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Abstract. In this paper we describe a number of
parallel techniques that were applied to the problem
of finding the null-spaces of thousands of large sparse
matrices. This collection of matrices were derived
from the discrete logarithm problem attack over the
finite field F36·509 recently carried out by Adj et al.
in [2]. Our software library was mainly executed in the
supercomputer ABACUS [7], where in total 21, 870 large
sparse linear algebra systems were processed. Solving
those linear algebra problems involved a computational
effort of over 138 core-years, requiring a memory space
of over 645 gigabytes to store the corresponding vector
solutions.

Keywords. Linear algebra, finite field, parallel
computing.

1 Introduction

The computational problem of solving large sparse
linear systems of equations shows up in several

computer science subdisciplines. An emblematic
application of sparse linear systems occurs in the
process of finding the PageRank vector of the
so-called Google matrix, which is a sparse Markov
matrix with dimension of about ten billions (≈ 233)
of rows and columns. Besides its famous Google
application, the PageRank algorithm has found its
way for solving problems in the areas of biology
and social network analysis, among others [24].

Cryptography is another important application
where the problem of solving large sparse linear
systems shows up.

Indeed, when one wants to factorize ex-
tremely large integers, or to solve the Discrete
Logarithm Problem (DLP) using state-of-the-art
index-calculus methods, one needs to solve high
dimension linear algebra problems [1, 4].

For example, solving the DLP problem over small
characteristic finite fields, can lead to thousands of
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linear algebra problems some of them containing
up to 266,086 equations and variables and up
to 289 million (≈ 228.1) nonzero entries in the
corresponding sparse matrix.

Further, the sought solution for this system of
equations must be exact because the matrices
arising from these cryptanalysis applications
are defined over the integers modulo a prime
number [2, 10, 9, 13, 16].

In the context of cryptographic applications the
aforementioned linear algebra problem can be
formally stated as follows. Let B be an N ×
N square matrix defined over a finite field Fp,
where p is a large odd prime. The linear algebra
problem addressed in this work consists of finding
a non-trivial vector w ∈ Fp (with w 6= 0) such that:

B · w = 0, (1)

were both, w and 0 in Equation (1) are considered
to be N×1 vectors with integer entries in the range
[0, p − 1]. We stress that Eq.( 1) has non-zero
solutions if and only if B is a singular matrix, i.e., the
determinant of B is zero. Equivalently, Eq.( 1) has
non-zero solutions if and only if B has not full rank.

The space of solutions of Eq.( 1) is sometimes
referred as the kernel or null-space of the matrix
B. The families of matrices studied in this paper
will always have a kernel of dimension one,
which basically means that for a given matrix B,
there is only one non-trivial vector solution w that
annihilates B. This means that there is a unique
vector w such that the matrix-vector product, B ·w,
is equal to the zero vector.

Moreover, the case of interest in this paper are
matrices with a dimension N of tens, and even
hundreds of thousands columns and rows.

At the same time, the average per-row density
of non-zero elements in these matrices will be
very low. In the examples analyzed in this work
this non-zero row density, which in the reminder
of this paper will be denoted as λ, will always be
less than one thousand non-zero entries, where an
overwhelming majority of these entries take a small
integer value.

Eq. (1) can be solved using standard Gaussian
elimination at a computational complexity cost of
O(N3).1

The main drawback of following this approach
is that as the Gaussian elimination algorithm
proceeds, the matrix being processed becomes
more and more dense, which implies that its
sparseness will get completely destroyed after
some few iterations. This situation negatively
affects both, the computational and the memory
cost of solving this problem. For instance, a dense
version of the matrices computed in this paper may
need up to 8 Tera Bytes of memory per matrix.

Fortunately, several algorithms have been
reported in the literature that can find the
kernel of a matrix without manipulating it, but
rather dealing with it using a so-called black
box model [19]. Some of the most relevant
algorithms that solve Eq. (1) without perturbing the
sparseness of the matrix B include: Structured
Gaussian elimination (also known as intelligent
Gaussian elimination) [15], Conjugate gradient
and Lanczos algorithm [21, 29], and Wiedemann
algorithm [17, 19, 20, 28].

In this paper we will study the latter approach,
which can find the solution vector w of Eq.( 1)
at a computational cost of about 3N matrix-vector
products, where the cost of each such product is
of about λ ·N integer additions and multiplications.
This yields an approximately overall cost of some
3λ ·N2 integer additions and multiplications.

Furthermore, Wiedemann algorithm enjoys the
extra plus of being amenable for parallelization,
and is said to be Las Vegas randomized, in the
sense that it never outputs an incorrect solution
after its execution, although it might sometimes fail
to provide a non-trivial solution [19].

Without loss of generality, in this work we
will generally consider that the whole arithmetic
is performed modulo an 804-bit prime number
p. Considering that contemporary processors
architectures have a 64-bit word-size, it becomes
necessary to represent the operands as an array
of n = d 80464 e = 13 sixty-four–bit words. Moreover,
every arithmetic operation (such as addition,

1Notice that for a matrix B of size N = 266, 086, this
would imply a humongous computational effort of some ≈ 254

operations.
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multiplication, etc), must give an integer result
within the range of [0, p− 1].

Hence, modular reduction should be periodically
applied after one or more integer arithmetic
operations have been performed [12].

As it has been mentioned, the core operation
of Wiedemann algorithm, is the multiplication of a
randomly looking column vector of dimension N ,
by each row of the matrix being handled.

Since a matrix-vector product is the single most
demanding operation in Wiedemann algorithm, we
carefully optimize the computation of this operation
both, for CPU and GPU platforms.

Our contributions can be described as following.
We present the efficient computation of the kernels
associated to 21, 870 linear algebra systems that
happens to be large and sparse and that are
defined over an 804-bit finite field. To solve
this challenging task, we describe the specifics
of our Wiedemann algorithm implementation
in a multi-core environment hosted by the
supercomputer ABACUS, and in a many-core
GPU architecture. The results achieved in this
work were a crucial building block for achieving
the record computation of the discrete logarithm
problem over the field F36·509 reported by Adj et al.
in [2].

The remainder of this paper is organized as
follows. In Sec. 2, the operand representation
and field arithmetic employed in this work are
briefly explained. In Sec. 3 a basic version of
Wiedemann algorithm and several parallel variants
are discussed. Then, in Sec. 4, we report
the main implementation aspects related to the
computation of the kernels of thousands of large
sparse matrices in the supercomputer ABACUS
and other platforms. we draw our concluding
remarks in Sec. 5.

a1a2a3a4a5a6a7a8a9a10a11a12a13

1001010110001100001011001111010110101000111111111101101101010110
64-bit

Fig. 1. Representation of an 804-bit field element

2 Finite Field Arithmetic

2.1 Field Element Representation

As it was mentioned in the Introduction, all the
arithmetic operations are performed over a finite
field Fp. Following the setting specified in [2], we
use the 804-bit prime p = 3509−3255+1

7 . Since our
CPU servers have a 64-bit wordsize, we are forced
to represent the field elements using an integer
array of d 80464 e = 13 words as depicted in Figure 1.
Notice that the most significant word of such array
only utilizes 36 bits.

Algorithm 1 Barrett Reduction as presented in [11]

Require: p, b ≥ 3, k = blogb pc + 1, 0 ≤ t < b2k,
and µ = bb2k/pc

Ensure: r = t mod p
1: q̂ ←

⌊
bt/bk−1c · µ/bk+1

⌋
;

2: r ← (t mod bk+1)− (q̂ · p mod bk+1);
3: if r < 0 then
4: r ← r + bk+1;
5: end if
6: while r ≥ p do
7: r ← r − p;
8: end while
9: Return r;

2.2 Field Multiplication

Let a, b ∈ Fp. A classical method for obtaining the
modular multiplication defined as c = (a · b) mod p,
consists of performing the integer multiplication t =
a · b first, followed by a reduction step, c = t mod p.
It may appear that this reduction step involves
a division by p, which is a relatively expensive
operation.

One can do better by using the Barrett reduction
algorithm [5]. The Barrett reduction algorithm is
based in the following observation: Given t =

Qp + R, where 0 ≤ R < p, the quotient Q =
⌊
t
p

⌋
can be written as:

Q =
⌊
bt/bk−1c ·

(
b2k/p

)
·
(
1/bk+1

) ⌋
=

⌊
bt/bk−1c · µ ·

(
1/bk+1

) ⌋
.
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For efficiency reasons, the method requires to
precompute a per-modulus constant parameter:

µ =
⌊b2k
p

⌋
,

where b is usually selected as a power of two close
to the word size processor, and k = blogb pc+ 1.

Notice that upon finding Q, the remainder R can
be obtained as, R = t−Qp ≡ t mod p.

Algorithm 1 presents the Barrett reduction,
where the remainder R is computed at a cost of
no more than two 804-bit integer multiplications.

2.3 Main Matrix-Vector Product Arithmetic
Operations

The core arithmetic operation needed to perform
a matrix-vector product is vi = (vi + α · wi) mod
p. This operation involves the computation of
additions, multiplications, and a modular reduction
over the integers.

For the set of matrices considered in this work,
the coefficients α happen to be small values.
Indeed, in some matrices, for any given row, all the
non-zero entries but the first one are equal to one.
Besides, the first entry is a 804-bit integer.

We took advantage of this fact (as shown in
Fig. 2) by using the function row multqu that
starts a row-vector multiplication computing a field
multiplication using the function Fp mulC. The
result of this function is stored in the accumulator
C. Then, all non-zero values are added and stored
in the accumulator C using the in addN function.

Taking advantage of the so-called lazy reduction
technique, this addition function does not perform
any modular reduction at all. Therefore, at
the end of the function row multqu’s loop, our
Barret Reduction function is invoked to guarantee
that the final result (labelled as out) has an integer
value into [0, p− 1].

For the families of matrices where α has a
small value different than one, we compute the
multiplication α · wi by performing a shift-and-add
strategy. This way, we avoid performing costly full
field multiplications as much as possible.

void row multqu ( e l t out , unsigned i n t row , e l t v W[ ] , e l t p )
{

unsigned i n t j , index = 0;
ui64 C[WORDSIZE ] ;

/ / The f i r s t en t r y o f the mat r i x row and vec to r W are m u l t i p l i e d
/ / the m u l t i p l i c a t i o n output i s saved i n the accumulator C
Fp mulC (C, Vd [ row ] . x , W[ 0 ] . x , p ) ;

j = 1 ;
index = mat r i x [ row ] [ j ] ;

/ / Main loop . Since the non−zero e n t r i e s o f the Mat r i x row conta in on ly ones
/ / A l l the values o f the vec to r W are added
while ( index != −1)
{

in addN (C, C, W[ index − 1 ] . x ) ;
j ++;
index = mat r i x [ row ] [ j ] ;

}
/ / We apply Lazy reduc t ion : on ly one Bar re t Reduction i s app l ied .
Barre t Reduct ion ( out , C, p ) ;

}

void v e c t o r m a t r i x m u l t t h r e a d ( Mat r i x T [ ] , Vector W[ ] , i n t i n i , i n t f i n a l , e l t p )
{

unsigned i n t i ;

/ / A Matr ix−vec to r m u l t i p l i c a t i o n i s performed but on ly i n a
/ / sub−reg ion o f the mat r i x B t h a t s t a r t s a t row i n i and ends at row f i n a l
for ( i = i n i ; i<f i n a l ; i ++)
{

vec to r row mul t (T [ i ] . x , i , W, p ) ;
}

}

void vec to r ma t r i x mu l t mu l t i co re ma in4c ( Mat r i x T [ ] , Vector W[ ] , e l t p )
{

i n t d iv = Nm/ 4 ;

/ / This code d i s t r i b u t e s the matr ix−vec to r computat ion among fou r cores
#pragma omp p a r a l l e l sec t ions num threads ( 4 )
{

#pragma omp sec t ion
v e c t o r m a t r i x m u l t t h r e a d (T , W, 0 , d iv , p ) ;
#pragma omp sec t ion
v e c t o r m a t r i x m u l t t h r e a d (T , W, div , 2* div , p ) ;
#pragma omp sec t ion
v e c t o r m a t r i x m u l t t h r e a d (T , W, 2* div , 3* div , p ) ;
#pragma omp sec t ion
v e c t o r m a t r i x m u l t t h r e a d (T , W, 3* div , Nm, p ) ;

}
}

void k r y l o v ( e l t v *o , e l t p )
{

unsigned i n t i ;

/ / This code computes the sequence S by invok ing the Matr ix−vec to r m u l t i p l i c a t i o n
/ / 2N times , where N i s the mat r i x Dimension .
for ( i =0; i < 2*N; i ++)
{

vec to r ma t r i x mu l t mu l t i co re ma in2c (V [ 1 ] , V [ 0 ] , p ) ;
types copy ( o [ 2 * i ] . x , V [ 1 ] [ 0 ] . x ) ;
vec to r ma t r i x mu l t mu l t i co re ma in2c (V [ 0 ] , V [ 1 ] , p ) ;
types copy ( o [ 2 * i + 1 ] . x , V [ 0 ] [ 0 ] . x ) ;

}
}

Fig. 2. OpenMP code of the Krylov Sequence
computation distributed into four cores

3 Wiedemann Algorithm

In this section, we describe our strategy for
computing the kernel of thousands of sparse
matrices.

We begin by describing the mathematics behind
the Wiedemann algorithm and continue giving the
main parallel strategies followed to compute the
kernel of thousands of large sparse matrices.

We are targeting multi-core CPU servers, the
super-computer ABACUS [7], and GPU Kepler
architecture TITAN cards.
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3.1 Basic Version of Wiedemann Algorithm

Let w be a randomly chosen column N -vector
defined over Fp, and let u be the unit row N -vector,
whose first entry is equal to one and all other
entries are zero. Then, given an N × N matrix
B defined over Fp, a basic version of Wiedemann
algorithm [28], computes the 2N−term Krylov
sequence S defined as:

S = {u · Bi · w}1≤i≤2N .

Notice that each one of the coefficients in
the sequence S is an integer in the field
Fp. In a second phase, the Berlekamp/Massey
algorithm [6, 22] can be employed to find the
minimal polynomial fB,w from the sequence S with
high probability, at a computational cost of O(N2)
field operations. The monic polynomial:

fB,w(λ) = λl + cl−1λ
l−1 + . . .+ c0,

is known as the minimum l-degree polynomial of w,
with l < N [20]. In particular, the polynomial fB,w,
satisfies the following relations:

fB,w(B)w = 0,

Bδ(Bl−δw + cl−1Bl−δ−1w + . . .+ cδw) = Bδŵ = 0.
(2)

The exponent δ is strictly greater than zero for
singular matrices B. Then, for some integer t with
1 ≤ t ≤ l, and Bt · ŵ = 0, which implies that:

w = Bt−1ŵ 6= 0,

hence, B · w = 0.
Therefore, in a third phase of Wiedemann

algorithm, the minimum polynomial fB,w as shown
in Eq. (2) is evaluated, and this evaluation yields
the desired solution w. Summarizing, Wiedemann
algorithm requires the computation of three main
phases [8, 9]:

1. Krylov sequence: To obtain the Krylov
sequence S as defined above, we must
compute 2N matrix-vector products of column
N -vectors by a matrix B. When we compute
the first of such products, we get as output
a vector w′, whose first entry corresponds
to the first coefficient of S. The column

X

wB1 w′

=

k11

k12

k13

k14

X

wB2 w′

=

k21

k22

k23

k24

k11

k12

k13

k14

X

wB2N w′

=

k2N1

k2N2

k2N3

k2N4

k2N−11

k2N−12

k2N−13

k2N−14

...

k11

k21

...

...

...

...

...

k2N1

Sequence(S)

Fig. 3. First step of Wiedemann algorithm: The
computation of the Krylov Sequence S

N -vector w′ becomes then the input vector
for the next matrix-vector product. After
computing the second product, the first entry
is obtained and stored in the second position
of the sequence S, and so on until the 2N
coefficients of the Krylov sequence S are
obtained. The Krylov phase just described is
illustrated in Figure 3. We stress that S is
computed without manipulating the matrix B.
Furthermore, Appendix A depicts the C coded
function krylov, used to computed this phase
of the algorithm, where the product B2N · w is
computed by iteratively exploiting the identity,

B2N · w = B · . . . (B · (B · w))︸ ︷︷ ︸
2N times

.

Once again, the first coefficient of each one of
the 2N matrix-vector products shown above,
must be sequentially appended to the Krylov
sequence S.

2. Obtaining the minimum Polynomial fB,w:
From the Krylov secuence S, the Berlekamp-
Massey algorithm [22] can be used to find the
corresponding minimum polynomial fB,w. The
Berlekamp-Massey algorithm is a classical
procedure that has been extensively studied
in the literature (see for example [6, 8, 26]).
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The complexity of the Berlekamp-Massey
algorithm is O(N2). However, a fast ver-
sion based on a variant of the extended
greatest common divisor algorithm, known
as the half-gcd algorithm, can compute the
minimum polynomial with a complexity of only
O(N log(N)2) [15, §3.5.2].

3. Minimum Polynomial Evaluation: It finds
the solution ŵ (see Eq. (2)). If ŵ 6= 0,
then for some integer t, with 1 ≤ t < N ,
Btŵ = 0, but w = Bt−1ŵ 6= 0. This implies
that, B · w = 0. Let us recall that the
minimum polynomial is evaluated by iteratively
performing matrix-vector multiplications until
the output vector is equal to zero. This
process executes at most N − 1 matrix-vector
multiplications.

Hence, the computational cost of Wiedemann
algorithm is dominated by phases 1 and 3,
with an approximately overall cost of about 3N
matrix-vector multiplications. This basic version
described here, can be accelerated by applying
parallel strategies as explained next.

3.2 Exploiting Parallelism Opportunities in
Wiedemann Algorithm

In 1994, Coppersmith famously presented a paral-
lel version of Wiedemann algorithm [8]. The next
few years, Kaltofen and Villard published in [18,
27], a comprehensive analysis of Coppersmith’s
block version of this procedure. Arguably the first
full implementation of this algorithm was reported
by Kaltofen and Lobo in [19].

In a nutshell, Coppersmith idea was to
simultaneously process n random vectors w and
to store m coefficients of the corresponding
matrix-vector product, with m ≥ n. To this end,
the vector w becomes a matrix of n vectors of
dimension N × n, whereas the vector u becomes
a canonical (or highly sparse), matrix of dimension
m ×N . Coppersmith then ingeniously generalized
the Berlekamp-Massey algorithm, observing that
the linear recurrence can be determined by the first
dNme+ d

N
n e coefficients of the sequence S.

This setting has two advantages. Firstly,
the total number of iterations is reduced from

3N matrix-vector products (for the sequential
version), to dNn e + d

N
me matrix-block-of-n-vectors

products [15, §3.5.3]. Secondly, the computation
of each one of the matrix-block-of-n-vectors
products can be readily parallelized using n
different cores with or without shared memory
capabilities.2 If however, one only has one core
available to process the kernel of a matrix B,
then the advantage of these approach significantly
diminishes.

X

B w

B0,0 B0,1 B0,2 B0,3

B1,0 B1,1 B1,2 B1,3

B2,0 B2,1 B2,2 B2,3

B3,0 B3,1 B3,2 B3,3

w0

w1

w2

w3

B0,0w0+ B0,1w1+ B0,2w2+ B0,3w3

Core 1

B1,0w0+ B1,1w1+ B1,2w2+ B1,3w3

Core 2

B2,0w0+ B2,1w1+ B2,2w2+ B2,3w3

Core 3

B3,0w0+ B3,1w1+ B3,2w2+ B3,3w3

Core 4

Fig. 4. Parallel computation of the matrix-vector product

Let us recall that for the main case study of this
work, we are interested in computing the kernel
of thousands of matrices that were obtained from
the discrete logarithm problem attack over the finite
field F36·509 reported in [2]. Furthermore, we had
access to several multi-core servers as well as
the super-computer ABACUS [7] (see Table 1 for
more details). Under this scenario, we found that
the following parallelization setting was simpler
and that gave us a competitive performance as

2In the latter case at the price of providing a copy of the
matrix B to all the participant processing cores.
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Table 1. Hardware used for solving the linear algebra problems

Platform Nodes Cores Frequency Compiler
(@ GHz)

Pakal 1 20 2.4 gcc 4.8.2
Abacus I 318 8904 2.6 gcc 4.8.3
Titan 1 2688 0.876 CUDA assembly

Table 2. Main features of the three families of linear algebra systems under study

Quadratics Cubics Quartics
Number of matrices 1 728 21,141
Dimension N 266,086 177,391 ≈ 55 K
Per-row density of non-zero entries(λ) 1,086 –1,096 226 – 262 112
number of nonzero entries ≈ 290M ≈ 43M ≈ 6M

compared with the parallel strategy followed in
other works such as [15].

The matrix-vector product B · w can be trivially
parallelized on k cores by partitioning the rows of
A into k submatrices A1,A2, . . . ,Ak and computing
Aiv on the ith core.

Figure 4 depicts such partitioning for the case
when four processing cores can be assigned to
compute the kernel of a matrix B. In § 4.2 we
discuss in detail how this strategy was coded in C
using the OpenMP environment.

4 Implementation Aspects

Wiedemann algorithm was successfully imple-
mented for computing the kernel of 21, 870 large
and sparse linear algebra problems.

To this end, we use the Pakal CPU server,3

the supercomputer ABACUS and a GPU Kepler
architecture TITAN card, whose salient features
are summarized in Table 1.

We begin this section by presenting the families
of matrices considered in this work. Then, we
give our theoretical cost estimates of computing
the kernel associated to those matrices along with
the real computational time obtained from our
experiments.

3available to us in the Computer Science Department of
CINVESTAV

4.1 Matrix Representation

In this work we only stored the non-zero values
of a sparse matrix B. This was accomplished by
adopting a row representation of ordered pairs
of the form, (mat indi,mat vali), which indicate
the column of a non-zero entry in the i-th row of
B and its integer value, respectively. Using this
representation, a matrix B is represented using
about λ · N pairs, where λ is matrix B′s per-row
average number of non-zero entries.

For a comprehensive analysis of different
techniques to store a sparse matrix, the interested
reader is referred to [15, § 5.2].

4.2 Parallel Programming API

There exist several software tools for performing
parallel computing, such as, Message Passing In-
terface (MPI), CUDA for GPU platforms, OpenMP,
among others. In this work, we chose to use
OpenMP [23] for our CPU server Pakal and the
ABACUS supercomputer, and CUDA for our GPU
Kepler architecture Titan card (refer to Table 1).

4.2.1 OpenMP for CPU Platforms

OpenMP defines a set of instructions for the C/C++
and Fortran programming languages, which makes
easier to execute shared-memory parallelism.

A typical program using OpenMP instructions,
starts with a single active master thread. Then,
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when the master thread execution reaches an
OpenMP directive, such as the pragma directive
omp parallel, it creates a set of threads specified by
the programmer, where each of these threads will
process a data set. Once that all the threads have
performed their job, the master thread destroys
the threads so created, and then it continues the
sequential processing.

The segment that is processed in parallel
depends on the given directive. For example,
the directive sections divides the code into
blocks and distributes each one of them among
the participants threads. This directive is not
sequential.

The parallel matrix-vector product strategy
depicted in Figure 4, was implemented in C
using OpenMP as reported in Appendix A. Indeed,
the C coded function vector matrix mult thread,
performs a matrix-vector multiplication, but only in
a sub-region of the matrix B that starts at row ini
and ends at row final. Then, the C coded function
vector matrix mult multicore main4c, issues the
openMP pragma directives that evenly distribute
the matrix-vector computation into four different
cores.

4.2.2 CUDA for GPU Platforms

Graphic Processing Units (GPU), are massively
parallel processors consisting of hundreds of
cores. By taking advantage of the highly parallel
architecture of the GPUs, one can speed up
several computations where high computing power
is required.

A typical GPU is composed by several proces-
sors. Each processor has a large number of
cores, and each core execute threads. A GPU
architecture groups the threads into blocks, and the
blocks into a grid.

In the case of the implementation reported in
this work, for each block we assign 32 threads
to process 32 adjacent rows of the sparse matrix
being handled. This process was repeated until
all the columns of the matrix have been assigned.
We implemented all the field arithmetic (addition,

subtraction, multiplication and reduction) using
CUDA assembly.4

4.3 Families of Matrices

We considered three different families of matrices.
These matrices arise from the index-calculus
method used in [2] to attack the discrete logarithm
problem over the field F36·509 , were the authors
classified the matrices generated by their attack
into three classes, namely, quadratics, cubics and
quartics families of matrices.

— Family of Quadratics: A single N -dimension
sparse matrix with N = 266, 086. Its non-zero
elements can take the integer values ±1, 2, 3
or 4.

— Family of Cubics: 728 N -dimension sparse
matrices with N = 177, 391. For each one of
these matrices, all the non-zero entries of any
given row, have a value equal to one, except
for the first entry that has a randomly looking
804-bit integer value.

— Family of Quartics: 21, 141 N -dimension
sparse matrices with N ≈ 55, 000. For each
one of these matrices, all the non-zero entries
of any given row, have a value equal to one,
except for the first entry that has a randomly
looking 804-bit integer value.

Following the convention used in [2, 3], the first
column of each one of the Cubics and Quartics
matrices contains a large 804-bit non-zero entry.
The salient features of these three systems are
summarized in Table 2.

From the characteristic of each matrix family,
one can estimate the number of operations that a
sequential execution would require for solving each
linear algebra system.

4CUDA is the NVIDIA GPU hardware and software
infrastructure that enables the execution of C programs.
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Table 3. A comparison of the GPU and CPU elapsed time for computing the kernels of the three linear algebra
system families

Quadratics Cubics Quartics
Matrix size(N ) ≈ 266K ≈ 177K ≈ 55K
# Matrices 1 728 21141
Cores (CPU) 20 7 2
Threads (GPU) 3584 3584 3584
Linear Algebra CPU (hours) 216 ≈ 74.4 ≈ 19.62
Linear Algebra GPU (hours) 223.2 ≈ 24.3 ≈ 0.9605
Speedup - 3.06 20.42
MinPoly (hours) 64.8 ≈ 39.6 ≈ 2.64

Table 4. A comparison of linear algebra solvers in GPU platforms

Author GPU Matrix Modulus Timing
size size (hours)

[14] GeForce GTX 580 650K 217 bits 16
@1544MHz, 512 cores

This work Titan, 2688 cores 531K 155 bits 18.8

Table 5. CPU times of the kernel computation of all the sparse matrices derived in [2]

Computation stage cores per matrix CPU time CPU frequency
(years) (GHz)

1 Quadratics matrix 20 0.49 2.40
728 Cubics matrices 7 43.28 2.60
21, 141 Quartics matrices 2 94.70 2.60
Total CPU time (years) 138.47

4.3.1 Finding the Kernel of the Quadratics
Matrix

Since the non-zero values of the Quadratics matrix
are smaller than four, each scalar multiplication can
be performed using a shift-and-add approach. As
a first order approximation, let us assume that the
cost of each one of these scalar multiplications is
equivalent to one addition. Moreover, at the end
of a row-vector multiplication, a Barrett reduction
using Algorithm 1 is performed with an associated
cost of at most two multiplications.

Then, the cost of a matrix-vector multiplication
is of, (λ − 1) · N ≈ 228.11 and 2N ≈ 219.02

additions and multiplications, respectively. Since
the cost of the sequential version of Wiedemann
algorithm is dominated by the computation of about
3N matrix-vector multiplications, the estimated

cost of finding the kernel of the single Quadratics
matrix is of about 247.72 and 237.63, additions and
multiplications, respectively.

The Quadratics matrix was solved using our
C implementation of Wiedemann’s algorithm; the
computation took 4, 320 CPU hours in the server
Pakal. Using the twenty cores available in this
server, the elapsed time for this computation was of
216 hours. This matrix was also implemented in a
GPU GeForce GTX Kepler architecture TITAN card
running at 876MHz. Using 3, 584 GPU threads, the
linear algebra computation took 223.2 hours.

4.3.2 Finding the Kernels of the Cubics
Matrices

Since except for the first entry, the per-row
non-zero values of the Cubics matrices are
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all equal to one, the cost of a row-vector
multiplication is of λ − 1 additions plus five field
multiplications. Hence, the cost of a matrix-vector
multiplication can be estimated in about (λ −
1) · N ≈ 225.36 and 5N ≈ 219.75 additions
and multiplications, respectively. Since the cost
of the sequential version of the Wiedemann
algorithm is dominated by the computation of about
3N matrix-vector multiplications, the estimated
cost of finding the kernel of all the 728 Cubics
matrices is of about, 253.89 and 248.28, additions
and multiplications, respectively.

The 728 Cubics matrices were solved using
our C implementation of Wiedemann’s algorithm.
Each linear system was solved in parallel on 7
ABACUS cores. The 728 linear systems were
solved simultaneously using 5096 ABACUS cores.
The total execution time was 379, 142 CPU hours.

This time, and also the time for the linear
algebra for the quartics (see §4.3.3), was more
than expected in part because ABACUS was still
running in an experimental phase and the machine
was under-clocked to prevent over-heating. The
increased CPU time did not have a significant
impact on the total calendar time because of the
large number of cores that we were at our disposal.
The 728 solution vectors found were stored in files
whose total size is of 26.4 gigabytes.

Using seven cores per matrix, the elapsed
time for the linear algebra computation of each
one of the Cubics matrices was of about 74.4
hours. Significantly, the Titan implementation of
this problem took only 24.3 hours by using 3, 584
GPU threads.

4.3.3 Finding the Kernels of the Quartics
Matrices

Since except for the first entry, the per-row non-
zero values of the Quartics matrices are all equal
to one, the cost of a row-vector multiplication is of
λ− 1 additions plus five field multiplications.

Hence, the cost of a matrix-vector multiplication
can be estimated in about (λ − 1) · N ≈ 222.54

and 5N ≈ 218.06 additions and multiplications,
respectively. Since the cost of the sequential
version of Wiedemann algorithm is dominated
by the computation of about 3N matrix-vector

multiplications, the estimated cost of finding
the kernel of all the 21, 141 Quartics matrices
is of about, 254.24 and 249.75, additions and
multiplications, respectively.

The 21, 141 Quartics matrices were solved using
our C implementation of Wiedemann’s algorithm
in 829, 573 CPU hours on ABACUS. Each linear
system was solved in parallel on 2 cores. We used
approximately 5000 cores to solve all 21,141 linear
systems. The solution vectors were stored in files
whose total size is 618 gigabytes.

Using two cores per matrix, the elapsed time
for the linear algebra computation of each one
of the Quartics matrices was of about 19.62
hours. Significantly, the Titan implementation of
this problem took only 0.96 hours by using 3, 584
GPU threads.

4.4 Comparison

Table 3 reports a comparison of the elapsed
time required by our linear algebra solver CPU
and GPU implementations. It is interesting to
note that a GPU solution is remarkably faster
than a CPU implementation for the case of the
Cubics and Quartics families. However, the CPU
implementation outperform its GPU counter part for
the computation of the quadratics matrix.

We believe that this behavior is due to the large
size of this matrix that causes a costly divergence
among the thread computations.

Due to the unique characteristics of the matrices
derived in [2], it is in general difficult to compare our
implementation with other related works. However,
for the sake of completeness, we report in Table 4
a comparison of our GPU implementation against
the one reported in [14]. The state-of-the-art
software for computing Wiedemann algorithm is
the CADO-NFS C implementation of the Number
Field Sieve (NFS) algorithm for integer factorization
and for computing discrete logarithms over finite
fields [25]. However, we stress that the
software in [25] specializes in the computation of
usually one huge sparse matrix, but not in the
simultaneous computation of thousands of large
sparse matrices as is the case addressed in this
work. Moreover, the GPU-based implementation
of the CADO-NFS software basically corresponds
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to the work reported in [14], which is included in
Table 4.

5 Conclusion

In this work, we reported the successful implemen-
tation of the null-spaces associated with 21, 870
large sparse linear algebra systems.

The CPU years associated with this task is
summarized in Table 5, where the CPU frequency
column lists the average clock speed of the cores
used. In order to accomplish the solution of this
task in a reasonable calendar time, we use several
parallel and supercomputing techniques both, in
CPU and GPU platforms.
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