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Abstract. The Image Analysis community has widely
used so-called bit-quads to propose formulations for
computing the Euler characteristic of a 2-D binary
image. Reported works have manually proposed
different combinations of bit-quads to provide one or
more formulations to calculate this important topological
feature. This paper empirically shows how an
Artificial Neural Network can be trained to find an
optimal combination of bit-quads to compute the Euler
characteristic of any binary image. We present
results with binary images of different complexities and
sizes and compare them with state-of-the-art machine
learning algorithms.

Keywords. Euler characteristic, bit-quads, holes,
objects, artificial neural network.

1 Introduction

The Euler characteristic is a topological feature
commonly used to describe the connectivity
properties of an isolated object or a binary image.

Let S ∈ R2 be a digital 0-1-image, where S
is related to the foreground pixels, and its

complement Sc is associated with the background
pixels. In the plane, the Euler characteristic can
be written as an alternating sum of Betti numbers
as [20]:

E(S) = Nc(S) −Nh(S), (1)

where Nc(S) is the number of connected
components of S and Nh(S) is the number of
holes; that is, bounded connected components
of Sc.

The Euler characteristic of an image I(x, y)
has been widely used since the eighties in many
applications. In [42], for example, the Euler
number has been used to recognize industrial
parts. In [33], the same topological feature has
been used for real-time image thresholding. It has
also been applied in object number counting in
[21], real-time Malayan license plate recognition in
[10], digit recognition from pressure sensor data
in [28], gender recognition from offline handwritten
signature in [23], image description in [49], gender
discrimination from offline Hindi signature in [27].
In short, in [24], the Euler characteristic has been
used for character recognition.
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Table 1. Possible bit-quads that can be used to compute
the Euler characteristic of a 2-D binary image

Q1 ∶ Q11 =
⎡
⎢
⎢
⎢
⎣

0 0

0 0

⎤
⎥
⎥
⎥
⎦

Q2 ∶ Q21 =
⎡
⎢
⎢
⎢
⎣

1 0

0 0

⎤
⎥
⎥
⎥
⎦

Q22 =
⎡
⎢
⎢
⎢
⎣

0 1

0 0

⎤
⎥
⎥
⎥
⎦

Q23 =
⎡
⎢
⎢
⎢
⎣

0 0

0 1

⎤
⎥
⎥
⎥
⎦

Q24 =
⎡
⎢
⎢
⎢
⎣

0 0

1 0

⎤
⎥
⎥
⎥
⎦

Q3 ∶ Q31 =
⎡
⎢
⎢
⎢
⎣

1 1

0 0

⎤
⎥
⎥
⎥
⎦

Q32 =
⎡
⎢
⎢
⎢
⎣

0 1

0 1

⎤
⎥
⎥
⎥
⎦

Q33 =
⎡
⎢
⎢
⎢
⎣

0 0

1 1

⎤
⎥
⎥
⎥
⎦

Q34 =
⎡
⎢
⎢
⎢
⎣

1 0

1 0

⎤
⎥
⎥
⎥
⎦

Q4 ∶ Q41 =
⎡
⎢
⎢
⎢
⎣

1 1

0 1

⎤
⎥
⎥
⎥
⎦

Q42 =
⎡
⎢
⎢
⎢
⎣

0 1

1 1

⎤
⎥
⎥
⎥
⎦

Q43 =
⎡
⎢
⎢
⎢
⎣

1 0

1 1

⎤
⎥
⎥
⎥
⎦

Q44 =
⎡
⎢
⎢
⎢
⎣

1 1

1 0

⎤
⎥
⎥
⎥
⎦

Q5 ∶ Q51 =
⎡
⎢
⎢
⎢
⎣

1 1

1 1

⎤
⎥
⎥
⎥
⎦

Q6 ∶ Q61 =
⎡
⎢
⎢
⎢
⎣

1 0

0 1

⎤
⎥
⎥
⎥
⎦

Q62 =
⎡
⎢
⎢
⎢
⎣

0 1

1 0

⎤
⎥
⎥
⎥
⎦

Several methods to compute the Euler char-
acteristic of a binary image I(x, y) have been
reported in the literature. Refer, for example, to
[2, 1, 4, 6, 5, 8, 9, 11, 13, 14, 12, 15, 17, 16, 18,
20, 21, 25, 26, 30, 39, 38, 41, 40, 36, 35, 37, 34,
19, 22, 47, 48, 46, 3, 43, 45, 44, 50, 51].

So-called bit-quads have been widely used since
they were proposed in the image processing
area to count the Euler characteristic of a 2-D
binary image. Table 1 depicts the 16 possible
bit-quad matrices that people have proposed to
obtain different formulations to compute the Euler
characteristic of a 2-D binary image.

The set of papers that we have found in the
literature that uses a combination of bit-quads to
compute Euler characteristic of a binary image are
the following: [11, 13, 14, 12, 17, 16, 21, 36, 35,
37, 34, 47, 48, 46, 3, 43, 45, 44].

In [11, 13, 14, 12, 17, 16, 21, 47, 46, 3, 45],
authors used ten bit-quads to compute the Euler
characteristic of a binary image I(x, y) as follows:

4 − connected case ∶ E =
#Q2 −#Q4 + 2#Q6

4
, (2)

and

8 − connected case ∶ E =
#Q2 −#Q4 − 2#Q6

4
, (3)

where:

— #Q2 is the occurrences of bit-quads Q21, Q22,
Q23, and Q24.

— #Q4 is the occurrences of bit-quads Q41, Q42,
Q43, and Q44.

— #Q6 is the occurrences of bit-quads Q61, and
Q62.

Equations 2 and 3 are also known as Gray’s
formulas.

As we have seen before, Equation (2) needs to
perform ten comparisons on each image pixel. The
time complexity for this method is O(N)2 for a N ×
N image.

In [21], authors also propose using bit-quads
Q23, Q42, Q61, and Q62 to compute the Euler
characteristic of image an I(x, y) as follows:

4− connected case ∶ E =#Q23 −#Q42 +#Q61, (4)

8− connected case ∶ E =#Q23 −#Q42 −#Q62, (5)

where #Q23, #Q42, #Q61, and #Q62 are the
occurrences of bit-quads Q23, Q42, Q61 and Q62,
respectively.

In [34], authors propose combining bit-quads
Q21, Q44, Q61, and Q62 to compute the Euler
characteristic of a 2-D binary image as follows:

4− connected case ∶ E =#Q21 −#Q44 +#Q61, (6)

8− connected case ∶ E =#Q21 −#Q44 −#Q62, (7)

where #Q21, #Q44, #Q61, and #Q62 are the
occurrences of bit-quads Q21, Q44, Q61 and Q62,
respectively.

In [48, 43, 44], authors describe three different
improvements for computing the Euler charac-
teristic based on counting previous bit-quads.
This procedure allows reducing the time and
the number of required pixels for processing a
bit-quad.

In [32], the authors discuss how to use bit-quads
in the so-called tree of shapes by using the depth
of the node as the value of pixels in a larger and
interpolated image representation. As a result,
they propose an algorithm that uses larger image
representations. In [31], the authors present a
review of previously published works to compute
attributes such as area, perimeter, and the Euler
characteristic by incrementally counting patterns
while traversing nodes of a component tree.
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In short, in [36, 35, 37], the authors propose
using the 16 bit-quads shown in Table 1 to train
distinct kinds of learning machines for estimating
the Euler characteristic of a 2-D binary image:
a multilayered perceptron, a morphological neural
network, and a support vector machine.

Inspired in the previous discussion, in this
paper we propose solving the following problem:
automatically derive equations for computing the
Euler characteristic of a binary image. For this,
we suggest training an Artificial Neural Network
(ANN) to automatically find optimal combinations
of bit-quads to compute the Euler characteristic of
a binary image.

The rest of the paper is organized as follows.
In the Section 2, we explain the methodology
followed. We show how two ANNs, one for the
4-connected and the other for the 8-connected
case, can be trained to find optimal combinations
of bit-quads to calculate the Euler characteristic of
a binary image. Section 3 is oriented to present
the results after training both ANNs. Besides, a
set of experimental results are presented, where
the performance of the ANNs is tested when
computing the Euler characteristic over different
images with distinct resolutions and complexities
and compared them with state-of-the-art machine
learning algorithms. Section 4 is finally focused on
concluding remarks and future research.

2 Methodology

From the material presented in Section 1, for about
47 years, only three combinations of bit-quads
and three improvements have been proposed.
Probably, some more can be found. As we
have seen, the most popular uses ten bit-quads,
the one initially proposed in [11]. The other
two, as explained in [21, 34], combine three
bit-quads. Apparently, three is the minimum
number of bit-quads that can be used to compute
the Euler characteristic of a 2-D binary image in
4(8) connectivity.

Henceforward, the 16 bit-quads shown in Table
1 will be ordered and represented as depicted in
Table 2.

Table 2. New representation of the 16 bit-quads from
Table 1

Bit-quad number Bit-quad (matrix form) Bit-quad (binary form)

Q1 ∶
⎡
⎢
⎢
⎢
⎣

0 0

0 0

⎤
⎥
⎥
⎥
⎦

0000

Q2 ∶
⎡
⎢
⎢
⎢
⎣

0 0

0 1

⎤
⎥
⎥
⎥
⎦

0001

Q3 ∶
⎡
⎢
⎢
⎢
⎣

0 0

1 0

⎤
⎥
⎥
⎥
⎦

0010

Q4 ∶
⎡
⎢
⎢
⎢
⎣

0 0

1 1

⎤
⎥
⎥
⎥
⎦

0011

Q5 ∶
⎡
⎢
⎢
⎢
⎣

0 1

0 0

⎤
⎥
⎥
⎥
⎦

0100

Q6 ∶
⎡
⎢
⎢
⎢
⎣

0 1

0 1

⎤
⎥
⎥
⎥
⎦

0101

Q7 ∶
⎡
⎢
⎢
⎢
⎣

0 1

1 0

⎤
⎥
⎥
⎥
⎦

0110

Q8 ∶
⎡
⎢
⎢
⎢
⎣

0 1

1 1

⎤
⎥
⎥
⎥
⎦

0111

Q9 ∶
⎡
⎢
⎢
⎢
⎣

1 0

0 0

⎤
⎥
⎥
⎥
⎦

1000

Q10 ∶
⎡
⎢
⎢
⎢
⎣

1 0

0 1

⎤
⎥
⎥
⎥
⎦

1001

Q11 ∶
⎡
⎢
⎢
⎢
⎣

1 0

1 0

⎤
⎥
⎥
⎥
⎦

1010

Q12 ∶
⎡
⎢
⎢
⎢
⎣

1 0

1 1

⎤
⎥
⎥
⎥
⎦

1011

Q13 ∶
⎡
⎢
⎢
⎢
⎣

1 1

0 0

⎤
⎥
⎥
⎥
⎦

1100

Q14 ∶
⎡
⎢
⎢
⎢
⎣

1 1

0 1

⎤
⎥
⎥
⎥
⎦

1101

Q15 ∶
⎡
⎢
⎢
⎢
⎣

1 1

1 0

⎤
⎥
⎥
⎥
⎦

1110

Q16 ∶
⎡
⎢
⎢
⎢
⎣

1 1

1 1

⎤
⎥
⎥
⎥
⎦

1111

2.1 Finding an Optimal set of Bit-Quads to
Compute the Euler Characteristic of a 2-D
Binary Image

Finding an appropriate combination C of bit-quads
to compute the Euler characteristic of a 2-D
binary image can be manually obtained by
testing the performance of such combinations
from a set of images SI = {I1, I2, . . . , Ip} and
their corresponding Euler characteristics SEN =

{E1,E2, . . . ,Ep}. It is clear that such combination
C is one of those that can be obtained from the set:

C16
1 +C

16
2 , . . . ,+C16

16 . (8)
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Table 3. Binary encoding example

4 × 4 binary image Vector v
⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 1 0
1 0 1 0
1 1 1 0
0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

v = [ 0 1 0 0 0 2 0 0 2 1 1 1 1 0 0 0 ]
T

One could test with all those combinations to find
a convenient formulation. Doing this certainly could
take a lot of time. Using common sense, we can
appreciate that some bit-quads do not contribute to
solving the problem. This is the case of bit-quads:

Q11 = [
0 0
0 0

] and Q51 = [
1 1
1 1

] that describe

the background of the image and the interior of the
objects, respectively.

In what follows, we demonstrate how an ANN
can be used to find an optimal combination
of C bit-quads from the set of 16 bit-quads
depicted in Table 2 to efficiently compute the
Euler characteristic of a 2-D binary image I(x, y).
For this, we propose using the following two-step
procedure. Given a set of 2-D binary images
SI = {I1, I2, . . . , Ip} and their corresponding Euler
characteristics: SEN = {E1,E2, . . . ,Ep}:

1. Map the set of images SI = {I1, I2, . . . , Ip}
to a matrix V = {v1, v2, . . . , vp}, with
vi = (#Q1,#Q2, . . . ,#Q16)

T , where
#Q1,#Q2, . . . ,#Q16 represent the
occurrences of bit-quads Q1,Q2, . . . ,Q16,
respectively. As an example, refer to Table 3,
where nine bit-quads can be found.

2. Present each pair (vi,Ei) to an untrained
neural network and iteratively adjust its
weights until convergence. Algorithm 1 shows
the pseudo-code of the training process.

We used 400 4 × 4 2-D images for the
4-connected case and 400 4 × 4 2-D images
for the 8-connected case. All random images
were generated using a discrete and uniform
distribution and zero-padded. Furthermore, both
linear perceptrons were trained with a learning
rate of 0.001, using the RMSprop optimizer [29]
and 250 epochs [7]. Besides, the weights were
initialized using Xavier normal initializer.

Algorithm 1 Training process
Begin
Generate the set training images SI =

{I1, I2, . . . , I400}
Calculate the Euler characteristic SEN =

{E1,E2, . . . ,E400}, using Gray’s formulas
Encode the SI images to matrix V =

{v1, v2, . . . , v400}
for i in range of 250 epochs:

for each (vi,Ei):
Perform feed-forward
Calculate the weight and bias gradients
Update weights and bias

End

2.2 Performance of Four Different Machine
Learning (ML) Algorithms to Forecast the
Euler Characteristic

We also test the performance of four different
machine learning (ML) algorithms to accurately
forecast the Euler characteristic: the proposed
single-layer ANN, a multi-layer perceptron (MLP)
with one hidden layer, a support vector regression
(SVR) with Gaussian kernel, and one dimensional
convolutional neural network (CNN-1D). A bench-
mark with 400 binary images of 10 × 10, 15 × 15,
20 × 20 and 25 × 25 pixels are used for training the
models, considering 4- and 8-connectivity cases.
With k=10, the k-fold cross-validation technique is
used to generate disjoint training and test sets.

For all the algorithms, the input vectors
correspond to the 16 bit-quad patterns calculated
from binary images. Furthermore, a tuning process
is performed to find the hyperparameters that
reduce the mean squared error.

For MLP, the number of hidden units is searched
in the range [2, 16, 32] with ReLU activation
functions and with a linear neuron in the output.
For SVR, the penalization cost C and the kernel
bandwidth γ are in the ranges [25, 26, . . . , 29] and
[2−4, 2−3, . . . , 24], respectively. For CNN-1D, the
number filters are examined in the range [8, 16, 32]
with hyperbolic tangent activation functions and
with a kernel size in range [1, 2, 3, 4], with a hidden
layer with [8, 16, 32] neurons and a linear neuron in
the output.
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Fig. 1. Proposed artificial neural network to find a good combination of bit-quads to estimate the Euler characteristic E
of a 2-D binary image

The performance is tested by the mean squared
error (MSE), mean absolute error (MAE), Pearson
correlation coefficient (PCC), and discrepancy
(D). The mean value over the 10-folds of
cross-validation is calculated.

3 Results

In this section, we present the results at which
we arrived after training an artificial neural network
to estimate the Euler characteristic in 2-D binary
images. We experimentally began testing with the
simplest artificial neural network. We used a linear
perceptron with 17 inputs (i.e., 16 bit-quads plus
the bias value) with a linear activation function,
as illustrated in Fig. 1, trained with Algorithm 1.
As we will see, we found that this very simple
learning machine was enough to find an optimal
combination of bit-quads.

3.1 Learned ANN Weight Values

For the 4-connected case, we end up with a
vector of weights, as shown in Table 4. For the
8-connected case, on the other hand, we finalized
with a vector of weights depicted in Table 5.

In both cases, note that most of the weight
values are almost zero. This finding indicates that
the ANN found that the corresponding bit-quads
are not representative for estimating the Euler
characteristic of a 2-D image. On the other hand,
note also that in both 4(8)-connected cases, three
weights approach +1 and −1 values. To establish
the validity of the obtained results, we re-trained
the linear perceptron 100 times over sets of 400
4 × 4 2-D binary images and their corresponding

Table 4. Weights obtained when training a linear
perceptron using 4 × 4 2-D binary images for the
4-connected case

Weight number Weight value Rounded values Bit-quad
1 -0.016 0 0000
2 -0.022 0 0001
3 -0.011 0 0010
4 -0.017 0 0011
5 -0.011 0 0100
6 -0.017 0 0101
7 -0.007 0 0110
8 -0.013 0 0111
9 0.978 1 1000
10 0.976 1 1001
11 -0.015 0 1010
12 -0.021 0 1011
13 -0.015 0 1100
14 -0.020 0 1101
15 -1.000 -1 1110
16 -0.017 0 1111

bias 0.145
Bold values indicate the most representative weights and their

corresponding bit-quads

Euler characteristics for both the 4(8) connected
cases. Tables 4 and 5 show the average of the
perceptron weighs after training it 100 times:

1. For the 4-connected case, note that three
weights approach to +1 and −1 values,
corresponding to bit-quads 9, 10, and 15,
respectively. Both weights 9 and 10 approach
to +1, while weight 15 approaches to
−1. Notice that the highest weights exactly
correspond to the bit-quads used in Equation
(5) to calculate the Euler characteristic of a
4-connected 2-D binary image.

2. For the 8-connected case, note that three
weights approach to +1 and −1 values,
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Table 5. Weights obtained when training a linear
perceptron using 4 × 4 2-D binary images for the
8-connected case

Weight number Weight value Rounded values Bit-quad
1 0.000 0 0000
2 -0.003 0 0001
3 0.004 0 0010
4 0.001 0 0011
5 0.005 0 0100
6 0.000 0 0101
7 -0.991 -1 0110
8 0.004 0 0111
9 0.997 1 1000

10 -0.006 0 1001
11 0.001 0 1010
12 -0.002 0 1011
13 0.001 0 1100
14 -0.003 0 1101
15 -0.994 -1 1110
16 0.001 0 1111

bias 0.108
Bold values indicate the most representative weights and their

corresponding bit-quads

corresponding to bit-quads 9, 7, and 15,
respectively. Weight 9 approaches to +1, while
both weights 7 and 15 approach to −1. Notice
that the highest weights exactly correspond to
the bit-quads used in Equation (6) to calculate
the Euler characteristic of a 8-connected 2-D
binary image.

Furthermore, we changed the weight initializa-
tion method and retraining 100 times the linear
perceptron. We averaged and rounded all the
learned weights by the ANNs to the nearest integer
to reduce the influence of undesired bit-quads.
As a result, we obtained the following new
equations never reported in the literature for the
4-connected case:

E =#Q5 +#Q7 −#Q14, (9)

and for the 8-connected case:

E =#Q5 −#Q10 −#Q14. (10)

Based on the Stochastic Gradient Descent (SGD)
training algorithm [29], the linear perceptron has
learned to select an optimal combination of
bit-quads C to estimate the Euler number of a 2-D
binary image. The perceptron arrived precisely
at the same results that a human being has

empirically done before, in this case, Equations
(5) and (6). Moreover, when changing the
weight initialization method, the linear perceptron
discovered new formulations for computing the
Euler characteristic. This relevant finding suggests
the ability of the ANN to automatically provide new
expressions that would take a human being a long
time to discover.

3.2 Assessment of Discovered Expressions

Next, we tested the new expressions of the Euler
characteristics shown in Equations 9 and 10 in
images with distinct sizes and complexities. Three
experiments were performed. In the first case,
we used the small resolution images of 10 logos
shown in Fig. 2. In the second case, we used
medium resolution images with different objects
with and without holes, as shown in Fig. 3.
Lastly, in the third experiment, we used medium
resolution images with one object subjected to
different image transformations, Fig. 4. The idea
is to assess invariance to different variations of the
same object.

Tables 6, 7 and 8 summarize the results. As
the reader can rapidly appreciate, the desired Euler
characteristic for all images has been obtained with
perfect precision in all cases.

Fig. 2. Binary images of 128 × 128 pixels of ten
different logos used to test the performance of the trained
perceptron to estimate the Euler characteristic of a 2-D
binary image

The trained neuron is applied to each of the
three sequences of images shown in Fig. 4, and
it obtains the same output. This results could
be explained as follows. Suppose we have a
binary image I1 with O objects and H holes.
Then, this image is transformed into another
image by applying to I1 an image transformation
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Fig. 3. Binary images of 320 × 240 pixels with a different
number of objects of diverse complexity used to test the
performance of the trained perceptron to estimate the
Euler characteristic of a 2-D binary image

Fig. 4. Binary images of 320 × 240 pixels with one object
subjected to different image transformation to test the
performance of the trained perceptron to estimate the
Euler characteristic of a 2-D binary image

T as follows I2 = T (I1). T could be any
image transformation: translation, rotation, scale
change, affine or projection, even a combination
of several of them. The corresponding bit-quad
representations of these two images are v1 and v2,
respectively. Of course, due T , v1 ≠ v2. However,
as depicted in Table 6, the neuron’s output in the
three examples is the same.

Coming back to our example of transforming I1
to I2 by T , when we feed v1 and v2 to the trained
neuron, we obtain s1 = w1x1,1+w2x2,1+. . .+w17 and
s2 = w1x1,2 + w2x2,2 + . . . + w17. If we take out the
elements that do not contribute to the computation,
as illustrated in Table 4, for the 4-connected case,
we have s1 = x9,1 + x10,1 − x15,1 and s2 = x9,2 +
x10,2 − x15,2. It is clear that, in order to the trained
neuron output the same result, it is necessary that
x9,1 + x10,1 − x15,1 = x9,2 + x10,2 − x15,2.

As an example, let us take the first sequence of
four images shown in Fig. 4, with the three most
representative bit-quads. For these four images
we have that: v1 = [69, 0, 68]T , v2 = [8, 0, 7]T ,
v3 = [140, 0, 139]T and v4 = [66, 0, 65]T , where

vi = [#Q9,#Q10,#Q15]
T . This discussion can be

formally stated as follows:
Proposition 1. The Euler characteristic E

of any binary image is the same after applying
any type of image transformation by counting
the most representative bit-quads found by the
linear perceptron.

Proof. Basis: For the first and fourth images
of the third row of Table 8, the most representative
bit-quads from each of these two images are v1 =

[328, 0, 334]T and v2 = [6, 0, 12]T , respectively. By
using the trained neuron, we obtain that 328 + 0 −
334 = −6 and 6 + 0 − 12 = −6, which is true because
both images have the same Euler characteristic E
of −6.

Induction step: Let I1 be a binary image
with O objects and H holes, I2 → T (I1) its
transformed version trough image transformation
T , and v1 and v2 their two corresponding bit-quads
representations. So s1 = x9,1 + x10,1 − x15,1 and
s2 = x9,2+x10,2−x15,2, the two outputs of the trained
neuron, respectively. If s1 = s2, then x9,1 + x10,1 −
x15,1 = x9,2 + x10,2 − x15,2.

Notice that this preposition was focused on the
4-connected case shown in Table 4, but it also
applies, with minimal changes, for the 8-connected
case shown in Table 5, as well as for Equations 9
and 10.

3.3 Euler Characteristic Prediction

Table 9 displays the results of the proposed
single-layer ANN and three ML algorithms to
predict the Euler characteristic for the 4- and
8-connectivity cases. Remarkably, the single-layer
ANN method shows an outstanding capacity
to predict the Euler characteristic with fewer
computational resources. Although the other three
algorithms also achieve significant results.

This finding points out that encoding the input
binary image to a bit-quad representation allows
describing the image’s topology such that a
single-layer ANN, MLP, SVR and CNN-1D methods
can build a mapping function to predict the
Euler characteristic accurately. Nevertheless,
though the MLP, SVR and CNN-1D predict the
Euler characteristic very efficiently, they lack the
property of explainability; that is, a human being

Computación y Sistemas, Vol. 26, No. 1, 2022, pp. 411–422
doi: 10.13053/CyS-26-1-4021

Learning an Artificial Neural Network for Discovering Combinations of Bit-Quads ... 417

ISSN 2007-9737



Table 6. Estimated Euler characteristics by the trained perceptron over images of Fig. 2

Image
Computed Euler characteristic +3 −1 +4 +10 −6

Desired Euler characteristic +3 −1 +4 +10 −6

Image
Computed Euler characteristic +1 +5 +3 +12 +5

Desired Euler characteristic +1 +5 +3 +12 +5

Table 7. Estimated Euler characteristics by the trained perceptron over images of Fig. 3

Image
Computed Euler characteristic −6 +1 −9 −18

Desired Euler characteristic −6 +1 −9 −18

Table 8. Estimated Euler characteristics by the trained perceptron over images of Fig. 4

Image
Computed Euler characteristic +1 +1 +1 +1

Desired Euler characteristic +1 +1 +1 +1

Image
Computed Euler characteristic −4 −4 −4 −4

Desired Euler characteristic −4 −4 −4 −4

Image
Computed Euler characteristic −6 −6 −6 −6

Desired Euler characteristic −6 −6 −6 −6

Table 9. Comparison of ML algorithms to predict the Euler characteristic. The mean value of 10-fold cross validation
experiments is shown

Methods 4-connectivity 8-connectivity
MSE MAE PCC D MSE MAE PCC D

ANN 0.000 0.000 1.000 0.000 0.000 0.000 1.000 0.000
MLP 0.000 0.002 0.998 0.010 0.000 0.004 0.996 0.050

CNN-1D 0.000 0.003 0.999 0.037 0.000 0.003 0.999 0.037
SVR 0.000 0.002 0.999 0.007 0.000 0.001 0.999 0.001

In bold are highlighted the best results
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understands the meaning of all the parts that make
up the calculation of the Euler characteristic.

4 Conclusions and Future Work

In this section, we present the conclusions we have
arrived at in this research. We also talk about
future trends that emanate from this investigation.

We have shown that a very simple machine can
find optimal combinations of bit-quads to estimate
the Euler characteristic of a 2-D binary image.

This result is relevant because the described
procedure, i.e., training a linear perceptron to find
the most relevant bit-quads, could be applied to
solve other combinatorial problems with possibly
hundreds of variables.

Moreover, the neuron arrives at the same
equations found manually by humans without a
priori knowledge by using a limited set of training
images. Also, the linear perceptron was capable
of discovering new expressions never reported
previously in the literature.

Additionally, the estimated Euler numbers
obtained by the discovered expressions, in
both cases (4-connected and 8-connected), are
accurate, regardless of the number of objects and
holes in the image.

These promising results encourage us to train
an artificial neural network to estimate the Euler
number of binary 3-D images. In this case, instead
of bit-quads, we should use bit-octos represented
by 2 × 2 × 2 matrices.
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Nacional and the Centro de Investigaciones en
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Training a multilayered perceptron to compute the
Euler number of a 2-D binary image. Lecture Notes
in Computer Science, pp. 44–53. DOI: 10.1007/
978-3-319-39393-3 5.

37. Sossa, H., Carreón, Á., Santiago, R., Petrilli-
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