ ∈ l(f(X)) = l(X), so M ,X |=
φ.
If φ = ¬p for some atomic p then M ′, f(X) 6|= p, so
p 6∈ l(f(X)) = l(X), therefore M ,X 6|= p.
If φ = ψ ∧ θ for some formulas ψ and θ as depicted
above, then M ′, f(X) |= ψ and M ′, f(X) |= θ.
Therefore M ,X |= ψ ∧ θ.
If φ = Ka(ψ) with ψ being a formula like depicted
above, let Y ∈ F(M) such that a ∈ χ(Y ∩X), then
a ∈ χ(f(Y )∩f(X)) so M ′, f(Y ) |= ψ and therefore
M ,Y |= ψ, implying that M ,X |= φ.
Finally, every possitive formula can be seen as
combinations of formulas like depicted above but
linked with ∧. Hence, if φ =

∧
i∈ ψi then for all

i ∈, M ′, f(X) |= ψi so that M ,X |= ψi. Finally,
M ,X |=

∧
i∈ ψi.

10 Dynamic Epistemic Logic

Here we presents the classic version of DEL.

An action model is a structure < T ,∼
, pre >,where T is a domain of action points, such
that for each a ∈ A, ∼a is an equivalence relation
on T , and pre : T →K is a function that assigns
a precondition formula pre(t) to each t ∈ T . Let
M =< S,∼,L > be a Kripke model andA =< T ,∼
, pre > be an action model. The product update
model is M [A] =< S[A],∼[A],L[A] >, where each
world of S[A] is a pair (s, t) with s ∈ S, t ∈ T

such that pre(t) holds in s. Then, (s, t) ∼[A]
a (s′, t′)

whenever it holds that s ∼a s′ and t ∼a t′. The
valuation L[A] at a pair (s, t) is just as it was at
s, i.e., L[A]((s, t)) = L(s). For an initial Kripke
model M , the effect of action model A is a Kripke
model M [A]. Notice that if M is a local proper
Kripke model and A =< T ,∼, pre > is a proper
action model, then M [A] is proper and local.

Equivalence with Simplicial Action Models
Recall from Theorem 8.2 the two functors F and G
that define an equivalence of categories between
simplicial models and Kripke models. We have
a similar correspondence between action models
and simplicial action models. On the underlying
Kripke frame and simplicial complex they are the
same as before; and the precondition of an action
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point is just copied to the corresponding facet. The
following proposition says that the “classic” product
update agrees with the “fully simplicial” one.

Consider a simplicial model M and simplicial
action model A, and their corresponding Kripke
model F (M) and action model F (A). Then,
the Kripke models F (M [A]) and F (M)[F (A)] are
isomorphic. The same is true for G, starting with a
Kripke model M and action model A.

Proof. Particular case of theorem 8.2, since
F (M [A]) is the image of F (M)[F (A)] under the
functor who states equivalence.

11 Dynamic Networks and Tasks

Here we include additional details about Section 4
and 5.

Theorem 4.2 For any algorithm for two agents,
the product update model M [DN r] is a graph
which is connected (assuming the input model is
connected). Furthermore, each edge is subdivided
into at most 3r edges.

Proof.
Since underlying simplicial complex of M [DN r]

is the same as the one of G(DN r), we just need to
prove that G(DN r) is connected.
For r = 1, let I be the input model, then the
function who carries any edge X of I into the set
{X ∈ F(G(DN r))|M , {(b, b0), (g, b1)} |= pre(X)}
is bijective. Moreover f [I] = F(G(DN )) and since
any edge X ∈ F(I) is such that |f(X)| = 3, X
splits into 3 edges in G(DN ).
Now consider arbitrary edges X,Y ∈ F(I)
and let Xi,Yj ∈ F(G(DN )) subdivisions of
X,Y respectively. Since I is connected, exists
(X,Z1, . . . ,Zn,Y ) a sequence of connected edges
in I. Hence, in G(DN ) we have another edge path
who links Xi with any subdivision of Z1, which is
linked with any subdivision of Z2 and so on, until
reach any subdivision of Zn, and finally Yj .
For r such that G(DN r) is connected, we
can consider G(DN r) as an input model, and
since G(DN r+1) is also the underlying graph of
(M [DN r])[DN ], the rest of the proof is analogous
to induction base. Finally, since each edge is
already subdivided into 3r edges in G(DN r),

they are subdivided into 3(3r) = 3r+1 edges in
G(DN r+1).

12 Conclusions

We have considered a basic notion of approximate
agreement, and a computational model for two
agents, where the task is solvable for any
desired level of precision. We first presented
two algorithms, which solve the task for a
given precision level, using the same number
of communication rounds. With this concrete
setting in mind, we have proceeded to give a
formal semantics based on dynamic epistemic
logic, both to our computational model, and to
the approximate agreement task. We derived a
lower bound result showing that these algorithms
are optimal in the number of rounds. The
lower bound is due to the impossibility of the
agents gaining global knowledge about their inputs
faster, and a consequence of the connectivity
of the computational model’s epistemic states.
Although much of these results were previously
known, we have made an effort to distil the
essential ingredients of several previous papers,
and combined them into a unified, self-contained
way, providing thus a more elementary introduction
to the area, based only of graph theory, instead of
higher dimensional simplicial complexes.
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