
Hybrid Quantum Genetic Algorithm for the 0-1 Knapsack
Problem in the IBM Qiskit Simulator

Enrique Ballinas, Oscar Montiel

Instituto Politécnico Nacional,
Centro de Investigación y Desarrollo en Tecnologı́a Digital,

Mexico

lballinas@citedi.mx, oross@ipn.mx

Abstract. In this work, a novel Hybrid Quantum Genetic
Algorithm (HQGA) for the 0-1 Knapsack Problem (KP) is
presented. It is based on quantum computing principles,
such as qubits, superposition, and entanglement of
states. The HQGA was simulated in the Qiskit simulator.
Qiskit simulator is a platform developed by IBM that
allows working with quantum computers at the level
of circuits, pulses, and algorithms. The performance
of HQGA is evaluated in three strongly correlated KP
data sets, and computational results are compared with
a Quantum-Inspired Evolutionary Algorithm (QIEA), a
modified version of a QIEA (QIEA-Q), and a modified
version of the HQGA (HQGA-Q). Experimental results
demonstrate that the proposed HQGA can obtain the
best solutions in all the KP data sets, and performs well
on robustness.

Keywords. Quantum computing, quantum genetic
algorithm, knapsack problem.

1 Introduction

Solving combinatorial optimization problems using
classical exact algorithms becomes infeasible
when the number of instances reaches a tractable
limit for classical computation since search
space for candidates’ solutions tends to grow
exponentially [48]. The complication surge when
it is inevitable to handle larger values of instances
that exceed this limit, which is very common in
real-life applications. For example, in energy
systems optimization, where there are several
challenges for classical computation that can be
tackle with quantum computing, such as the
problem of Heat exchanger network synthesis

(HENS) where a simple HENS subproblem face
the programmer with an NP-hard problem [2]; or
in the financial market, the transaction settlement
problem is also a good example [8]. At
present, it is common to handle these problems
using approximation algorithms; they have the
characteristics of given an approximate solution to
a particular kind of problem.

They search for a solution very close to the
optimal one in polynomial time according to the
sizes of their inputs instead of looking for the
optimal solution, which can cause the search
time grows exponentially [31]. They are divided
into three types, heuristic, meta-heuristic, and
hyper-heuristic. Heuristic methods are based
on experience that allows finding a satisfactory
solution in a reasonable time. Meta-heuristics are
those algorithms that are one level higher than
heuristics; that is, they are procedures that seek
to find a solution to a problem using the least
amount of computational resources than heuristic
algorithms [11].

Hyper-heuristics can be viewed as search algo-
rithms that explore the space of problem solvers.
A hyper-heuristic is a heuristic search method
that seeks to automate the process of selecting,
combining, generating, or adapting several simple
heuristics in order to solve a problem efficiently
[11]. The importance of meta-heuristic algorithms
was fully understood when the NP-completeness
theory was established in 1971 [31]. This theory
determined that many of the known problems
in state of the art are intractable, which means

Computación y Sistemas, Vol. 26, No. 2, 2022, pp. 725–742
doi: 10.13053/CyS-26-2-4253

ISSN 2007-9737

that it is not possible to find an optimal solution
in a polynomial-time [10]. As a consequence,
approximation algorithms were the best option to
solve these kinds of problems. The approximation
algorithms have experienced significant growth in
the last years due to the development of areas
such as data mining, bioinformatics, deep learning,
and others; this caused a significant number of
optimization problems to be born.

Quantum computing offers an exponential
speedup for solving some problems that can
take advantage of quantum phenomena in their
algorithmic formulation. This feature is desirable
for solving problems where classical and approx-
imation algorithms cannot offer practical or viable
solutions to complex problems that have grown
very fast and become unsolvable.

The contribution of this paper is the design
of a Hybrid Quantum Genetic Algorithm (HQGA)
and its implementation in a quantum simulator
(Qiskit IBM simulator). So far, there is no
work in state-of-the-art where a Quantum Genetic
Algorithm in the IBM Qiskit simulator can solve
the Knapsack Problem (KP). There is only one
work [29] where Adiabatic Quantum computation
was implemented in the Qiskit simulator to solve
the Binary Knapsack Problem (it is explained
in section 2). Also, a quantum circuit was
designed which allows to generate the initial
population of qubits, with this, the diversity of the
algorithm is expanded since when using qubits, the
possible configurations increase exponentially just
by adding a qubit to the quantum population. For
example, with a population of 10 qubits we would
have 210 = 1024 possible configurations, with 11
qubits 211 = 2048 possible configurations we would
have.

A modified version of the HQGA (HQGA-Q),
a QIEA, and a modified version of the QIEA
(QIEA-Q) was also designed. HQGA-Q and
QIEA-Q were designed to solve an impediment
of the Qiskit simulator; in section 4 it will be
explained. The HQGA, based on the statistical
results of hundreds of tests performed, has
proven to outperform the aforementioned quantum
evolutionary algorithms. The main advantage
of HQGA compared to state-of-the-art algorithms
is the implementation of a quantum circuit in a

quantum genetic algorithm, which takes advantage
of one of the main characteristics of quantum
computing, quantum parallelism, with this we can
represent n possible configurations with just a
quantum register of n qubits.

The organization of this paper is as Fol-
lows. Section 1 presents an introduction to
approximation algorithms and the importance of
meta-heuristics algorithms in solving combinatorial
optimization problems. Section 2 presents the
main works that use quantum meta-heuristics in
solving the knapsack problem. Section 3 describes
the main concepts involved in the development of
this work. Section 4 shows the experiments carried
out and their corresponding results in solving the
0-1 knapsack problem. The conclusions and future
work are presented in section 5.

2 Related Work

The knapsack problem (KP) is a widely studied
combinatorial optimization problem with NP-hard
computational complexity [22, 14, 52, 26]. In
the literature, there are several works that
have solved the 0-1 Knapsack problem using
different methods, such as, Binary Cuckoo Search
Algorithm (CSA) [6], Firefly Algorithm (FA) [7], Ant
Colony Algorithm (ACO) [42], Comparative study
between Tabu Search Algorithm (TS), Sparse
Search (SS), and Local Search [41], Comparative
study between Simulated annealing algorithm
(SA), Iterative local search, Genetic algorithm
(GA), and Particle swarm optimization algorithm
(PSO) [1], among others.

The methods mentioned above are evolutionary
and non-evolutionary algorithms that have been
widely used for solving combinatorial optimization
problems, showing satisfactory results using
conventional computers. However, it is possible to
improve these results using quantum algorithms.

Quantum computing is a computational model
that uses certain quantum mechanics concepts,
such as superposition, entanglement, and qubits.
When it is combined with genetic algorithms,
quantum genetic algorithms are created [49, 15].

Quantum genetic algorithms have demonstrated
the potential to tackle NP-hard problems, even
showing better results than classical algorithms.

Computación y Sistemas, Vol. 26, No. 2, 2022, pp. 725–742
doi: 10.13053/CyS-26-2-4253

Enrique Ballinas, Oscar Montiel726

ISSN 2007-9737

For example, in [17], a series of experiments using
a Parallel Quantum-Inspired Genetic Algorithm,
Quantum-Inspired Genetic Algorithm, and a
Classical Genetic Algorithm are presented. The
results demonstrate the Parallel Quantum-Inspired
Genetic Algorithm’s superiority over the other two
solving the 0-1 Knapsack Problem. The use of
parallel computing helps to improve the exploitation
and exploration capabilities.

In [46], a Higher-order Quantum Genetic Algo-
rithm to solve the 0-1 Knapsack Problem with 200,
500, and 1000 objects is proposed. The algorithm
uses high-order quantum registers, which consists
in dividing the register into sub-registers. This
reduced the algorithm’s execution time compared
to the traditional Quantum Genetic Algorithm
(QGA) and maintained the same precision, even
increasing it in some registers sizes.

In [45], a Quantum Genetic Algorithm (QGA) to
solve the Knapsack Problem is implemented. QGA
uses an adaptive quantum gate to find the rotation
angle’s correct value, reducing the qubits states’
amplitudes with respect to the previous results.
The experimental results showed that the use of
the adaptive quantum gate generates a fast local
convergence by solving the Knapsack Problem
with different quantities of objects.

Another type of meta-heuristic that has proven
to be efficient in solving the NP-hard problems,
especially the Knapsack Problem, is the Quantum
Evolutionary Algorithms. For example, in [43] a
Self-organizing Quantum Evolutionary Algorithm
for Multi-objective optimization (MSQEA) that
solves the Multi-objective Knapsack Problem is
designed. The experimental results showed that
the MSQEA could obtain solutions very close to the
Pareto optimal front in a short time, in addition to
generating larger sets of non-dominating points.

In [51] an Improved Quantum Evolutionary
Algorithm (IQEA) is proposed; this algorithm’s
main feature is using the rotating quantum
gate that generates a faster convergence and
a better global search for solutions. The
algorithm was compared against an Evolutionary
Quantum Algorithm (QEA), demonstrating its
superiority in efficiency and quality when solving
the Knapsack Problem.

In [27], a Quantum Evolutionary Algorithm to
solve the Quadratic Knapsack Problem (QKP) is
designed. The qubits are initialized according
to the density values (this value is obtained
by dividing the sum of the gains of all objects
and the object’s weight) and are expressed in
angles; this proposal was called Angle-expressed
Quantum Evolutionary Algorithm (AQEA). AQEA
was compared with a Classic Genetic Algorithm
(CGA) and a Quantum Evolutionary Algorithm
(QEA), demonstrating its effectiveness and better
convergence when solving QKP with 100, 200, and
300 objects.

In [20], a Quantum-Inspired Evolutionary Al-
gorithm to solve the Multidimensional Knapsack
Problem is designed. Experiments were carried
out with different repair functions: Simple,
Random, and Sorted. The results showed
that the Sorted repair function has a faster
convergence time; however, having to sort the
objects beforehand would be a great effort if the
data set is huge.

One of the important characteristics of quantum
computing is the versatility of the algorithm to
be able to adapt to different meta-heuristics
and search algorithms. For instance, in [24],
a Diversification-based Quantum Particle Swarm
Optimization Algorithm (DQPSO) to solve the
Multidimensional Knapsack Problem is presented.
DQPSO is based on the Quantum Particle
Swarm Optimization Algorithm (QPSO) and a
population-based diversification criteron, which
generates better diversity than QPSO. The
experiments were carried out using 30 instances
showing the efficiency of DQPSO.

In [25], a Quantum Particle Swarm Opti-
mization Algorithm with a preserving strategy
(Diversity-preserving QPSO) to solve the Mul-
tidimensional Knapsack Problem is presented.
The Diversity-preserving QPSO has a diversity
strategy to update and maintain a good diversity
in the population, and a method called Variable
Neighborhood Descending (VND) which improves
the search process to find the optimal solution.
The results demonstrated the efficiency of the
Diversity-preserving QPSO compared to the
state-of-the-art algorithms.

Computación y Sistemas, Vol. 26, No. 2, 2022, pp. 725–742
doi: 10.13053/CyS-26-2-4253

Hybrid Quantum Genetic Algorithm for the 0-1 Knapsack Problem in the IBM Qiskit Simulator 727

ISSN 2007-9737

In [34], an algorithm called Binary Quantum
Inspired Gravitational Search Algorithm (BQIGSA)
is presented; it combines the properties of
the Gravitational Search Algorithm (GSA) and
quantum algorithms; some experiments were
carried out with the Max-one, Royal-road functions,
and Knapsack Problem. The results were
compared with the Binary Gravitational Search
Algorithm (BGSA), Conventional Genetic Algorithm
(CGA), Binary Particle Swarm Algorithm (BPSO),
a modified version of the BPSO, a new version
of the Binary Differential Evolution Algorithm,
Quantum-Inspired Particle Swarm Algorithm, and
three Quantum-Inspired Evolutionary Algorithms.
For the problems mentioned above, the BQIGSA
algorithm presented the best results.

In [18], A Binary Multi-scale Quantum Harmonic
Oscillator Algorithm (BMQHOA) to solve the Knap-
sack Problem is designed. BMQHOA is inspired
by the probabilistic interpretation of the wave
function and using properties such as quantum
tunnel effect avoids local optimum. Several
experiments were carried out with the following
algorithms: Binary Bat Algorithm (BBA), Binary
Dragonfly Algorithm (BDA), Binary Particle Swarm
Algorithm (BPSO) and Binary Particle Swarm with
Gravitational Search Algorithm (BPSOGSA). The
results showed the superiority of BMQHOA in
precision, convergence, and stability compared to
the algorithms mentioned above.

In [13], a Quantum-inspired Wolf pack Algorithm
to solve the 0-1 Knapsack Problem is presented.
The algorithm is based on the behavior of the wolf
pack when hunting; this approach uses quantum
gates to update the position of the solutions.
Experiments were carried out with 100, 250, 500,
and 1000 dimensions. Compared with other
algorithms in the literature, the results showed the
proposed algorithm’s effectiveness, especially for
large cases.

In [12], a Quantum Annealing Algorithm
(QA) that uses parallel computing properties to
solve the Multidimensional Knapsack Problem
was introduced. QA is a technique derived
from Simulated Annealing Algorithm (SA). The
experiments with 500 objects showed that QA
outperforms its non-parallel version.

We end this section with a work where Adiabatic
Quantum Computing (AQC) was used to solve
the Binary Knapsack Problem using the libraries
of IBM Qiskit simulator [29]. AQC is considered
a particular class of Quantum Annealing (QA),
which uses quantum mechanics properties to solve
optimization problems without restrictions. The
results obtained show the quantum algorithm’s
effectiveness and a slight superiority compared to
its classical counterpart.

3 Theoretical Framework

3.1 The Knapsack Problem

One of the most studied combinatorial optimization
problems is the knapsack problem, which is
computationally challenging because it is NP-hard.
[14, 35, 22]. The problem consists in given a set
of objects, each with a weight wi and value pi,
to determine which objects should be part of a
collection with the condition that the weight WX
is less than or equal to a certain limit, and the total
value PX is what largest possible [52].

The mathematical representation of the model is
presented below:

maximize f(x1, x2, . . . , xn) = PX =

n∑
i=1

pixi,

subject toWX =

n∑
i=1

wixi ≤ V,
(1)

xj ∈ {0, 1}, j = 1, 2, . . . , n. Here P =
(p1, p2, . . . , pn), W = (w1, w2, . . . , wn) represent
the vector of values and the vector of weights of all
objects respectively. V is the maximum capacity of
the knapsack, xi = 1 indicates that the object i is
inside of the knapsack and xi = 0 that it is not.

3.2 Quantum Computing

A classical computer uses bits to store information,
whereas a quantum computer uses quantum bits
or qubits. Qubits are a unit of information
that describes a two-dimensional quantum system
[49]. An important characteristic of quantum
computation is that the qubit can be in a state of
superposition, that is, the qubit can be in the |0〉

Computación y Sistemas, Vol. 26, No. 2, 2022, pp. 725–742
doi: 10.13053/CyS-26-2-4253

Enrique Ballinas, Oscar Montiel728

ISSN 2007-9737

and |1〉 state simultaneously. Mathematically this is
represented as a matrix of complex numbers:

|ψ〉 = a|0〉+ b|1〉 ≡
(
a
b

)
, (2)

where |a|2+|b|2= 1. Thus |a|2 and |b|2 represent
the probability of finding the qubit after being
measured in the state |0〉 and |1〉 respectively
[49, 28].

Dirac’s notation allows describing the state of a
quantum system formally. For each “ket” |ψ〉 there
is a corresponding “bra” 〈ψ|. The ket and the bra
contain equivalent information about the quantum
state. Mathematically, they are dual with each
other, that is:

〈ψ| = a∗〈0|+ b∗〈1| = (a∗b∗). (3)

Just as a single qubit can be found in superposi-
tion of the possible states |0〉 and |1〉, a register
of n-qubits can be found in superposition of all
2n possible states |00 . . . 0〉, |00 . . . 1〉, . . . , |11 . . . 1〉.
For example the general form of the state of a 2
qubit quantum memory register is represented as:

|ψ〉 = c0|00〉+ c1|01〉+ c2|10〉+ c3|11〉, (4)

where |c0|2+|c1|2+|c2|2+|c3|2= 1. This implies that
we can have a register that contains many different
bit strings, each with its corresponding amplitude
value.

The general form of a n-qubit quantum memory
register is:

(5)|ψ〉 = c0|00 . . . 0〉+ c1|00 . . . 1〉+ . . .

+ c2n−1|11 . . . 1〉=
2n−1∑
i=0

ci|i〉,

where
∑2n−1

i=0 |ci|2= 1 and |i〉 represents the eigen
state of the computational base whose bit values
match those of the decimal number expressed in
base 2 notation, padded on the left (if necessary)
with bits “0” to make a full complement of n bits.

3.3 Quantum Inspired Algorithms

The concepts and principles of quantum me-
chanics to develop more efficient evolutionary
computing methods were introduced by Narayanan
and Moore in 1996 [33]. The main objective
was to compare the performance of a classic
algorithm and quantum-inspired algorithm in the
Traveling Salesman Problem (TSP). They use an
interference crossover operator, which consists
of taking the first element of chromosome
one, the second element of chromosome two,
the third element of chromosome three, and
so on; if an element already exists on the
chromosome, another element that does not
exist on the chromosome is chosen. The
results showed that the quantum-inspired genetic
algorithm outperformed the classical version.

In [32], a basic methodological principle to
design a quantum algorithm was presented. The
main objective was to identify the novelty and
potential of the quantum algorithm in tackling
NP-hard problems.

The two first pioneer works on quantum
computing are Genetic Quantum Algorithm (GQA)
proposed by [15] and Quantum Inspired Evolu-
tionary Algorithm (QEA) introduced in [16]. GQA
is based on quantum computing concepts and
principles such as qubits and superposition instead
of binary, numeric, or symbolic representation.
GQA [15] demonstrated its effectiveness and
applicability by experimental results on the 0-1
Knapsack Problem. All the experiments were
simulated only in classic computers.

Quantum genetic algorithms have an excel-
lent ability to perform global searches due to
thier diversity in the population caused by the
probabilistic representation; this characteristic
allows for finding better solutions in a shorter
time than the classical algorithms [17]. For
example, with a single quantum register of
three qubits, it is possible to represent eight
states (23 = 8); to represent eight states with
a classical algorithm, eight registers would be
needed. For large instances of N (large problems),
a quantum computer requires only a 32-qubit
register to handle all the possible combinations
of 32-bit numbers, whereas a classical computer

Computación y Sistemas, Vol. 26, No. 2, 2022, pp. 725–742
doi: 10.13053/CyS-26-2-4253

Hybrid Quantum Genetic Algorithm for the 0-1 Knapsack Problem in the IBM Qiskit Simulator 729

ISSN 2007-9737

requires 4,294,967,296 memory registers, which is
significantly large.

The QEA [16] is the upgrade of the GQA [15], like
the GQA, the QEA was designed to solve the 0-1
Knapsack Problem. The process to find the optimal
solution in both algorithms is similar. The main
difference between both proposals is the concept
of migration introduced by QEA, which is a process
that can induce a variation of the probabilities of a
quantum chromosome [31].

The interaction between quantum computing
and evolutionary computation can be addressed
in three different ways [50]: The first is
the Evolutionary-Designed Quantum Algorithm
(EDQAs); here, the idea is to use genetic
programming to generate new quantum algo-
rithms. The second way is to use Quantum
Evolutionary Algorithms (QEAs), focusing on
developing evolutionary algorithms for quantum
computers. The third way is Quantum-Inspired
Evolutionary Algorithms (QIEAs), which use
quantum mechanics concepts such as qubits,
superposition, quantum gates, and quantum
measurements to develop evolutionary methods
for classic computers; a novel proposal in this
category is the Quantum Inspired Acromyrmex
Evolutionary Algorithm (QIAEA) [30].

Nowadays, companies such as D-wave [23],
Google [3], and IBM [37] have created quantum
computers with the ability to solve some problems
that today’s classical computers cannot. With the
arrival of quantum supremacy (a term coined by
John Preskill [39]) announced by Google in 2019
[3], it was mentioned that any problem that a
classical computer could not solve in polynomial
time could be solved by a quantum computer.
However, In [40] mentioned that we are currently
in the NISQ (Noisy Intermediate-Scale Quantum)
era. Intermediate scale refers to the size of
quantum computers available at present, and
Noisy emphasizes that we will have imperfect
control over those qubits. At present, the hardware
for controlling trapped ions [4], or superconducting
circuits [5], the error rate per gate for two-qubit
gates is above the 0.1% [40], which means that
with a sequence of 1000 quantum gate operations,
the error rate in the circuit would be 100%, which
would not give reliable results at all.

3.4 IBMQ Framework

The IBMQ framework is a software development
kit (SDK) for performing quantum computations
that utilize quantum mechanical principles such
as superposition and entanglement. It allows
the development of hybrid quantum computing
algorithms that is an essential issue for our
proposal. All the experiments were designed
and run on the Qiskit platform, an open-source
framework computational platform for working with
quantum computers at the level of circuits, pulses,
and algorithms. Qiskit is made up of four
fundamental elements [19]. They are: 1) Terra that
provides a base for composing quantum programs
at the circuit level and pulses; with this module,
we can perform optimizations for the constraints of
a specific device. 2) Aer that allows accelerating
the development of applications via simulators and
noise models. 3) Ignis dedicated to fighting noise
and errors; it is meant for those who want to
work designing quantum error correction codes. 4)
Aqua is where algorithms for quantum computing
are built; this module focuses on constructing
solutions for real-world application problems.

3.5 Hybrid Quantum Genetic Algorithm for
solving the Knapsack Problem in the IBM-Q
quantum computer

This section will describe our proposal to solve the
knapsack problem using a quantum hybrid genetic
algorithm. Hybrid computation in the NISQ era
is an good way to perform quantum computing to
no loose coherency, especially when the length
of quantum circuits is high, which is the case of
quantum meta-heuristics.

Figure 1 shows a block diagram where a
quantum hybrid genetic algorithm is depicted. On
the right side are the computation steps that are
executed by the classical computer. On the left
side are the steps that are performed by the
quantum computer. As was mentioned, this model
of computation will help us to maintain quantum
circuits of small lengths. To understand better
this figure is convenient to use Algorithm 1 and
Algorithm 2. The computational steps that are
achieved by the quantum computer are 3, 5, and
8 of Algorithm 1; the CC executes the remaining.

Computación y Sistemas, Vol. 26, No. 2, 2022, pp. 725–742
doi: 10.13053/CyS-26-2-4253

Enrique Ballinas, Oscar Montiel730

ISSN 2007-9737

Fig. 1. Hybrid genetic algorithm. On the right side are
the classical computer’s steps. On the left side, the
steps executed by the quantum computer or quantum
simulator. In the figure, RP is the classic population after
having been evaluated in the repair function

The CC performs the HQGA’s parameter
initialization for both systems, the classical and the
QC. In this first stage, the quantum chromosome
length is defined, and this information is sent to
the QC. In the QC, the quantum chromosome
|Ψt

i〉 is set in the superposition state where a
number n of measurements is achieved to create
an initial classical population P . In the CC, this
population is repaired, evaluated, and sorted in
descending order.

Algorithm 1 describes our algorithmic implemen-
tation proposal of the Hybrid Quantum Genetic
Algorithm (HQGA) to solve the knapsack problem.
The input of the HQGA is a set of quantum
chromosomes; i.e, the initial quantum population
is defined as Q(t) = [Ψt

1,Ψ
t
2, . . . ,Ψ

t
n], where n is

Algorithm 1 Hybrid Quantum Genetic Algorithm

Input: The number n of quantum chromosomes,
and the maximal number of generations
MAX GEN

Output: The best solution b
1: Begin
2: t←− 0;
3: Initialize Q(t)
4: while t < MAX GEN do
5: Measure Q(t) to generate P (t)
6: Repair P (t)
7: Evaluate RP (t)
8: Update Q(t)
9: Store the best solution b of P (t) in B(t)

10: End

the size of the population and t is the generation
number. A quantum chromosome is defined
as follows:

|Ψt
i〉 =

[
αt
i,1 αt

i,2 . . . αt
i,m

βt
i,1 βt

i,2 . . . βt
i,m

]
, (6)

wherem is the number of qubits and i = 1, 2, . . . , n.
The length of a qubit string is the same as the
number of items.

The algorithm’s output will be the best classical
solution through generation saved in B(t). In a
similar fashion to any evolutionary algorithm, we
started by using a generation counter t.

In step 2, the generation counter is initialized. In
Step 3, we initialized the quantum chromosomes
Q(t) in the zero states, and then, they were put in
the superposition state using the Hadamard gate;
i.e.; for each quantum chromosome, we performed
the next quantum operation |Ψi〉|⊗|H⊗n〉. For
the experiments, a population of one quantum
chromosome was used

Step 4 is a while loop that will end when
the maximum number of generations MAX GEN
has been reached. In step 5, the quantum
population is observed (measured) to generate
classical population (0 and 1) according to |ψ〉 =
α|0〉+ β|1〉, where α represents the probability that
the qubit collapses to the zero state (|0〉) and β the
probability that the qubit collapses to state one (|1〉)
after being measured.

Computación y Sistemas, Vol. 26, No. 2, 2022, pp. 725–742
doi: 10.13053/CyS-26-2-4253

Hybrid Quantum Genetic Algorithm for the 0-1 Knapsack Problem in the IBM Qiskit Simulator 731

ISSN 2007-9737

Algorithm 2 Repair Algorithm

Input: Classic chromosomes P (t) = 0 . . . 000 +
. . .+ 1 . . . 1112n−1, n is the number of qubits

Output: RP (t)
1: Begin
2: knapsack-full← false
3: if

∑m
j=1 wjxj > V then knapsack-overfilled ←

true
4: while knapsack-full = true do
5: Select a j-th item from the knapsack
6: xj ← 0
7: if

∑m
j=1 wjxj < V then knapsack-full ←

false
8: while knapsack-full = false do
9: Select a j-th item from the knapsack

10: xj ← 1
11: if

∑m
j=1 wjxj > V then knapsack-full ←

true
12: End

Fig. 2. Quantum circuit of the HQGA implemented in the
IBM Qiskit simulator to solve the knapsack problem for
100, 250 and 500 objects

A repair algorithm was used in step 6, the main
objective of this algorithm is to add or remove items
from the knapsack as shown below.

The inputs of the Algorithm 2 are classic
chromosomes P (t) and the output will be classic
repair chromosomes RP (t). Algorithm 2 begins
with the variable knapsack-full; this indicates if the
knapsack is full (true) or not (false). If the sum
of the weight wj of each object xj is greater than
the total capacity V of the knapsack, it means that
knapsack-full = true, and the algorithm continues in
step 4; otherwise, it continues in step 8.

Continuing with step 7 of Algorithm 1 the profit
of a solution x is evaluated by

∑n
i=1 pixi, and it

is used to find the best solution b to store in B(t)
(step 9) after the update of |Ψi〉, i = 1, 2, . . . , n. A
qubit chromosome |Ψi〉 is update (step 8) by using
a Ry(θ) rotation gate. The j-th qubit value (αj , βj)
is update as:[

α′j
β′j

]
=

[
cos(θj) − sin(θj)
sin(θj) cos(θj)

] [
αj

βj

]
. (7)

4 Experiments and Results

Figure 2 shows the quantum circuit of the HQGA in
the Qiskit simulator (ibm qasm simulator) to solve
the Knapsack Problem with 100, 250, and 500
objects. The ibm qasm simulator is a quantum
environment designed by IBM; this simulator allows
to generate circuits with a maximum of 32 qubits,
which could be considered limited for the problem
to be addressed. The simulator allows adding bits
to the quantum register so that it is possible to use
bits and qubits within the same register.

Quantum algorithms have shown that with a
single evaluation of the oracle, it is possible to
determine the state of the function [9, 21, 36].
The same principle can be used when solving the
Knapsack Problem since with a single evaluation
in the fitness function is possible to determine the
profit of the 2n possible configurations.

The circuit (see Figure 2) is composed of a Pauli-
X gate (X) which serves as an ancillae gate that
will enable the C-NOT (Controlled NOT) gates to be
activated; these generate entanglement between
each of the qubits. Hadamard gates (H) are also
shown, whose main objective is to place the qubits
in superposition, as well as rotation gates (Ry(θ))
which are used to update the quantum population.

According to [47] one of the main characteristics
to indicate the complexity of a quantum circuit is
its length (number of serial gate operations after
having parallelized the circuit to the maximum
extent possible). The quantum circuit’s length is
5 and the width (total number of qubits on which
the circuit acts, including any ancillae qubit) is
21 qubits.

In [15, 17, 16] it is mentioned that the number
of bits (qubits, in our case) must be equal to the
number of objects in the knapsack.

Computación y Sistemas, Vol. 26, No. 2, 2022, pp. 725–742
doi: 10.13053/CyS-26-2-4253

Enrique Ballinas, Oscar Montiel732

ISSN 2007-9737

Table 1. Experimental results of the knapsack problem
with hybrid quantum genetic algorithm

N Best Worst Average Std

100 666.23 662.60 663.89 0.945
250 1591.03 1591.010 1591.01 0.003
500 3347.33 3340.91 3347.12 1.173

Table 2. Experimental results of hybrid quantum genetic
algorithm with 100 objects

Run Generations Rotation angles Best
1 125 2.0420 663.78
2 93 1.7122 663.78
3 113 2.1049 663.50
4 62 1.4608 663.85
5 93 1.7122 665.85
6 113 1.8378 663.58
7 104 1.9792 663.50
8 72 1.6650 663.85
9 117 2.2619 663.15
10 102 1.9792 663.50
11 144 2.1991 663.19
12 94 1.9792 663.13
13 122 2.2305 663.78
14 956 7.6498 663.85
15 105 2.0892 663.85
16 84 1.7436 663.19
17 234 2.6075 663.17
18 930 8.1524 663.58
19 120 1.9792 663.58
20 106 1.8221 665.85
21 120 2.0420 663.50
22 72 1.5708 665.54
23 203 2.3876 663.42
24 97 1.7907 666.23
25 125 2.1677 663.78
26 119 2.1677 663.17
27 121 2.1677 663.78
28 132 2.1520 665.85
29 123 1.9321 663.42
30 121 1.9949 662.60

However, the Qiskit simulator only allows a
maximum of 32 qubits, but to not overload the
system’s RAM memory it was decided to use only
21 qubits, to complete the remaining qubits, bits
were added to the quantum register.

In all the experiments, the following data sets
were considered:

wi = uniformly random[1, 10)

pi = wi + 5,
(8)

and the average knapsack capacity was calculated
as V = 1/2

∑m
i=1 wi. One of the most accepted

ways to classify the complexity of an instance is
the correlation between its data: the relationship
or not between the weights of each object and
its profit [29, 38]. This complexity is defined
as: Uncorrelated, Weakly correlated, Strongly
correlated, Inverse strongly correlated, Almost
strongly correlated, and Subset sum. Where
strongly correlated instances are hard to solve [38].

We carried out experiments to test the algo-
rithm’s performance. We ran the algorithm 30 times
during 1000 generations, with strongly correlated
data sets of 100, 250, and 500 objects. the IBM
Qiskit simulator was used.

Table 1 shows the experimental results of HQGA
solving the Knapsack Problem with 100, 250, and
500 objects. The “N” column represents the
number of objects in the knapsack, the “Best”,
“Worst”, “Average”, and “Std” columns, represent
the best solution, the worst solution, the average
solution, and the standard deviation, respectively.

The experimental results demonstrated the
robustness of the HQGA solving the Knapsack
Problem with different quantities of objects
because the standard deviation (Std) presented
in Table 1 shows small values, even very close
to zero.

Tables 2, 3, and 4 show the experiments with
100, 250, and 500 objects, respectively. For
each table, the “Run” column represents the run’s
number, and the “Generations” column shows the
generation where the best solution was obtained in
each run; the “Rotation angles” column represents
the angle of the rotation gate in that generation, the
“Best” column shows the best solution obtained in
each run.

Table 4 shows the experimental results with 500
objects. The best solution (bold letters) was in
the first run and the worst solution (italic letters)
in run 12. The rotation angles was 37/50π and
28/50π respectively.

Computación y Sistemas, Vol. 26, No. 2, 2022, pp. 725–742
doi: 10.13053/CyS-26-2-4253

Hybrid Quantum Genetic Algorithm for the 0-1 Knapsack Problem in the IBM Qiskit Simulator 733

ISSN 2007-9737

Table 3. Experimental results of hybrid quantum genetic
algorithm with 250 objects

Run Generations Rotation angles Best
1 160 2.3562 1,591.01
2 122 2.0420 1,591.01
3 137 1.9635 1,591.01
4 134 2.1834 1,591.01
5 162 2.4347 1,591.01
6 122 1.9792 1,591.01
7 113 1.9321 1,591.01
8 126 2.0892 1,591.01
9 169 2.2934 1,591.01
10 146 2.2305 1,591.01
11 103 1.8692 1,591.01
12 137 2.1206 1,591.01
13 133 2.0263 1,591.01
14 129 2.2462 1,591.01
15 117 2.1206 1,591.01
16 143 2.3248 1,591.01
17 131 1.9792 1,591.01
18 121 1.9949 1,591.01
19 161 2.2619 1,591.01
20 121 1.9792 1,591.01
21 131 2.0577 1,591.01
22 209 2.6232 1,591.01
23 139 2.1834 1,591.01
24 200 2.3091 1,591.01
25 114 1.8064 1,591.01
26 124 2.1206 1,591.01
27 113 1.9321 1,591.01
28 104 1.7593 1,591.03
29 129 1.9792 1,591.01
30 153 1.9949 1,591.01

In Table 2, the best solution was obtained in run
24 (bold letters) with a rotation angle of 14/25π and
the worst in run 30 (italic letters) with a rotation
angle of 16/25π.

In some runs a big difference can been seen
between the rotation angles (see Table 2). For
example, in run 18, the rotation gate has an angle
of 8.1524 rad (13/5π), and the run 17 has an
angle of 2.6 rad (41/50π); this difference is due
to the intrinsic probabilistic condition of quantum
algorithms and the number of bits and qubits that
the quantum register has. The last characteristic
will be explained later.

In Table 3, the experimental results with 250
objects is presented. The worst solution (italic

Table 4. Experimental results of hybrid quantum genetic
algorithm with 500 objects

Run Generations Rotation angles Best
1 247 2.3248 3,347.33
2 150 1.9792 3,347.33
3 191 1.9635 3,347.33
4 155 1.7593 3,347.33
5 161 1.9478 3,347.33
6 168 2.1991 3,347.33
7 163 2.0263 3,347.33
8 148 1.7279 3,347.33
9 165 1.9007 3,347.33

10 177 1.9792 3,347.33
11 149 1.8850 3,347.33
12 156 1.7750 3,340.91
13 225 2.1677 3,347.33
14 209 1.9635 3,347.33
15 257 2.1520 3,347.33
16 154 1.8692 3,347.33
17 161 1.9164 3,347.33
18 162 1.9792 3,347.33
19 225 2.0735 3,347.33
20 200 2.1049 3,347.33
21 227 2.2305 3,347.33
22 182 1.9792 3,347.33
23 174 1.9949 3,347.33
24 177 2.1991 3,347.33
25 159 2.0420 3,347.33
26 164 1.8064 3,347.33
27 244 2.3405 3,347.33
28 257 2.3405 3,347.33
29 190 2.3091 3,347.33
30 803 3.5657 3,347.33

letters) was obtained in run 1 with a rotation angle
of 15/20π and the best solution (bold letters) in run
28 with a rotation angle of 11/20π.

The best solutions presented by Table 3 and 4
show values very similar, unlike those presented
by Table 2.

This behavior is due to the number of bits
(qubits) that the quantum register handles and how
the rotation angle is determined; as mentioned
above, the number of objects in the knapsack
is equal to the number of bits and qubits that
the quantum register has. For example, for
250 objects, the quantum register stores 250 bits
(the qubits have already been measured). To
determined the rotation angle, the i−th bit of the

Computación y Sistemas, Vol. 26, No. 2, 2022, pp. 725–742
doi: 10.13053/CyS-26-2-4253

Enrique Ballinas, Oscar Montiel734

ISSN 2007-9737

Table 5. θ values for the rotation gates

xi bi f(x) ≥ f(b) ∆θ

0 0 false 0
0 0 true 0
0 1 false 0
0 1 true 0.05
1 0 false 0.01
1 0 true 0.025
1 1 false 0.005
1 1 true 0.025

Table 6. Best, worst, average solutions, and standard
deviation (Std) with 100 objects. Best results in bold

Algorithm Best Worst Average Std

HQGA 666.23 662.60 663.89 0.945
HQGA-Q 636.09 636.09 636.09 2.31e-13

QIEA 663.50 656.01 659.87 2.812
QIEA-Q 660.92 599.60 632.37 19.739

current quantum register and the i−th bit of the
best solution obtained up to that moment are
compared (see Table 5), as there are more bits
in the register the probabilities to obtaining large
rotation angle values are lower, causing the best
solutions to remain constant.

The rotation angles for all experiments were set
using Table 5 and obtained from [15, 17]. Where
xi and bi represent the i-th bits for the binary
solution x and the best solution b, respectively.
The third column (f(x) ≥ f(b)) is the comparison
between the evaluation of the binary solution and
the evaluation of the best solution. The column ∆θ
represents the rotation value for the rotation gate.

For testing the performance of the HQGA, it was
compared against a modified version of HQGA
(HQGA-Q), a Quantum Inspired Evolutionary
Algorithm (QIEA), and a modified version of
QIEA (QIEA-Q). The quantum circuits used for
the aforementioned algorithms are the same as
shown in Figure 2. They were all implements
in the ibm qasm simulator. The operation of the
HQGA-Q is very similar to the HQGA; the only
difference is that the HQGA-Q uses only qubits
in its quantum register, while the HQGA uses bits
and qubits. For example, with 100 objects, the
HQGA has in its quantum register 21 qubits and

79 bits (as we mentioned at the beginning of the
section, the number of objects must be equal to
the number of bits and qubits), and the HQGA-Q
begins with a quantum register of 5 qubits, then
the quantum register is measured 20 times, at the
end a population of 100 bits is obtained. The same
happens between the QIEA and QIEA-Q.

The experimental results of the HQGA, HQGA-
Q, QIEA, and QIEA-Q with 100, 250 and 500
objects are presented in Tables 6, 7, and 8
respectively. All the experiments were carried out
in the Qiskit IBM simulator with 30 runs and 1000
generations, except for QIEA with 250 and 500
objects; in both cases, 20 runs were carried out.

The results presented in Table 6 demonstrate
the superiority of the HQGA over its quantum
counterpart. However, the HQGA-Q shows a
lower standard deviation (Std); this is due to the
number of qubits that the algorithm uses. In all
experiments, five qubits were used for the HQGA-Q
and the QIEA-Q. With 5 qubits 25 = 32 possible
solutions can be obtained, while with 21 qubits
(quantity used for the HQGA and QIEA), 221 =
2, 097, 152 possible solutions are obtained. This
indicates a greater diversity in both algorithms that
generate better results.

With 250 objects (see Table 7), the HQGA
outperform the rest of the algorithms (HQGA-Q,
QIEA, and QIEA-Q) in all cases, presenting even a
lower standard deviation, demonstrating its stability
and better performance.

Table 8 shows the results with 500 objects, in this
case we can see that HQGA and QIEA have the
same best values, but QIEA has better standard
deviation (Std), worst, and average solutions. In
all the experiments HQGA and QIEA have better
results than HQGA-Q and QIEA-Q.

By observing the three Tables (6, 7, and 8), we
can see that the best solutions are provided by
the HQGA and QIEA, as it was mentioned, both
algorithms use bits and qubits in their quantum
register, instead of HQGA-Q and QIEA-Q, whose
algorithms use only qubits.

This shows that the use of bits and qubits
in algorithms generates greater diversity allowing
them to find better solutions in the search space.

Figure 3 shows the distribution in box plot of
the best solutions for each of the quantum-inspired

Computación y Sistemas, Vol. 26, No. 2, 2022, pp. 725–742
doi: 10.13053/CyS-26-2-4253

Hybrid Quantum Genetic Algorithm for the 0-1 Knapsack Problem in the IBM Qiskit Simulator 735

ISSN 2007-9737

Table 7. Best, worst, average solutions, and standard
deviation (Std) with 250 objects. Best results in bold

Algorithm Best Worst Average Std

HQGA 1591.03 1591.01 1591.01 0.003
HQGA-Q 1576.2 1553.86 1562.37 5.701

QIEA 1591 1590.87 1591 0.031
QIEA-Q 1568.2 1548.08 1559.92 6.051

Table 8. Best, worst, average solutions, and standard
deviation (Std) with 500 objects. Best results in bold

Algorithm Best Worst Average Std

HQGA 3347.33 3340.91 3347.12 1.173
HQGA-Q 3260.34 3169.92 3218.42 31.14

QIEA 3347.33 3347.33 3347.33 1.86e-12
QIEA-Q 3257.9 3158.16 3222.64 34.241

methodologies with 100 objects. The HQGA has
a higher median demonstrating that it had greater
number of better solutions than the HQGA-Q,
QIEA, and QIEA-Q. Also, the range is very short
comparing with the other methodologies, except for
the HQGA-Q, where the range is almost zero. We
can see that with a few objects, the HQGA-Q has
a robust performance.

Figure 4 shows the best solutions for the
knapsack problem with 250 objects in a box plot.
Here, we can see a similar behavior between the
algorithms that combined bits and qubits (HQGA
and QIEA). Also, the algorithms that only use
qubits (HQGA-Q and QIEA-Q) have almost the
same behavior between each other, since the
distribution of their data and the median is very
similar for each pair of algorithms.

Another point worth highlighting is that the
HQGA-Q presents better distribution in its solu-
tions, unlike those shown in Figure 3, while QIEA-Q
shows a lower distribution in its solutions. This
demonstrates how the number of objects affects
both algorithms’ performance as the number of
objects increases, while the HQGA and QIEA do
not show this behavior.

The behavior of the HQGA and the QIEA shown
in Figure 5 is very similar to that presented in
Figure 4, even to that shown in Figure 3. This
demonstrates the stability of both algorithms when

Fig. 3. Box plot of the best profits (solutions) of the
HQGA, HQGA-Q, QIEA, QIEA-Q with 100 objects

Fig. 4. Box plot of the best profits (solutions) of the
HQGA, HQGA-Q, QIEA, QIEA-Q with 250 objects

solving the knapsack problem with a different
number of objects.

On the other hand, the HQGA-Q and the QIEA-Q
present behaviors very different from those shown
in Figures 3 and 4, with a negative asymmetric
distribution where most of their data tend towards
the third quartile demonstrating the instability of
the algorithms that only use qubits (HQGA-Q and
QIEA-Q) in solving the knapsack problem.

From the previous results, we can see that the
HQGA and QIEA proposals are the ones that have
shown the best results when solving the knapsack
problem with 100, 250, and 500 objects. For this
reason, Figure 6, 7, and 8 present the performance

Computación y Sistemas, Vol. 26, No. 2, 2022, pp. 725–742
doi: 10.13053/CyS-26-2-4253

Enrique Ballinas, Oscar Montiel736

ISSN 2007-9737

Fig. 5. Box plot of the best profits (solutions) of the
HQGA, HQGA-Q, QIEA, QIEA-Q with 500 objects

Fig. 6. Performance of the best run of HQGA vs QIEA
with 100 objects

of both algorithms in solving the knapsack problem
with 100, 250, and 500 objects, respectively.

From Figure 6 a comparison between the
performance of HQGA and QIEA solving the
knapsack problem with 100 objects is obtained.
The solid red line represents the best run of the
HQGA, and the solid blue line represents the
performance of the best run of the QIEA. The runs
number 24 and 6 were the best for the HQGA and
QIEA, respectively. For HQGA, a stable solution
is reached after generation number 400, while
for the QIEA, a stable solution is never reached.
The best solution of the HQGA was obtained in
generation number 97. For the QIEA, the best

solution occurred in generation number 92. It can
be seen that the HQGA finds a better solution to
the problem in fewer generations than the QIEA,
in addition to presenting constant solutions after
a certain number of generations, which shows the
stability of the HQGA.

With 250 objects, the HQGA in Figure 7 shows
its best performance in run 28. The best solutions
were obtained in generation 104, and the algorithm
reached stable solutions after generation 400
(specifically generation 463). The QIEA had its
best performance in the first run, reaching the best
solution in generation 101 and the stability after
generation 300. For this problem, it can be seen
that both algorithms reached stable solutions after
a certain number of generations, unlike what is
shown in Figure 6, where the QIEA cannot achieve
this behavior, we can even see how the migration
operator in the QIEA allows obtaining constant
solutions through certain generations. However,
this does not mean that the QIEA is more stable
than the HQGA since with 100 objects (Figure 6)
it could be seen that the HQGA was the one that
found stable solutions, while QIEA did not present
the same behavior.

Fig. 7. Performance of the best run of HQGA vs QIEA
with 250 objects

The performance of the HQGA and QIEA solving
the knapsack problem with 500 objects (see Figure
8) is very similar to that presented in Figure 7.
In both cases, the first run was the best. The
HQGA obtained its best solution at generation 247

Computación y Sistemas, Vol. 26, No. 2, 2022, pp. 725–742
doi: 10.13053/CyS-26-2-4253

Hybrid Quantum Genetic Algorithm for the 0-1 Knapsack Problem in the IBM Qiskit Simulator 737

ISSN 2007-9737

Fig. 8. Performance of the best run of HQGA vs QIEA
with 500 objects

and stable solutions after generation 300. QIEA
reached its best solution at generation 205 and
stable solutions after generation 300, but we can
see a small peak at generation 600 and after
generation 900. While the HQGA only shows
constant solutions.

With 250 and 500 objects (Figure 7 and 5) the
QIEA obtained a best solution before the HQGA
showing a better convergence time. Nevertheless,
the HQGA in all the experiments (100, 250 and
500 objects) has shown a better stability and better
optimal solutions.

So far only experiments comparing hybrid
quantum algorithms have been shown. However,
it is necessary to compare the performance of the
HQGA with a classical genetic algorithm (GA) to
get a complete picture of the HQGA’s behavior.
GA was run 30 times, with 1000 generations on
three strongly correlated data sets (100, 250, and
500 objects).

Table 9. HQGA and GA experimental results with 100
objects. Best results in bold

Algorithm Best Worst Average Std

HQGA 666.23 662.6 663.89 0.945
GA 712.18 658.03 687.35 12.39

For the selection process, the tournament
selection operator was used, in the recombination

Table 10. HQGA and GA experimental results with 250
objects. Best results in bold

Algorithm Best Worst Average Std

HQGA 1591.03 1591.01 1591.01 0.003
GA 1688.42 1608 1651.16 16.61

Table 11. HQGA and GA experimental results with 500
objects. Best results in bold

Algorithm Best Worst Average Std

HQGA 3347.33 3340.91 3347.12 1.173
GA 3581 3513.86 3548.75 19.6

process the single one-point crossover operator
was used, and finally a mutation operator. In all the
experiments a population of 100 chromosomes, a
recombination rate of 0.8, and a mutation rate of
0.4 were used.

Tables 9, 10, and 11 show the experimental
results of the HQGA and GA with 100, 250, and
500 objects, respectively. In all the experiments,
HQGA is outperformed by GA in obtaining the best
solutions. Let us remember that both algorithms
were executed in a classical computer, this means
that the GA has the advantage of being able to
generate its complete population of bits, while the
HQGA being a hybrid algorithm and due to the
limitations of the NISQ era mentioned above, it
cannot generate the entire population of qubits,
which limits the HQGA’s ability to perform better.
To correctly approach the comparison of both
algorithms, it would be necessary to implement the
HQGA in a quantum computer that allows the use
of the necessary number of qubits.

Although, the HQGA was clearly surpassed by
the GA in the best solutions, the HQGA obtained in
all the experiments the smallest standard deviation
(Std), demonstrating a better robustness even
when implemented in a classical computer.

To see more clearly the performance of the
HQGA and GA, in Figures 9, 10, and 11
the performance graphs of both algorithms are
presented with 100, 250, and 500 objects,
respectively. With 100 objects, Figure 9 clearly
shows from the beginning of the generations the
superiority of GA compared to HQGA.

Computación y Sistemas, Vol. 26, No. 2, 2022, pp. 725–742
doi: 10.13053/CyS-26-2-4253

Enrique Ballinas, Oscar Montiel738

ISSN 2007-9737

However, the search capacity of the HQGA is
better, as its first solution was approximately 370
and its best solution was 666.23, therefore there
was a 1.8-fold increase over the initial solution.
While GA’s first solution was approximately 620,
and its best solution was 712.18, the increase was
1.14 times, less than presented by the HQGA.

Figure 10 shows the performance of the HQGA
and GA with 250 objects. In addition to the
evident superiority of the GA over the HQGA, it
can be noted that both proposals reached their
best solution in the same number of generations
(approximately in the 100th generation).

With 500 objects (Figure 11), things remain very
similar to what was previously presented.

One of the main disadvantages of the HQGA
is the execution time. Because the number of
qubits (and bits) in a quantum register equals the
number of objects in the knapsack, it is currently
impossible to deal with problems with more than
15 elements [29].

For instance, a system with n-qubits can rep-
resent 2n states simultaneously, which becomes
a difficult task for a current classic computer.
The tests were performed on personal computer
equipment with 8 Gigabytes of RAM memory
and a Intel(R) Core(TM) i7-3537U CPU @
2.50 GHz processor.

Fig. 9. Performance of the best run of HQGA vs GA with
100 objects

Fig. 10. Performance of the best run of HQGA vs GA
with 250 objects

Fig. 11. Performance of the best run of HQGA vs GA
with 500 objects

5 Conclusion and Future Work

This paper proposes a Hybrid Quantum Genetic
Algorithm (HQGA), a modified version of the
HQGA (HQGA-Q), a Quantum Inspired Evolu-
tionary Algorithm (QIEA), and a modified version
of QIEA (QIEA-Q) implemented in a quantum
simulator to solve the 0-1 knapsack problem.

The novelty of this work is the design of
the aforementioned quantum algorithms and
their implementation in the Qiskit IBM quantum
simulator. There are already some works in the
state of the art that have implemented algorithms in
the Qiskit IBM simulator [29, 44], solving the binary

Computación y Sistemas, Vol. 26, No. 2, 2022, pp. 725–742
doi: 10.13053/CyS-26-2-4253

Hybrid Quantum Genetic Algorithm for the 0-1 Knapsack Problem in the IBM Qiskit Simulator 739

ISSN 2007-9737

knapsack problem and the traveling salesman
problem, respectively. However, this proposal
implemented and compared the performance of
four quantum algorithms solving the knapsack
problem with different number of objects using a
strongly correlated data set. In addition, a quantum
circuit was designed and implemented to generate
the initial quantum population. This proposal until
today has not been seen in any other work present
in the state-of-the-art.

Also, the idea of incorporating bits and qubits
to the designed algorithms was proposed and
implemented, with the aim of solving the limitation
of the quantum simulator.

The results showed that HQGA presents better
solutions solving the knapsack problem with 100,
250, and 500 objects than the other hybrid
quantum algorithms, except with GA, in this case
HQGA was exceeded in all experiments. With
hybrid quantum algorithm, HQGA presented a
lower standard deviation in 1/3 (33%) of the
cases. Furthermore, the HQGA in the performance
test demonstrated a better stability in all the
experiments than the QIEA. Although, in 2/3 of the
experiments the QIEA reached the best solution
before the HQGA showing a better convergence
time. In none of the experiments, the QIEA-Q
and HQGA-Q had better solutions than HQGA
and QIEA.

The main disadvantage of the HQGA is
the execution time and the ability to find no
better solutions than Genetic algorithm (GA), as
explained in section 4, the number of qubits (and
bits) using by a quantum register in a current
classic computer is limited, since for a n-qubit
register 2n states can be represented at the same
time, to calculated that amount of data in a classic
computer would be a difficult task. It must be
remembered that the experiments were carried
out on a classical computer using a simulated
quantum environment (ibmq qasm simulator), and
not on a real quantum computer where the natural
parallelism of these computers would demonstrate
their superiority.

For future work the HQGA, HQGA-Q, QIEA, and
QIEA-Q will be implemented in a real IBM quantum
computer and the results will be compared against
the results presented in this work. Other methods

will be tried to update the rotation angle for the
quantum gates. The four quantum algorithms will
be adapted to solve other kinds of combinatorial
optimization problems, such as, the traveling
salesman problem or path planning problems.
Finally, the quantum-inspired algorithms proposed
in this work will be modified to solve multi-objective
combinatorial optimization problems.

Acknowledgments

We thank Instituto Politécnico Nacional (IPN),
the Comisión de Fomento y Apoyo Académico
del IPN (COFAA), and the Mexican National
Council of Science and Technology (CONACYT)
for supporting our research activities.

References

1. Adeyemo, H., Ahmed, M. (2017). Solving 0/1 knap-
sack problem using metaheuristic techniques. 9th
IEEE-GCC Conference and Exhibition (GCCCE),
pp. 1–6.

2. Ajagekar, A., You, F. (2019). Quantum computing
for energy systems optimization: Challenges and
opportunities. Energy, Vol. 179, pp. 76–89.

3. Arute, F., Arya, K., Babbush, R., others
(2019). Quantum supremacy using a programmable
superconducting processor. Nature, Vol. 574,
pp. 505–510.

4. Ballance, C., Harty, T., Linke, N., Sepiol, M.,
Lucas, D. (2016). High-fidelity quantum logic gates
using trapped-ion hyperfine qubits. Physical Review
Letters, Vol. 117, No. 6.

5. Barends, R., Kelly, J., Megrant, A., Veitia, A.,
Sank, D., Jeffrey, E., White, T. C., Mutus,
J., Fowler, A. G., Campbell, B., et al. (2014).
Superconducting quantum circuits at the surface
code threshold for fault tolerance. Nature, Vol. 508,
No. 7497, pp. 500–503.

6. Bhattacharjee, K. K., Sarmah, S. P. (2015). A
binary cuckoo search algorithm for knapsack prob-
lems. 2015 International Conference on Industrial
Engineering and Operations Management (IEOM),
pp. 1–5.

Computación y Sistemas, Vol. 26, No. 2, 2022, pp. 725–742
doi: 10.13053/CyS-26-2-4253

Enrique Ballinas, Oscar Montiel740

ISSN 2007-9737

7. Bhattacharjee, K. K., Sarmah, S. P. (2015).
A binary firefly algorithm for knapsack problems.
2015 IEEE International Conference on Industrial
Engineering and Engineering Management (IEEM),
pp. 73–77.

8. Braine, L., Egger, D. J., Glick, J., Woerner,
S. (2021). Quantum algorithms for mixed binary
optimization applied to transaction settlement. IEEE
Transactions on Quantum Engineering, Vol. 2,
pp. 1–8.

9. Cao, Z., Uhlmann, J., Liu, L. (2018). Analysis of
deutsch-jozsa quantum algorithm. IACR Cryptology
ePrint Archive, Vol. 2018, pp. 249.

10. Cook, S. A. (1971). The complexity of theorem-
proving procedures. IN STOC, ACM, pp. 151–158.

11. Du, K.-L., Swamy, M. (2016). Search and
Optimization by Metaheuristics.

12. Forno, E., Acquaviva, A., Kobayashi, Y., Macii, E.,
Urgese, G. (2018). A parallel hardware architecture
for quantum annealing algorithm acceleration. 2018
IFIP/IEEE International Conference on Very Large
Scale Integration (VLSI-SoC), pp. 31–36.

13. Gao, Y., Zhang, F., Zhao, Y., Li, C. (2018).
Quantum-inspired wolf pack algorithm to solve the
0-1 knapsack problem. Mathematical Problems in
Engineering, Vol. 2018, pp. 1–10.

14. Garcı́a, J., Crawford, B., Soto, R., Castro,
C., Paredes, F. (2018). A k-means binarization
framework applied to multidimensional knapsack
problem. Applied Intelligence, Vol. 48, No. 2,
pp. 357–380.

15. Han, K.-H., Kim, J.-H. (2000). Genetic quantum
algorithm and its application to combinatorial
optimization problem. Proceedings of the 2000
Congress on Evolutionary Computation. CEC00
(Cat. No.00TH8512), volume 2, pp. 1354–1360.

16. Han, K.-H., Kim, J.-H. (2003). Quantum-inspired
evolutionary algorithm for a class of combinato-
rial optimization. Evolutionary Computation, IEEE
Transactions on, Vol. 6, pp. 580–593.

17. Han, K.-H., Park, K.-H., Lee, C.-H., Kim,
J.-H. (2001). Parallel quantum-inspired genetic
algorithm for combinatorial optimization problem.
Proceedings of the 2001 Congress on Evolutionary
Computation (IEEE Cat. No.01TH8546), volume 2,
pp. 1422–1429.

18. Huang, Y., Wang, P., Li, J., Chen, X., Li, T. (2019).
A binary multi-scale quantum harmonic oscillator

algorithm for 0–1 knapsack problem with genetic
operator. IEEE Access, Vol. 7, pp. 137251–137265.

19. IBM (2020). The qiskit elements. https://quantum-
computing.ibm.com/docs/qiskit/the elements.

20. Jindal, A., Bansal, S. (2019). Effective methods for
constraint handling in quantum inspired evolutionary
algorithm for multi-dimensional 0–1 knapsack
problem. 2019 4th International Conference on
Information Systems and Computer Networks
(ISCON), pp. 534–537.

21. Johansson, N., Larsson, J.-A. (2017). Efficient
classical simulation of the Deutsch–Jozsa and Si-
mon’s algorithms. Quantum Information Processing,
Vol. 16, No. 9.

22. Khemakhem, M., Chebil, K. (2016). A tree search
based combination heuristic for the knapsack prob-
lem with setup. Computers & Industrial Engineering,
Vol. 99, pp. 280–286.

23. King, J., Yarkoni, S., Raymond, J., Ozfidan,
I., King, A. D., Nevisi, M. M., Hilton, J. P.,
McGeoch, C. C. (2017). Quantum annealing amid
local ruggedness and global frustration.

24. Lai, X., Hao, J., Yue, D., Gao, H. (2018).
A diversification-based quantum particle swarm
optimization algorithm for the multidimensional
knapsack problem. 2018 5th IEEE International
Conference on Cloud Computing and Intelligence
Systems (CCIS), pp. 315–319.

25. Lai, X., Hao, J.-K., Fu, Z.-H., Yue, D. (2020).
Diversity-preserving quantum particle swarm opti-
mization for the multidimensional knapsack problem.
Expert Systems with Applications, Vol. 149,
pp. 113310.

26. Lai, X., Hao, J.-K., Yue, D. (2019). Two-stage
solution-based tabu search for the multidemand
multidimensional knapsack problem. European
Journal of Operational Research, Vol. 274, No. 1,
pp. 35–48.

27. Li, H. (2019). An angle-expressed quantum evolu-
tionary algorithm for quadratic knapsack problem.
IOP Conference Series: Materials Science and
Engineering, Vol. 631, pp. 052054.

28. Liu, C.-L., Wan, M.-H., Yang, J.-Y. (2010). An
improved quantum genetic algorithm and its appli-
cation. 2010 International Conference on Computer
Application and System Modeling, pp. 413–418.

29. López-Sandoval, D., Cobos, C. (2020). Adiabatic
quantum computing applied to the solution of the
binary knapsack problem. RISTI - Revista Iberica

Computación y Sistemas, Vol. 26, No. 2, 2022, pp. 725–742
doi: 10.13053/CyS-26-2-4253

Hybrid Quantum Genetic Algorithm for the 0-1 Knapsack Problem in the IBM Qiskit Simulator 741

ISSN 2007-9737

de Sistemas e Tecnologias de Informacao, Vol. 38,
pp. 214–227.

30. Montiel Ross, O., Rubio, Y., Olvera, C., Rivera, A.
(2019). Quantum-inspired acromyrmex evolutionary
algorithm. Scientific Reports, Vol. 9.

31. Montiel Ross, O. H. (2020). A review of
quantum-inspired metaheuristics: Going from
classical computers to real quantum computers.
IEEE Access, Vol. 8, pp. 814–838.

32. Narayanan, A. (1999). Quantum computing for
beginners. Proceedings of the 1999 Congress
on Evolutionary Computation-CEC99 (Cat. No.
99TH8406), Vol. 3, pp. 2231–2238.

33. Narayanan, A., Moore, M. (1996). Quantum-
inspired genetic algorithms.

34. Nezamabadi-pour, H. (2015). A quantum-inspired
gravitational search algorithm for binary encoded
optimization problems. Engineering Applications of
Artificial Intelligence, Vol. 40, pp. 62–75.

35. Ozsoydan, F. B., Baykasoglu, A. (2019). A
swarm intelligence-based algorithm for the set-union
knapsack problem. Future Generation Computer
Systems, Vol. 93, pp. 560–569.

36. Paredes López, M., Meneses Viveros, A.,
Morales-Luna, G. (2018). Algoritmo cuántico de
Deutsch y Jozsa en GAMA. Revista mexicana de
fı́sica, Vol. 64, pp. 181–189.

37. Pednault, E., Gunnels, J. A., Nannicini, G.,
Horesh, L., Wisnieff, R. (2019). Leveraging
secondary storage to simulate deep 54-qubit
sycamore circuits.

38. Pisinger, D. (2005). Where are the hard knapsack
problems? Computers & Operations Research,
Vol. 32, No. 9, pp. 2271–2284.

39. Preskill, J. (2012). Quantum computing and the
entanglement frontier.

40. Preskill, J. (2018). Quantum computing in the NISQ
era and beyond. Quantum, Vol. 2, pp. 79.

41. Sapra, D., Sharma, R., Agarwal, A. P. (2017).
Comparative study of metaheuristic algorithms us-
ing knapsack problem. 7th International Conference
on Cloud Computing, Data Science Engineering -
Confluence, pp. 134–137.

42. Shi, H. (2006). Solution to 0/1 knapsack problem
based on improved ant colony algorithm. IEEE
International Conference on Information Acquisition,
pp. 1062–1066.

43. Si, L., Shi, L., Wang, Y. (2010). A novel
self-organizing quantum evolutionary algorithm for
multi-objective optimization. 2010 International Con-
ference on Educational and Network Technology,
pp. 499–503.

44. Srinivasan, K., Satyajit, S., Behera, B. K.,
Panigrahi, P. K. (2018). Efficient quantum algorithm
for solving travelling salesman problem: An IBM
quantum experience.

45. Tkachuk, V. (2018). An adaptive quantum evolution
algorithm for 0–1 knapsack problem. System
research and information technologies, pp. 77–88.

46. Tkachuk, V., Tkachuk, O. (2018). Higher-order
quantum genetic algorithm for 0-1 knapsack prob-
lem. System research and information technologies,
pp. 52–67.

47. Williams, C. (2011). Explorations in Quantum
Computing.

48. Yang, S., Jiang, Y., Nguyen, T. T. (2012).
Metaheuristics for dynamic combinatorial opti-
mization problems. IMA Journal of Management
Mathematics, Vol. 24, No. 4, pp. 451–480.

49. Yanofsky, N., Manucci, M. (2008). Quantum
computing for computer scientists.

50. Zhang, G. (2011). Quantum-inspired evolutionary
algorithms: A survey and empirical study. J.
Heuristics, Vol. 17, pp. 303–351.

51. Zhang, R., Gao, H. (2007). Improved quantum
evolutionary algorithm for combinatorial optimization
problem. 2007 International Conference on Machine
Learning and Cybernetics, volume 6, pp. 3501–
3505.

52. Zhou, Y., Chen, X., Zhou, G. (2016). An improved
monkey algorithm for a 0-1 knapsack problem.
Applied Soft Computing, Vol. 38, pp. 817–830.

Article received on 20/06/2021; accepted on 17/11/2021.
Corresponding author is Enrique Ballinas.

Computación y Sistemas, Vol. 26, No. 2, 2022, pp. 725–742
doi: 10.13053/CyS-26-2-4253

Enrique Ballinas, Oscar Montiel742

ISSN 2007-9737

