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Abstract. In recent years many papers have been 

devoted to the analysis and applications of negations of 
finite probability distributions (PD), first considered by  
Ronald Yager. This paper gives a brief overview of some 
formal results on the definition and properties of 
negations of PD. Negations of PD are generated by 
negators of probability values transforming element-by-
element PD into a negation of PD. Negators are non-
increasing functions of probability values. There are two 
types of negators: PD-independent and PD-dependent 
negators. Yager's negator is fundamental in the 
characterization of linear PD-independent negators as a 
convex combination of Yager's negator and uniform 
negator. Involutivity of negations is important in logic, 
and such involutive negator is considered in the paper. 
We propose a new simple definition of the class of linear 
negators generalizing Yager's negator. Different 
examples illustrate properties of negations of PD. 
Finally, we consider some open problems in the analysis 
of negations of probability distributions. 

Keywords. Probability distribution, negation, linear 

negator, involutive negation. 

1 Introduction 

In recent years many papers have been devoted to 
the analysis and applications of negations of finite 
probability distributions (PD) [2-14], first 
considered by R. Yager in [1].  

This paper gives a brief overview of some 
formal results on the definition and properties of 
negations of PD. Negations of PD are generated 

by negators of probability values transforming 
element-by-element PD into a negation of PD [2]. 
Negators are non-increasing functions of 
probability values that can be PD-independent or 
PD-dependent.  

It was shown that Yager's negator [1] is 
fundamental in the characterization of linear PD-
independent negators as a convex combination of 
Yager's negator and uniform negator [2].  

Negators give new tools for the transformation 
of probability distributions. They are similar to 
negations in fuzzy logic [15, 16]. The concepts of 
contracting and involutive negations studied in 
fuzzy logic [15,16] can be extended on negators of 
probability values [3].  

Involutive negations are important for logic. 
Such involutive negation can be introduced also for 
probability distrbutions [3].  

The paper proposes a new simple 
representation of linear negators generalizing 
Yager's negator, and compare them with other 
known negators of PD. The paper discusses some 
open problems in the analysis of negations of 
probability distributions. 

The paper has the following structure. Section 
2 gives some basic definitions of negators of 
probability values in PD and negations of PD. 
Sections 3 and 4 consider PD-independent and 
linear negators. Section 5 considers the influence 
of negations of PD on the entropy of PD. Sections 
6 and 7 consider PD-dependent and involutive 
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negators. Section 8 introduces a new, simple 
representation of linear negators. Section 9 
contains examples. Section 10 contains the 
conclusion and discusses future work.  

2 Negations of Probability 
Distributions  

A probability distribution (PD) of length n is a 

sequence 𝑃 = (𝑝1 , … , 𝑝𝑛) of n real values  

satisfying for all 𝑖 = 1, … , 𝑛, (𝑛 ≥ 2), the properties: 

0 ≤ 𝑝𝑖 ≤ 1,      ∑ 𝑝𝑖 =𝑛
𝑖=1 1. (1) 

Let 𝒫𝑛 be the set of all probability distributions 
of the length n. A negation of probability distribution 
is a function 𝑛𝑒𝑔: 𝒫𝑛 → 𝒫𝑛 such that for any PD 𝑃 =
(𝑝1, … , 𝑝𝑛) in 𝒫𝑛 the probability distribution 

𝑛𝑒𝑔(𝑃) = 𝑄 = (𝑞1, … , 𝑞𝑛). (2) 

satisfies for all 𝑖 = 1, … , 𝑛, the following properties: 

if  𝑝𝑖 ≤ 𝑝𝑗 , then 𝑞𝑖 ≥ 𝑞𝑗. (3) 

From (2), it follows:  

if  𝑝𝑖 = 𝑝𝑗 then 𝑞𝑖 = 𝑞𝑗. (4) 

The property (3) is similar to the property of 
negation of membership and truth values in fuzzy 
logic [15, 16], defined as a decreasing function on 
[0,1]. The essential difference between negation 
(complement) of fuzzy sets and negation of PD is 
that the negation 𝑄 = 𝑛𝑒𝑔(𝑃) of PD 𝑃 should 
satisfy the following properties of probability 
distributions: 

0 ≤  𝑞𝑖 ≤ 1,    for all 𝑖 = 1, … , 𝑛, (5) 

∑ 𝑞𝑖 =𝑛
𝑖=1 1. (6) 

A function 𝑁, transforming elements 𝑝𝑖 of PD 𝑃 

into elements 𝑞𝑖 = 𝑁(𝑝𝑖) of PD 𝑄 = 𝑛𝑒𝑔(𝑃) is 
called a negator.  

From (5),(6), and (3), it follows that for all 𝑖 =
1, … , 𝑛 the negator satisfies the following 
properties:  

0 ≤  𝑁(𝑝𝑖) ≤ 1, (7) 

∑ 𝑁(𝑝𝑖) =𝑛
𝑖=1 1, (8) 

if  𝑝𝑖 ≤ 𝑝𝑗 , then 𝑁(𝑝𝑖) ≥ 𝑁(𝑝𝑗). (9) 

In terms of negators, a negation of probability 
distribution 𝑃 = (𝑝1, … , 𝑝𝑛)  can be presented 
as  follows: 

𝑛𝑒𝑔𝑁(𝑃) = (𝑁(𝑝1), … , 𝑁(𝑝𝑛)), (10) 

and we will say that PD 𝑃 is generated by negator 

𝑁. The general method of constructing negators 
was proposed in [2]. 

Theorem 1 [2]. Let 𝑃 = (𝑝1 , … , 𝑝𝑛) be a probability 

distribution and 𝑓(𝑝) be a non-negative non-
increasing real-valued function satisfying the 

property: ∑ 𝑓(𝑝𝑗) > 0𝑛
𝑗=1 , then the function N 

defined for all 𝑖 = 1, … , 𝑛 by: 

𝑁(𝑝𝑖) =
𝑓(𝑝𝑖)

∑ 𝑓(𝑝𝑗)𝑛
𝑗=1

  (11) 

is a negator. 

Generally, a negator depends on the set of 
values 𝑝𝑖 in 𝑃, but in the following Section, we 

consider PD-independent negators 𝑁(𝑝) defined 
on [0,1] and depending only on value 𝑝 in [0,1]. 

The probability distribution 

𝑃𝑈 = (
1

𝑛
, … ,

1

𝑛
). (12) 

is called the uniform distribution. 

A probability distribution 𝑃 is called a fixed point 
of a negation neg of PD if  

𝑛𝑒𝑔(𝑃) = 𝑃.  

Theorem 2 [2]. The uniform distribution is a fixed 
point of any negation neg of probability 
distributions, that is: 

𝑛𝑒𝑔(𝑃𝑈) = 𝑃𝑈. (13) 

3 PD-Independent Negators 

A PD-independent negator 𝑁 is a non-increasing 

function 𝑁: [0,1] → [0,1] such that for any 𝑝, 𝑞 in 
[0,1], it is fulfilled: 

if  𝑝 ≤ 𝑞, then 𝑁(𝑝) ≥ 𝑁(𝑞), (14) 

and for any PD 𝑃 = (𝑝1, … , 𝑝𝑛) in 𝒫𝑛 it is fulfilled: 
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∑ 𝑁(𝑝𝑖) =

𝑛

𝑖=1

1. (15) 

PD-independent negator 𝑁(𝑝) depends only on 

the value of 𝑝 ∈ [0,1], and at first glance, it isn't 
easy to expect the existence of a PD-independent 
negator such that for any PD 𝑃 in  𝒫𝑛 the property 
(15) will hold. But formula (11) can also be used for 
constructing PD-independent negations, as shown 
in Section 8.  

It is easy to see that Yager's negator [1]:  

𝑁𝑌(𝑝) =
1 − 𝑝

𝑛 − 1
, (16) 

is a PD-independent negator. It is a decreasing 
function of 𝑝 on [0,1].  The Yagers's negator 
defines the following negation of a probability 
distribution 𝑃 = (𝑝1, … , 𝑝𝑛):  

𝑛𝑒𝑔𝑌(𝑃) = (𝑁𝑌(𝑝1), … , 𝑁𝑌(𝑝𝑛)) =

(
1−𝑝1

𝑛−1
, … ,

1−𝑝𝑛

𝑛−1
). 

 

and  ∑ 𝑁𝑌(𝑝𝑖) =𝑛
𝑖=1 1. 

Another PD-independent negator called 
uniform negator was proposed in [2]: 

𝑁𝑈(𝑝) =
1

𝑛
. (17) 

This negator defines the transformation of any PD 
𝑃 into the uniform distribution:  

𝑛𝑒𝑔𝑈(𝑃) = (𝑁𝑈(𝑝1), … , 𝑁𝑈(𝑝𝑛)) =

(
1

𝑛
, … ,

1

𝑛
) = 𝑃𝑈. 

 

Theorem 3 [2]. Any PD-independent negator 𝑁 

has the unique fixed point 𝑝 =
1

𝑛
, and any PD-

independent negation of probability distributions 

𝑛𝑒𝑔𝑁 has a unique fixed point  𝑃𝑈. 

Hence, for any PD-independent negator 𝑁 
we have: 

𝑁 (
1

𝑛
) =

1

𝑛
.  

Theorem 4 [2]. For any PD-independent negator 

𝑁, the following properties are satisfied: 

𝑁(𝑝) ∈ [
1

𝑛
,

1

𝑛−1
]   if  𝑝 ≤

1

𝑛
, (18) 

𝑁(𝑝) ∈ [0,
1

𝑛
]       if  𝑝 ≥

1

𝑛
. (19) 

For example, we have for 𝑝 =  0 and  𝑝 =  1:   

𝑁(0) ∈ [
1

𝑛
,

1

𝑛−1
], (20) 

𝑁(1) ∈ [0,
1

𝑛
]. (21) 

4 Linear Negators 

A PD-independent negator 𝑁 is called linear if 𝑁(𝑝) 

is a linear function of 𝑝 ∈ [0,1]. A negation of PD 
generated by a linear negator is called a linear 
negation of PD. One can see that Yager's negator 
and uniform negators are linear negators. The 
convex combination of Yager's negator and 
uniform negator was used in [2] for constructing a 
class of linear PD-independent negators. This 
class of negators is considered below. 

Theorem 5 [2]. A PD-independent negator 𝑁(𝑝) is 
a linear negator if and only if it is a convex 

combination of negators 𝑁𝑈 and 𝑁𝑌, i.e. for some 

𝛼 ∈ [0,1] for all p in [0,1] it holds: 

𝑁(𝑝) = 𝛼𝑁𝑈(𝑝) + (1 − 𝛼)𝑁𝑌(𝑝) = 𝛼
1

𝑛
+

(1 − 𝛼)
1−𝑝

𝑛−1
. 

(22) 

From (21) it follows: 𝑛𝑁(1) ∈ [0,1], and using 

𝛼 = 𝑛𝑁(1) from (22), we can obtain: 

𝑁(𝑝) = 𝑁(1) + (1 − 𝑛𝑁(1))
1−𝑝

𝑛−1
. (23) 

From (23) and (21), we see that any linear negator 
can be obtained from Yager's negator by suitable 

selection of the value of 𝑁(1) in the interval [0,
1

𝑛
]. 

When 𝑁(1) = 0, formula (23) gives the Yager's 

negator. When 𝑁(1) =
1

𝑛
, we obtain the uniform 

negator 𝑁(𝑝) = 𝑁(1) =
1

𝑛
 . 

Using 𝑝 = 0 in (23), we can obtain:  

𝑁(0) =
1−𝑁(1)

𝑛−1
,  

𝑁(1) = 1 − (𝑛 − 1)𝑁(0),  

and represent linear negator as a function of 𝑁(0): 
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𝑁(𝑝) = 𝑁(0) + (1 − 𝑛𝑁(0))𝑝. (24) 

In [2], one can find a graphical representation of 
linear negators. 

5 Linear Negations and Entropy of PD 

Theorem 6 [3]. For linear negator 𝑁 for any 𝑝 in 
[0,1], it holds 

𝑙𝑖𝑚
𝑘→∞

(𝑁𝑘(𝑝)) =
1

𝑛
 ,  

where 𝑁1(𝑝) = 𝑁(𝑝), 𝑁𝑘(𝑝) = 𝑁(𝑁𝑘−1(𝑝)) for 𝑘 =

2, … 

Theorem 7 [3]. If 𝑁 is a linear negator, then for the 
corresponding linear negation of PD 𝑛𝑒𝑔𝑁(𝑃) =

(𝑁(𝑝1), … , 𝑁(𝑝𝑛)) for any PD P in 𝒫𝑛 it holds: 

𝑙𝑖𝑚
𝑘→∞

(𝑛𝑒𝑔𝑁
𝑘 (𝑃)) = 𝑛𝑒𝑔𝑈(𝑃) = 𝑃𝑈,  

where 𝑛𝑒𝑔𝑁
𝑘 (𝑃) = 𝑛𝑒𝑔𝑁 (𝑛𝑒𝑔𝑁

𝑘−1(𝑃)) for 𝑘 = 2, … 

and 𝑛𝑒𝑔𝑁
1 (𝑃) = 𝑛𝑒𝑔𝑁(𝑃). 

As it follows from Theorem 7, the multiple linear 
negations of probability distributions have as the 

limit the uniform distribution 𝑃𝑈 = (
1

𝑛
, … ,

1

𝑛
) with the 

maximal entropy [1] value: 

𝐻(𝑃) = ∑ (1 − 𝑝𝑖)𝑝𝑖
𝑛
𝑖=1 .  

The similar result was obtained for PD-dependent 
negators 𝑁𝑍 [14] and 𝑁𝑊 [10] considered below. 

6 PD-Dependent Negators 

PD-independent negator 𝑁: [0,1] → [0,1] is a 

function of probability value 𝑝 from [0,1], and 𝑁(𝑝) 

depends only on the value 𝑝, but not depends on 
PD where this value appears. Hence, if 𝑁 is PD-

independent negator, then for any PD 𝑃 =
(𝑝1, … , 𝑝𝑛) and 𝑄 = (𝑞1, … , 𝑞𝑛) in 𝒫𝑛 , it holds: 

if  𝑝𝑖 = 𝑞𝑗 , then 𝑁(𝑝𝑖) = 𝑁(𝑞𝑗). (25) 

A negator 𝑁 that is not PD-independent is 
referred to as PD-dependent. Generally, for PD-
dependent negator, the values 𝑁(𝑝𝑖) for probability 

values 𝑝𝑖 in a PD 𝑃 = (𝑝1, … , 𝑝𝑛) depend on other 

values 𝑝𝑗 in 𝑃, and (25) does not fulfill. Below are 

examples of PD-dependent negators of PD. Note 
that both of them have the form (11). 

Negator of Zhang et al. based on Tsallis entropy 
[14]: 

𝑁𝑍(𝑝𝑖) =
1−𝑝𝑖

𝑘

𝑛−∑ 𝑝𝑗
𝑘𝑛

𝑗=1

, 𝑘 ≠ 0. (26) 

Exponential negation of Wu et al. [10]: 

𝑁𝑊(𝑝𝑖) =
𝑒−𝑝𝑖

∑ 𝑒−𝑝𝑖𝑛
𝑗=1

. (27) 

7 Involutive Negations and Negators 

Considered above negators 𝑁 define negations 

𝑛𝑒𝑔(𝑃) transforming probability distributions 𝑃 in 

𝒫𝑛 into PD 𝑛𝑒𝑔(𝑃) in 𝒫𝑛. If PD 𝑃 simulates the term 
𝐻𝐼𝐺𝐻 𝑃𝑅𝐼𝐶𝐸 then its negation 𝑛𝑒𝑔(𝑃) can simulate 

the term 𝑁𝑂𝑇(𝐻𝐼𝐺𝐻 𝑃𝑅𝐼𝐶𝐸). It is reasonable like in 
logic to have involutive negations satisfying to: 

𝑁𝑂𝑇(𝑁𝑂𝑇(𝐻𝐼𝐺𝐻 𝑃𝑅𝐼𝐶𝐸)) = 𝐻𝐼𝐺𝐻 𝑃𝑅𝐼𝐶𝐸.  

A negation 𝑛𝑒𝑔 of probability distributions is 

involutive if for any PD 𝑃 in 𝒫𝑛 it is fulfilled: 

𝑛𝑒𝑔(𝑛𝑒𝑔(𝑃)) = 𝑃.  

A PD-independent negator 𝑁 is involutive if for 

any 𝑝 in [0,1] it is fulfilled: 

𝑁(𝑁(𝑝)) = 𝑝.  

Theorem 8 [3]. Any PD-independent negator 𝑁 is 
non-involutive. 

As follows from the Theorem 8, involutive 
negator should be PD-dependent. It is easy to 
show that PD-dependent negators considered in 
the previous Section are non-involutive.  

Such an involutive negator was introduced by 
Batyrshin [3]. Let 𝑃 =  (𝑝1, … 𝑝𝑛) be a probability 

distribution. Denote max(𝑃) = max
𝑖

{𝑝𝑖} =

max{𝑝1, … , 𝑝𝑛}, min(𝑃) = min
𝑖

{𝑝𝑖} = min{𝑝1, … , 𝑝𝑛} 

and 𝑀𝑃 = max(𝑃) + min(𝑃). 

Theorem 9 [3]. Let 𝑃 =  (𝑝1, … 𝑝𝑛) be a probability 
distribution. Then the function: 

𝑁𝐵(𝑝𝑖) =
𝑚𝑎𝑥(𝑃)+𝑚𝑖𝑛(𝑃)−𝑝𝑖

𝑛(𝑚𝑎𝑥(𝑃)+𝑚𝑖𝑛(𝑃))−1
=

𝑀𝑃−𝑝𝑖

𝑛𝑀𝑃−1
, (28) 

𝑖 = 1, … , 𝑛, is an involutive negator. 
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We have 𝑁𝐵 (
1

𝑛
) =

1

𝑛
, i.e. 

1

𝑛
 is the fixed point of 

Batyrshin's negator 𝑁𝐵. Note that negator (28) is 

PD-dependent. When one calculates 𝑄 =

𝑛𝑒𝑔𝑁(𝑃) = (𝑁𝐵(𝑝1), … , 𝑁𝐵(𝑝1)) the negator 𝑁𝐵(𝑝𝑖) 

uses in (28) maximal and minimal values of P. But 

when one will calculate 𝑛𝑒𝑔𝑁(𝑛𝑒𝑔𝑁(𝑃)) =

𝑛𝑒𝑔𝑁(𝑄) = (𝑁𝐵(𝑞1), … , 𝑁𝐵(𝑞1)) in the formula (28) 

instead of 𝑚𝑎𝑥(𝑃) + 𝑚𝑖𝑛(𝑃) one should calculate 

𝑚𝑎𝑥(𝑄) + 𝑚𝑖𝑛(𝑄). 

The simplified version of involutive negation 
(28) for PD with min(𝑃) = 0 was independently 
proposed by Pham et al. [8].  

8 A New Representation of Linear 
Negators 

Here we propose a new representation of linear 
negators:  

𝑁𝐿(𝑝) =
1−𝑑𝑝

𝑛−𝑑
,  0 ≤ 𝑑 ≤ 1. (29) 

This negator can be considered as a 
straightforward generalization of Yager's negator 
that will be obtained from (29) when 𝑑 = 1. Below 
we show how it can be constructed from the 
general method of construction of negators (11). 

Using (11), we can represent linear negator as 
a linear function as follows: 

𝑁𝐿(𝑝𝑖) =
𝑎+𝑏𝑝𝑖

∑ (𝑎+𝑏𝑝𝑖)𝑛
𝑗=1

=
𝑎+𝑏𝑝𝑖

𝑛𝑎+𝑏 ∑ 𝑝𝑖
𝑛
𝑖=1

=
𝑎+𝑏𝑝𝑖

𝑛𝑎+𝑏
.  

It is clear that 𝑎 ≠ 0, otherwise 𝑁(𝑝𝑖) = 𝑝𝑖 and N 
will be increasing, which contradicts (9). Hence we 
can represent 𝑁(𝑝𝑖) as follows:  

𝑁𝐿(𝑝𝑖) =
𝑎+𝑏𝑝𝑖

𝑛𝑎+𝑏
=

1+
𝑏

𝑎
𝑝𝑖

𝑛+
𝑏

𝑎

=
1+𝑐𝑝𝑖

𝑛+𝑐
.  

Since a negator is a non-increasing function, 
parameter 𝑐 is non-positive: 𝑐 ≤ 0. Replacing it by 

a non-negative parameter 𝑑 ≥ 0, we obtain: 

𝑁𝐿(𝑝𝑖) =
1 − 𝑑𝑝𝑖

𝑛 − 𝑑
. (30) 

From (18) and (19) it follows 𝑁𝐿(𝑝) ∈ [0,
1

𝑛−1
] that 

gives: 𝑑 ≤ 1. Replacing (30) by the function 
defined on [0,1], we obtain a new representation 
for linear PD-independent negators: 

𝑁𝐿(𝑝) =
1−𝑑𝑝

𝑛−𝑑
,  0 ≤ 𝑑 ≤ 1. (31) 

Changing in (31) parameter 𝑑 from 0 to 1, we 
obtain different linear negators. For 𝑑 =  0, we 

have uniform negator: 𝑁𝐿(𝑝) = 𝑁𝑈(𝑝) =
1

𝑛
, and 

when 𝑑 =  1, we obtain Yager's negator: 𝑁𝐿(𝑝) =

𝑁𝑌(𝑝) =
1−𝑝

𝑛−1
. We obtain (24) and (23) from (31) 

after substitutions:  

𝑑 = 𝑛 −
1

𝑁(0)
=

1 − 𝑛𝑁(1)

1 − 𝑁(1)
. (32) 

(32) together with (20) and (21) again gives 𝑑 ∈
[0,1].   

For 𝑝 =
1

𝑛
 we have in (31):  

𝑁𝐿 (
1

𝑛
) =

1−𝑑
1

𝑛

𝑛−𝑑
=

1

𝑛
,  

i.e., 𝑝 =
1

𝑛
 is a fixed point of linear negators. 

In the following Section we consider examples 
of negations of PD using different negators. 

9 Examples 

Consider probability distributions from 𝒫5, (𝑛 = 5): 

𝑃 = (0,0.1,0.2,0.3,0.4) and 𝑄 = (0.1,0.1,0.1,0.3,0.4), 

with uniform distribution 𝑃𝑈 = (0.2,0.2,0.2,0.2,0.2). 

Compare the results of negation of probability 
distributions 𝑃 and 𝑄 using different negators. 

For uniform negator 𝑁𝑈 (17) we have: 

𝑛𝑒𝑔𝑈(𝑃) = 𝑛𝑒𝑔𝑈(𝑄) = (0.2,0.2,0.2,0.2,0.2) = 𝑃𝑈 . 

For Batyrshin's involutive negator 𝑁𝐵 (28) we 
have: 

𝑛𝑒𝑔𝐵(𝑃) = (0.4,0.3,0.2,0.1,0),  

𝑛𝑒𝑔𝐵(𝑛𝑒𝑔𝐵(𝑃)) = (0,0.1,0.2,0.3,0.4) = 𝑃. 
𝑛𝑒𝑔𝐵(𝑄) = (0.267,0.267,0.267,0.133,0.067),  
𝑛𝑒𝑔𝐵(𝑛𝑒𝑔𝐵(𝑄)) = (0.1,0.1,0.1,0.3,0.4) = 𝑄. 

For Yager's linear negator 𝑁𝑌 (16) we have: 

𝑛𝑒𝑔𝑌(𝑃) = (0.250,0.225,0.2,0.175,0.150),  

𝑛𝑒𝑔𝑌(𝑛𝑒𝑔𝑌(𝑃)) = (0.188,0.194,0.2,0.206,0.213).  

For linear negator 𝑁𝐿 (31) with 𝑑 = 0.5 we have: 

𝑛𝑒𝑔𝐿(𝑃) = (0.222,0.211,0.2,0.189,0.178),  

𝑛𝑒𝑔𝐿(𝑛𝑒𝑔𝐿(𝑃)) = (0.198,0.199,0.2,0.201,0.202),  
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𝑛𝑒𝑔𝐿(𝑄) = (0.211,0.211,0.211,0.189,0.178).  

For negator 𝑁𝑍 of Zhang et al. (26) with 𝑘 = 2 
we have: 

𝑛𝑒𝑔𝑍(𝑃) = (0.213,0.211,0.204,0.194,0.179),  

𝑛𝑒𝑔𝑍(𝑛𝑒𝑔𝑍(𝑃)) = (0.199,0.199,0.200,0.201,0.202), 

𝑛𝑒𝑔𝑍(𝑄) = (0,210,0.210,0.210,0.193,0.178).  

For negator 𝑁𝑊 of Wu et al. (27), we have: 

𝑛𝑒𝑔𝑊(𝑃) = (0.242,0.209,0.198,0.179,0.162),  

𝑛𝑒𝑔𝑊(𝑛𝑒𝑔𝑊(𝑃)) = (0.192,0.196,0.200,0.204,0.208),  

𝑛𝑒𝑔𝑊(𝑄) = (0.219,0.219,0.219,0.180,0.162).  

These examples illustrate the main properties 
of negators and corresponding negations of PD: 

 We see that the values of 𝑃 and 𝑄 are 

increasing and the values of 𝑛𝑒𝑔(𝑃) and 
𝑛𝑒𝑔(𝑄) are decreasing because the negators 
are decreasing functions. 

 The uniform negator transforms any PD into 
the uniform PD 𝑃𝑈.  

 For the Batyrshin's involutive negator 𝑁𝐵 we 

have: 𝑛𝑒𝑔𝐵(𝑛𝑒𝑔𝐵(𝑃)) = 𝑃, but for other 

negators the involutivity property does not fulfil: 

𝑛𝑒𝑔(𝑛𝑒𝑔(𝑃)) ≠ 𝑃.  

 The involutive negator 𝑁𝐵 and linear negators 

𝑁𝑌 and 𝑁𝐿 keep the fixed point: 𝑁 (
1

𝑛
) =

1

𝑛
. In 

our examples we have: 𝑛 = 5,  
1

𝑛
= 0.2, and 

𝑁(0.2) = 0.2. For PD-dependent negators 𝑁𝑍 

and 𝑁𝑊 this property generally does not fulfil.  

 The values 𝑁(𝑝𝑖) of PD-independent linear 
negators depend only on negated probability 
value 𝑝𝑖 but for PD-dependent negators they 
depend also on other probability values 𝑝𝑗 in 

PD. Compare negations of values 0.1, 0.3 and 
0.4 in PD 𝑃 and 𝑄 by linear negator 𝑁𝐿 and PD-

dependent negators 𝑁𝑍 and 𝑁𝑊. 

 All considered non-involutive negators 

transform PD 𝑃 into 𝑛𝑒𝑔(𝑃) and 𝑛𝑒𝑔(𝑛𝑒𝑔(𝑃)) 

approaching uniform distribution, in our case 
𝑃𝑈 = (0.2,0.2,0.2,0.2,0.2). This property proved 
for linear negators, see Theorems 6 and 7, and 
for 𝑁𝑍 and 𝑁𝑊, but generally not necessary 
fulfilled for PD-dependent negators.  

10 Conclusion and Future Work 

The paper observed the main definitions and 
formal properties of negators and corresponding 
negations of probability distributions. The 
examples illustrate these properties. We did not 
consider here contracting negations of PD [3] also 
studied in fuzzy logic [15, 16].  

In [3], it was proved that any linear negator 
except for uniform negator 𝑁𝑈 is strictly 
contracting. As a result, multiple linear negations 
increase the entropy of probability distributions and 
converge to the uniform distribution 𝑃𝑈. We plan to 
study negations of PD as transformations of PD-
dependent negations also in terms of similarity and 
distance between PD [17,18].  

Another direction of possible research is related 
to the linguistic interpretation of PD proposed by 
Yager [1]. We can use similar approaches to 
linguistic descriptions of other types of data [19].  

Also, we plan to consider possible applications 
of negations of PD, in Dempster-Shafer theory, like 
in [1] and some other papers from the list of 
references.  

The open problems are:  

1. To prove or disprove the hypothesis that 
any PD-independent negator is a linear 
negator [2]. 

2. To find contracting or expanding PD-
dependent negations of PD [3].  

3. To find negators for which the multiple 
negations decrease (increase) the entropy 
of PD.   

Acknowledgments  

This work has been partially supported by the 
project IPN SIP 20211874 and by the program № 
075-02-2020-1478 of developing the Scientific-
Educational Mathematical Center of Volga Federal 
District. 

References 

1. Yager, R. R. (2014). On the maximum entropy 

negation of a probability distribution. IEEE 
Transactions on Fuzzy Systems, 23(5), 1899–1902. 

Computación y Sistemas, Vol. 25, No. 4, 2021, pp. 775–781
doi: 10.13053/CyS-25-4-4094

Ildar Z. Batyrshin, Nailya I. Kubysheva, Venera R. Bayrasheva, Olga Kosheleva, Vladik Kreinovich780

ISSN 2007-9737



2. Batyrshin, I., Villa-Vargas, L. A., Ramirez-
Salinas, M. A., Salinas-Rosales, M., Kubysheva, 
N. (2021). Generating negations of probability 

distributions. Soft Computing, 25(12), 7929–7935. 

3. Batyrshin, I. Z. (2021). Contracting and involutive 

negations of probability distributions. Mathematics, 
2021, 9, 2389. arXiv preprint arXiv:2103.16176. 

4. Gao, X. & Deng, Y. (2019). The generalization 

negation of probability distribution and its 
application in target recognition based on sensor 
fusion. International Journal of Distributed Sensor 
Networks, 15(5), 1550147719849381. 

5. Gao, X., Deng, Y. (2019). The negation of basic 

probability assignment. IEEE Access, 7, 107006–
107014. 

6. Li, S., Xiao, F., Abawajy, J. H. (2020). Conflict 

Management of evidence theory based on belief 
entropy and negation. IEEE Access, 8, 37766–
37774. 

7. Luo, Z., Deng, Y. (2019). A matrix method of basic 

belief assignment's negation in Dempster–Shafer 
theory. IEEE Transactions on Fuzzy Systems, 
28(9), 2270–2276. 

8. Pham, U., Batyrshin, I., Kubysheva, N., 
Kosheleva, O. (2021). Estimating a probability 

distribution corresponding to the negation of a 
property. Soft Computing, 25(12), 7975–7983. 

9. Sun, C., Li, S., Deng, Y. (2020). Determining 

weights in multi-criteria decision making based on 
negation of probability distribution under uncertain 
environment. Mathematics, 8(2), 191. 

10. Wu, Q., Deng, Y., Xiong, N. (2020). Exponential 

negation of a probability distribution. arXiv preprint 
arXiv:2010.11533. 

11. Xie, D., Xiao, F. (2019). Negation of basic 

probability assignment: Trends of dissimilarity and 
dispersion. IEEE Access, 7, 111315–111323. 

12. Xie, K., Xiao, F. (2019). Negation of belief function 

based on the total uncertainty measure. Entropy, 
21(1), 73. 

13. Yin, L., Deng, X., Deng, Y. (2018). The negation of 

a basic probability assignment. IEEE Transactions 
on Fuzzy Systems, 27(1), 135–143. 

14. Zhang, J., Liu, R., Zhang, J., Kang, B. (2020). 

Extension of Yager's negation of a probability 
distribution based on Tsallis entropy. International 
Journal of Intelligent Systems, 35(1), 72–84. 

15. Batyrshin, I.Z. (2001). Basic Operations of Fuzzy 

Logic and their Generalizations. Otechestvo 
Publisher: Kazan, Russia [in Russian]. 

16. Batyrshin, I. (2003). On the structure of involutive, 

contracting and expanding negations. Fuzzy Sets 
and Systems, 139(3), 661–672. 

17. Cha, S. H. (2007). Comprehensive survey on 

distance/similarity measures between probability 
density functions. International journal of 
mathematical models and methods in applied 
sciences, 1(2), 1. 

18. Batyrshin, I. (2019). Towards a general theory of 

similarity and association measures: similarity, 
dissimilarity and correlation functions. Journal of 
Intelligent, Fuzzy Systems, 36(4), 2977–3004. 

19. Batyrshin, I., Sheremetov, L., Herrera-Avelar, R. 
(2007). Perception-based patterns in time series 

data mining. In Perception-based Data Mining and 
Decision Making in Economics and Finance, pp. 
85–118, Springer, Berlin, Heidelberg. 

Article received on 02/09/2021; accepted on 03/10/2021. 
Corresponding author is Ildar Batyrshin. 

 
 

Computación y Sistemas, Vol. 25, No. 4, 2021, pp. 775–781
doi: 10.13053/CyS-25-4-4094

Negations of Probability Distributions: A Survey 781

ISSN 2007-9737


