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Abstract. When emergencies or disasters strike, 

decision-making is a critical component in emergency 
management. One area of emergency management is 
ensuring that vulnerable communities are identified and 
can get the aid they need before, during, and after 
emergency events. Artificial Intelligence (AI) can be 
leveraged to improve decision-making in dynamic and 
complex situations. We propose that Multi-Criteria 
Decision-Making (MCDM), specifically a hybrid 
methodology of AHP-TOPSIS, is an approach that can 
be utilized in AI that can help evaluate, prioritize, and 
select the most favorable alternative based on 
computation of the criteria. A study was conducted 
considering the positive COVID-19 cases in randomly 
selected counties in three states – Texas, California, and 
Oklahoma – that have historically experienced the most 
declared emergencies. The empirical results from the 
three cases (one case for each state) demonstrate the 
superiority of the AHP-TOPSIS approach. 

Keywords. Multi-criteria decision-making, emergency 

management, artificial intelligence, social vulnerability 
index, AHP, TOPSIS. 

1 Introduction 

Decision-making has a fundamental role in 
emergency management. An effective approach to 
emergency management can be broken into four 
phases: preparedness, response, recovery, and 
mitigation [1]. In the preparedness phase, 
emergency plans will be developed. In the 
response phase, action is taken to save lives and 
reduce damage. In the recovery phase, efforts to 
restore the community occur. In in the mitigation 
phase, policies are put into place to reduce risks to 
people and property during a disaster. In each of 
these phases, decision-making is a valuable 
component.  

Over the last several decades, numerous major 
emergency situations and natural disasters have 
been recorded. Natural disasters are not just 
hydro-meteorological (i.e. storms, floods, extreme 
temperature), but can also be identified as 
geophysical or epidemiologic [2]. These events 
can have a significant impact on the well-being of 
an area’s population economically, physically, and 
psychologically [3]. To make the right decisions 
that can focus on protecting against the loss of 
resources or human lives, reliance is given to 
timely and credible information understanding and 
reasoning [4].  

Artificial Intelligence (AI) techniques and 
methods have the ability to handle complex big 
data to learn and be able to make further 
predictions and classifications. AI is a popular 
research topic, and has been used in several 
emergency management applications [3-11]. A 
goal with implementing AI is to lead towards better 
decision-making in terms of emergency 
preparedness, response, recovery, and mitigation. 
These types of decisions are dynamic, complex, 
and often have multiple and conflicting criteria and 
alternatives which require the decision-maker to 
accurately filter through and prioritize. Multi-
Criteria Decision-Making (MCDM) is an approach 
that can serve as an invaluable tool in decision-
making tasks. Alternatives can be evaluated, 
prioritized, and chosen by using MCDM models 
[12-14]. Numerous methods have been derived 
and evolved to accommodate various types of 
situations and applications [15]. A common method 
used in research involving complexity is a hybrid 
method of Analytical Hierarchy Process (AHP) and 
Technique for Order of Preference by Similarity to 
Ideal Solution (TOPSIS); AHP is used to elicit the 
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criteria weights and TOPSIS is then used to rank 
the alternatives. 

AI certainly has an established place in the 
domains of both decision support systems and 
emergency management.  As previously 
mentioned, AI has demonstrated its efficacy with 
respect to assisting humans in emergency 
management situations.  The complexities 
involved in providing effective and timely 
emergency management drive the need for even 
more assistance to support overwhelmed human 
decision-makers confronted with a vast array of 
factors on which to base decisions. These 
circumstances are well-suited for the application of 
MCDM models and algorithms in the development 
of essential decision support systems. 

 One critical task for which decision support 
systems can provide aid is the identification of 
vulnerable areas and communities that may need 
assistance when emergency events occur. 
Vulnerabilities can determine individuals who may 
be more at risk to negative outcomes during 
emergency situations and natural disasters based 
on numerous characteristics, including 
socioeconomic, age, minority status & language, 
physical environment locations, and health risk 
concerns. Any method used by emergency 
management for the purpose of identifying 
vulnerable communities needs to be able to handle 
all of the considerations that can influence 
vulnerability and impact the decisions made, but 
also be adaptable and dynamic due to the 
everchanging nature of emergencies.  

One tool that is being used to identify vulnerable 
communities is the Social Vulnerability Index (SVI), 
which aggregates indicators into a composite 
score [1, 16]. The index is able to predict which 
communities are more vulnerable, and help 
determine where focus should be to distributing 
help and resources. Issues that may arise with this 
resource include the simple mathematical 
computations for a complex issue, and that the 
criteria that influences vulnerability are not 
weighted. To address these concerns, we propose 
using MCDM, specifically AHP-TOPSIS, to help 
identify vulnerable communities. We hypothesize 
that the communities that are ranked based on 
vulnerability will differ due to more sophisticated 
calculations, and that the AHP-TOPSIS method 
will produce a more realistic determination.   

As a case study to evaluate the proposed 
methodology, we sought to identify the least and 
most vulnerable communities in Texas, California, 
and Oklahoma. These three states are reported to 
have the most declared emergencies since 1953 
[17], and it is important for emergency plans to 
consider where vulnerable communities exist 
appropriate actions can be made before, during, 
and after an emergency or disaster occurs. The 
methodology’s results, along with the SVI ranks, 
will be compared with the way counties in the three 
selected states are ranked based on reported 
positive COVID-19 cases (COVID-19 being one of 
the most recent emergencies). 

The remainder of this paper is organized in the 
following four additional sections. Section 2 
provides a background on relevant theories and 
related work.  Section 3 provides details of the 
proposed methodology. Section 4 presents the 
results and the analysis that was performed; this is 
followed by a discussion of the results. Concluding 
remarks are given in Section 5. 

2 Theory and Related Works 

2.1 Multi-Criteria Decision-Making Algorithms 

AHP uses pairwise comparisons and judgments 
from experts to derive priority measurements. AHP 
consists of three main parts:  

1. decomposing and breaking down the problem 
into criteria and sub criteria in a hierarchical 
manner;  

2. determining the priorities of the criteria and 
sub criteria; and  

3. synthesizing the priorities to determine which 
criteria have the highest priority and should be 
acted upon to influence the problem situation 
[18-19].  

Matrices of pairwise comparisons are formed to 
estimate the level of importance using numbers 
from a 1-to-9 AHP fundamental scale. 
Fundamental Scale: 1-Equal, 3-Moderate, 5-
Strong, 7- Very Strong, 9-Extremely Strong, plus 
numbers in between for intermediate judgments, 
as well as decimals for finer distinction. A 
consistency ratio (CR) is then calculated to ensure 
that the comparison matrix is consistent enough to 
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derive priorities [18-19]. If the CR is significantly 
small (less than 10%), then the estimate of weight 
is accepted.  

Advantages of AHP include that the method is 
consistent, flexible, and understandable; sets the 
problem up into a hierarchical structure; can use 
quantitative and qualitative criteria; is good for 
various contexts; and can extend to fuzzy numbers 
[20-24]. Disadvantages include issues with rank 
reversal; handling of large quantities of 
information, uncertainty, and subjectivity; can be 
computationally complex; and it depends on user 
preferences [15, 23-25]. 

Alizadeh et al. (2018) [26] assess seismic 
vulnerability of residential houses in Tabriz city, 
Iran using AHP. The results highlighted which 
areas of Tabriz city exhibited more vulnerability 
than others, such as the South and Southeast 
areas. The authors suggest that this method is 
effective for evaluating seismic vulnerability 
assessment and could assist urban planners 
during mitigation and preparatory phases.  

Guo and Kapucu (2020) [27] assess social 
vulnerability to earthquake disasters within 
Hanzhong city, China using rough AHP. This 
method allowed the authors to observe the spatial 
distribution of the social vulnerability.  

Ghavami (2019) [28] developed a multi-criteria 
spatial decision support system (MC-SDSS) that 
incorporates AHP to evaluate transportation 
network performance (TNP) in disaster situations.  

Tyagi et al. (n.d.) [29] implemented AHP to 
evaluate the landslide hazard index that is then 
used to generate landslide hazard zonation. This 
information was applied to a case study that 
studied landslide risk for the Tehri area in 
Uttarakhand, India.  

TOPSIS is based on the idea of minimizing the 
distance or determining the shortest distance from 
the positive ideal solution and maximizing the 
distance or determining the farthest distance from 
the negative ideal solution. The closeness of the 
alternatives to the ideal solution is evaluated using 
Euclidean distance [29-30]; by comparing the 
relative distances, the preference order of the 
alternatives is determined. 

The TOPSIS method is comprised of the 
following steps [31]:  

1. Calculate the normalized decision matrix,  

2. Calculate the weighted normalized decision 
matrix,  

3. Determine the positive ideal solution and 
negative ideal solution,  

4. Calculate the separation measures using 
the n-dimensional Euclidean distance,  

5. Calculate the relative closeness to the 
positive ideal solution, and  

6. Rank the preference order.   

Some advantages of TOPSIS are that the 
method is easy to use [32], it is suitable for large-
scale data, it provides a solution with precise 
relative closeness to the positive ideal solution [32, 
33], it is simple [15, 33], and it uses a constant 
number of steps regardless of the number of 
criteria to consider. 

Some disadvantages of TOPSIS are that 
Euclidean distance does not consider the 
correlation of criteria [15], judgements are difficult 
to weight and keep consistent [15], normalization 
by using vector normalization may be dependent 
on the evaluation unit of a criterion function [31], 
problem of rank reversal [34-36], and for the 
method to work, a maximum and minimum value 
will need to be identified [34, 37]. 

Zhang et al. (2019) [38] propose a cyberGIS-
enabled MC-SDSS for rapid decision-making in 
emergency management. The authors produced 
an application that can provide location information 
for rescue personnel during disasters to help 
evacuate people who need help using Twitter data. 
Geospatial high-performance computing 
(specifically CyberGIS-Jupyter) is combined with 
the MCDM methods of weighted sum model 
(WSM) and TOPSIS to evaluate and identify 
vulnerable communities in flood emergency 
situations. In the paper, two objectives test out the 
proposed method.  

Results reveal that WSM generated more 
diverse values and higher output category 
estimations than TOPSIS. Overall, WSM and 
TOPSIS both produced consistent answers for 
places that have high vulnerability and similar 
validation results for each decision objective. 

Harirchian et al. (2020) [39] use MCDM 
methods for assessing seismic vulnerability and 
classify damage index of structures, and then 
results are validated by the actual damage state 
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observed. From their study, TOPSIS-W1 was 
determined to contribute the most relevant results 
in comparison to other tested MCDM methods.  

Growing in popularity is the use of a hybrid 
methodology formed by combining MCDM 
algorithms together to benefit from the advantages 
and make up for any disadvantages that a 
particular algorithm may have. A commonly 
applied hybrid method is AHP-TOPSIS, especially 
in complex scenarios. AHP can provide a way of 
bringing in subjective weights, and TOPSIS will 
then use those weights in its calculation and 
ranking of the alternatives.  

Wang, Li, Zhang, and Cao (2018) [40] propose 
a hybrid network architecture for Disaster Area 
Wireless Networks (DAWNs) for mobility of first 
responders and refugees. They also propose 
MCDM emergency communication protocol (ECP) 
that consists of AHP and TOPSIS for finding an 
optimal next-hop node in DAWNs.  

Ghorui et al. (2021) [41] identified the most 
dominant risk factor related to the spread of the 
COVID-19 virus using fuzzy AHP to calculate 
priority weights and hesitant fuzzy sets with 
TOPSIS to analyze the most important factor. 
Results revealed that the most significant risk 
factor is “long duration of contact with the 
infected  person”.  

Jena and Pradhan (2020) [42] proposed to 
improve earthquake risk assessment in Aceh, 
Indonesia using a novel combination of artificial 
neural network cross-validation (fourfold ANN-CV) 
with hybrid AHP and TOPSIS. This method turned 
out successful; achieving an accuracy score of 
85% and a consistency ratio of 0.06.  

2.2 Ranking Comparison 

A way to understand the similarity between 
rankings, several rank evaluation metrics can be 
used, and in this paper, we describe two metrics: 
Kendall’s tau rank correlation coefficient (τb) and 

Kendall tau distance.  

Kendall’s tau rank correlation coefficient is a 
non-parametric metric that measures the 
comparison between ranked data using a value 
range from 1 to -1, meaning the lists are identical 
to opposite, respectively [43-45].  

Kendall tau distance measures the number of 
swaps counting the pairwise disagreements 

between rankings. The distance value can range 
from 0, indicating a perfect matching ranked list, to 
the total number of pairs between the lists, 
indicating completely opposite matching [43]. 

3 Methodology 

3.1 Dataset 

The Centers for Disease Control and Prevention 
Social Vulnerability Index (CDC SVI or SVI) was 
created by the Agency for Toxic Substances and 
Disease Registry (ATSDR)’s Geospatial 
Research, Analysis & Services Program (GRASP) 
[1 , 16] to help identify communities in the United 
States that would need support during different 
stages that a hazardous event occurs. The SVI 
uses census tract data collected.  Fifteen variables 
are organized into four main theme factors that 
have an impact on a community’s vulnerability. 
This includes: 

1. socioeconomic status,  

2. household composition & disability,  

3. minority status & language, and  

4. housing type & transportation.  

For each alternative, a percentile score is given to 
each criterion. Percentile scoring ranges from 0-1 
or least vulnerable to most vulnerable, 
respectively. The overall SVI is calculated by 
summing the four factors, and the four factors have 
no weights. In this study, the four factors are used 
as the criteria for the proposed MCDM method.   

3.2 Hybrid MCDM Approach 

SVI calculations ignore mathematical aggregation 
across the census factors, with no 
weighting/implicit weighting involved for any of the 
factors. This method is simple and straightforward 
to use, however, it lacks mathematical rigor and 
focus on the importance of influence that the 
factors can have on vulnerability. In emergency 
situations, the goal is that whatever decision that is 
made will bring the most beneficial ideal solution, 
and realistic considerations are made in regard to 
criteria that may impact a community more than 
others. The benefit of AHP is that it allows for 
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judgements of prioritization of the criteria by 
completing pairwise comparisons; a more 
thorough perspective than just individual weight 
assignments on a linear scale. The benefit of 
TOPSIS is that it will incorporate the positive ideal 
solution and negative ideal solution into the 
mathematical computation that will determine the 
ranks of the alternatives; ensuring that the top 
choice is the closest to the positive ideal solution 
and farthest away from the cost.   

Even so, it is not realistic to assume that factors 
in emergency situations have the same weight 
when it comes to considerations for decisions to be 
made during emergency planning and aid. For the 
above reasons, a hybrid MCDM method AHP-
TOPSIS is proposed. This will allow for more 
realistic weights to be applied to the factors, and 
then those weights will be used in the TOPSIS 
calculation. Then, the results of the AHP-TOPSIS 
method can be compared to the SVI calculated 
vulnerability ranks.  

In this study, AHP-TOPSIS is proposed to be 
used in an emergency management scenario. AHP 
is used to calculate the weights of the criteria 
(socioeconomic status, household composition & 
disability, minority status & language, and housing 
type & transportation). Preference weights for this 
case study were determined based on the findings 
from recent studies [46-47]. The criteria weights 
that are calculated using AHP are incorporated into 
TOPSIS, and the alternatives are then ranked. This 
final ranking highlights the least vulnerable 

communities to the most vulnerable communities, 
and then can be compared to the ranks based on 
COVID-19 cases and SVI ranks. 

3.3 Case Study 

The proposed method of utilizing AHP-TOPSIS for 
identifying vulnerable communities was evaluated 
in a case study using the census information for the 
US states Texas, California, and Oklahoma.  

These states were selected for the purpose of 
this research as they are reported as the top 3 
states for declared emergencies. For each of the 
three states, the counties are assigned a number, 
and 20 counties were randomly selected for this 
preliminary study.  Figure 1 depicts the hierarchical 
structure of the goal, criteria, and alternatives (in 
this case, for California). 

4 Results 

The results of using the proposed methodology in 
the three cases are presented below. Per the 
above discussion, Kendall’s tau correlation and 
Kendall Distance are used for measuring the 
comparison between the ranking of counties by 
COVID-19 positive cases and the two calculated 
ranks, SVI and AHP-TOPSIS. COVID-19 case-
related data as of May 15th, 2021 were used [48]. 

As a reminder, Kendall’s tau can vary from -1 to 
1 (higher is better), while the Kendall tau distance 
can vary from 0 (indicating two perfectly matched 

 

Fig. 1. Hierarchical structure of the problem 
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lists) to 190 in our case of having 20 items to rank 
(190 would indicate the two lists are 
totally  reversed). 

4.1 Case #1 - Texas 

The results table below (Table 1) highlights three 
columns of rankings: rankings based on COVID-19 
cases, and rankings of vulnerability based on SVI 
and AHP-TOPSIS calculations. In Column #1 
(COVID-19 cases), the counties are ranked from 
1–20, 1 representing lowest percentage of 

confirmed cases in relation to the county’s 
population, and 20 representing the highest 
percentage. In Columns #2 and #3, the rankings 1 
–20 are listed from least vulnerable to most 
vulnerable in terms the criteria of socioeconomic 
status, household composition & disability, minority 
status & language, and housing type & 
transportation. It is hypothesized that the 
percentage of counties with confirmed COVID-19 
cases is related to its vulnerability (i.e., counties 
with a low percentage of cases would be those with 
the least amount of vulnerability).   

Table 1. Confirmed COVID-19 cases and vulnerability ranks of counties in Texas 

County 
COVID-19 

CASES 
SVI 

AHP-
TOPSIS 

County 
COVID-19 

CASES 
SVI 

AHP-
TOPSIS 

Trinity 1 14 6 Pecos 11 17 16 

Delta 2 8 4 McLennan 12 15 13 

Wood 3 6 5 Hudspeth 13 20 20 

Carson 4 1 1 Rockwall 14 2 2 

Live Oak 5 12 11 Crane 15 11 15 

Terrell 6 9 14 Brown 16 7 3 

Brazoria 7 4 10 Chambers 17 3 9 

Upton 8 13 17 Burleson 18 10 8 

Lynn 9 16 12 Uvalde 19 19 19 

Montague 10 5 7 Deaf Smith 20 18 18 

Table 2. Confirmed COVID-19 cases and vulnerability ranks of counties in California 

County 
COVID-19 

CASES 
SVI 

AHP-
TOPSIS 

County 
COVID-19 

CASES 
SVI 

AHP-
TOPSIS 

Mariposa 1 6 3 Alpine 11 11 7 

Plumas 2 4 2 Inyo 12 8 9 

Calaveras 3 3 5 Amador 13 7 4 

Del Norte 4 17 11 Tulare 14 19 20 

El Dorado 5 1 1 Stanislaus 15 14 15 

Marin 6 2 8 Riverside 16 12 14 

Sonoma 7 5 10 Kern 17 20 19 

Shasta 8 10 6 
Los 

Angeles 
18 15 17 

Solano 9 9 12 
San 

Bernadino 
19 13 16 

Santa 
Barbara 

10 13 13 Kings 20 18 18 
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Results revealed from both Kendall’s tau 
correlation (τb, where higher is better) and Kendall 
Distance (“distance”, where lower is better) that the 
ranks from AHP-TOPSIS (τb = 0.28; distance of 68) 

are more similar to the county ranks based on 
COVID-19 cases than the ranks with SVI (τb = 0.18; 

distance of 78).  

Table 1 presents the rankings based on 
COVID-19 cases, SVI calculation, and AHP-
TOPSIS calculation. 

4.2 Case #2 - California 

Case study #2 resulted with a positive correlation 
between the ranked counties by COVID-19 cases 
and the calculated ranks from both SVI and AHP-
TOPSIS: cases versus SVI (τb = 0.51); and cases 
versus AHP-TOPSIS (τb = 0.59).  

With Kendall’s Distance, it turned out that the 
ranking from AHP-TOPSIS was more similar to the 
reported cases (distance of 39) in comparison to 
SVI (distance of 47).  

Table 2 presents each ranking. 

4.3 Case #3 - Oklahoma 

The correlation calculations for Case #3 showed 
that SVI is negatively correlated to the reported 
cases (τb = -0.13) and AHP-TOPSIS is positively 
correlated (τb = 0.11).   

Likewise with Case #1 and Case #2, AHP-
TOPSIS (distance of 85) is confirmed closer in 
distance to the reported COVID-19 ranks than the 
SVI ranks (distance of 107).   

Table 3 presents each ranking. 

5 Conclusions 

When emergencies or disasters strike, accurate 
and timely decision-making is essential for 
effective emergency management, which consists 
of preparedness, response, recovery, and 
mitigation efforts. AI can be leveraged to lead 
towards improved decision-making in dynamic and 
complex situations. Often in those situations, 
conflicting criteria to consider for selecting 

Table 3. Confirmed COVID-19 cases and vulnerability ranks of counties in Oklahoma 

County 
COVID-19 

CASES 
SVI 

AHP-
TOPSIS 

County 
COVID-19 

CASES 
SVI 

AHP-
TOPSIS 

Hughes 1 13 4 Dewey 11 1 2 

Okmulgee 2 16 18 Rogers 12 2 7 

Haskell 3 19 11 Nowata 13 4 3 

Osage 4 5 8 Cherokee 14 20 15 

Greer 5 15 10 Kay 15 12 12 

Roger Mills 6 3 1 Cotton 16 6 5 

Oklahoma 7 10 14 Jackson 17 14 19 

Tillman 8 17 13 Carter 18 11 17 

Blaine 9 9 9 Beckham 19 7 16 

Le Flore 10 18 20 Love 20 8 6 

Table 4. Summary of Kendall tau and distance scores for SVI and AHP-TOPSIS methods for each case 

 SVI AHP-TOPSIS 

CASE Tau Tau Dist. Tau Tau Dist. 

Case 1 – TX 0.18 78 0.28 68 

Case 2 – CA 0.51 47 0.59 39 

Case 3 – OK -0.13 107 0.11 85 

Computación y Sistemas, Vol. 25, No. 4, 2021, pp. 863–872
doi: 10.13053/CyS-25-4-4102

Utilization of Multi-Criteria Decision-Making for Emergency Management 869

ISSN 2007-9737



alternatives can make decision-making a daunting 
task, and reasoning can be difficult. MCDM is an 
approach that can help evaluate, prioritize, and 
select the most favorable alternative based on 
computation of the criteria.  

One area of emergency management is 
ensuring that vulnerable communities are 
identified and can get the aid they need before, 
during, and after emergency events. The Social 
Vulnerability Index (SVI) is a way to be able to 
predict the vulnerability of communities based on 
the main theme factors of socioeconomic status, 
household composition & disability, minority status 
& language, and housing type & transportation.  

We believe a more sophisticated approach can 
be taken, in the mathematical computation and 
weighting of the criteria. With that in mind, we 
propose using a hybrid algorithm for Multi-Criteria 
Decision-Making (MCDM), specifically AHP-
TOPSIS. We hypothesized that the community 
vulnerability ranking produced by the SVI would 
differ from that produced by the AHP-TOPSIS 
approach, and that the AHP-TOPSIS method 
would produce a more realistic determination.   

As a “proof of concept” with respect to our 
hypothesis, a study was conducted considering the 
positive COVID-19 cases in randomly selected 
counties in three states – Texas, California, and 
Oklahoma – that have historically experienced the 
most declared emergencies.  The similarity 
between the ranking of the counties in each state 
in terms of least to most positive COVID-19 cases 
and the SVI vulnerability ranking was compared.  
Then, the positive COVID-19 cases ranking was 
also compared to a vulnerability ranking produced 
by the proposed AHP-TOPSIS methodology.  
Evaluation was complete using metrics of 
Kendall’s tau rank correlation coefficient and 
Kendall tau distance. As a reminder, a larger 
Kendall tau number indicates better correlation 
between the lists, while a smaller Kendall tau 
distance indicates better correlation.  Table 4 is a 
summarization of the results.  

The empirical results from the three cases (one 
case for each state) demonstrated the superiority 
of the AHP-TOPSIS approach. In all comparisons 
to the ranking based on actual COVID-19 data, the 
AHP-TOPSIS Kendall tau number was larger 
(better) than that of the SVI, and the AHP-TOPSIS 
Kendall tau distance was smaller (better) than that 

of the SVI. The analysis indicates that while 
similarities do exist when comparing the methods 
and at times some ranks match, it is apparent that 
there are differences and that the ranks are 
sensitive to criteria weights and rank determination 
calculations. 

The results demonstrate that the proposed 
methodology of AHP-TOPSIS produces a more 
realistic vulnerability determination in relation to 
the ranked percentage of confirmed cases of 
COVID-19, the most recent large emergency 
event, in comparison to SVI. With that being said, 
for future emergency management, it is possible 
that AHP-TOPSIS would continue to have a better 
representation than SVI and could be used instead 
or in conjunction with SVI. While the emergency 
case study was related to COVID-19, it appears 
that the hybrid method could be effectively applied 
to decision-making for other emergency 
management situations. The alternatives may 
differ, but the criteria related to vulnerability of 
communities could potentially still be relevant.  

Future work will explore this further, and also 
evaluate the handling of dynamic aspects of 
emergent events. In addition, fuzzy set theory will 
be introduced to generate a dynamic, fuzzy AHP-
TOPSIS model. 
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