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Abstract. We present a methodology for high-resolution
orthomosaic reconstruction using aerial images. Our
proposal consists a neural network with two main stages,
one to obtain the correspondences necessary to perform
a LR-orthomosaic and another one that uses these
results to generate an HR- orthomosaic, and a feedback
connection. The CNN are based on well known models
and are trained to perform image stitching and obtain a
high-resolution orthomosaic. The results obtained in this
work show that our methodology provides similar results
to those obtained by an expert in orthophotography, but
in high-resolution.

Keywords. Deep learning, CNN, 2D reconstruction,
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1 Introduction

To generate an orthomosaic (orthophotography),
aerial-photogrammetry techniques are used. Pho-
togrammetry is a technique that determines
geometric properties and spatial relations of the
terrain from aerial photographic images [3]. It
is a very complex process in which the main
objective is to convert two-dimensional data (flat
images) into cartographic/three-dimensional data.
This technique allows us to obtain the geometric
properties of a surface based on information

obtained from several images with redundant
information. It is this repeated structure that allows
the extraction of the object’s structure through the
overlap among consecutive images.

The pairing of a set of overlapping images
that are joined in a single image produces an
orthophotography. Orthophotography allows us
to have current visual knowledge of an area
of interest, with validity similar to that of a
cartographic plane. Nevertheless, the resolution of
the orthophoto needs to be as high as possible.
For this, it is necessary to use a photogrammetry
software that processes aerial images to generate
3D reconstructions or orthophotos. The software
searches correspondences between images and
determines the correct which are its probable
positions, based on the different points of view
of the same element, in a process called
stitching. Commercial software offers different
photogrammetry services, some base on geometry
and pixel values of the images.

The current capabilities of photogrammetry
and machine learning techniques have been
integrated to revolutionize current workflows and
allow many new ones. In this work, we propose
a novel methodology to generate high-resolution
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orthomosaics based on machine learning, whose
main contributions are:

— Combining the main elements of two deep
neural network models and incorporating
a closed-loop feedback that optimizes the
feature map, keypoints and correspondence
generation process to perform stitching aerial
images.

— Integrating Visual SLAM and Deep Learning
techniques to improve image stitching by using
a greedy algorithm widely used in Visual
SLAM systems.

— Improving the image stitching processes by
employing a widely used greedy algorithm
and thus integrating Visual SLAM and Deep
Learning techniques.

— Verifying the network’s ability to process large
amounts of high-resolution images.

2 Related Work

Recent research to obtain terrain models, such as
those presented in [2, 4, 12, 16, 20] perform image
pairing or 3D reconstructions using deep-neural-
network techniques. The resulting maps or models
need to be in high-resolution (HR), therefore, the
neural network must be able to work with HR aerial
images. Traditional methodologies implement
artificial-vision techniques and algorithms to solve
problems such as SLAM and reconstruction tasks
[11]. However, many of these algorithms are not
optimized to work with HR images [14, 17].

To deal with this problem, some techniques and
architectures have been proposed, such as the
one presented in [21]. Furthermore, the problem
becomes more complex when there is a large
number of images involved. Nevertheless, to solve
these types of problems, multiple works have been
presented, ranging from image enhancement to
super-resolution scaling to recover content from
low-resolution (LR) images [10, 15, 26, 29].

3 Methodology

Our approach consists of two main stages. In the
first stage, feature extraction and key-point cor-
respondences are performed from high resolution
input images.

Table 1. Number of images for each configuration.
Images were taken at three different heights and two
different overlapping percentages

Height\Overlapping 30%x30% 50%x50%
50 mts. 600 1,200
100 mts. 300 600
150 mts. 100 200
Total 1,000 2,000

These correspondences are used to stitch
the input images and obtain a low-resolution
orthophotography.

The second stage uses the low-resolution
orthophotography obtained in the previous stage to
estimate a high-resolution image. The model used
in this stage is based on the SRGAN architecture
and is obtained by replacing the original residual
blocks with those proposed and used in stage one
of the methodology.

Finally, the output of the second stage is used
as input of the first stage (closed-loop feedback) to
build a complete high-resolution orthomosaic. By
doing so, we are able to handle a large number of
high-resolution images and reconstruct large areas
of land. The complete methodology is shown in
Fig. 2.

3.1 Dataset

For transfer learning and fine-tuning, we created a
dataset that includes 3, 000 aerial images taken at
the university campus. Due to terrain conditions,
safe flight height and overlapping percentage
among captured images, two configurations were
considered as show in Table 1.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 1. Results comparison. The images in the first column show the orthomosaics obtained by means of a manual
reconstruction carried out by an expert. The orthomosaic obtained with our methodology shown in the second column.
The last column shows the reconstruction obtained with the Pix4DMapper software

3.2 Network Architecture

In this section we describe the proposed network
architecture. Residual networks are inspired by
the biological fact that some neurons connect
with neurons that are not necessarily adjacent,
thus skipping intermediate layers. This allows
a neuron to have more connections without

increasing the total number of parameters or
computation complexity.

Using residual learning blocks, deeper neural
networks (with more than 100 layers) can be
trained due to their ability to control the vanishing
gradient problem. Hence, models based on
residual learning blocks are easier to optimize and
ensure accuracy from a considerably increased
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Fig. 2. The general structure of the proposed methodology consists of two stages. The first stage is in charge of
matching the input images. The second stage is responsible for generating a super-resolution image from the low-
resolution image obtained in the previous stage. The output of the second stage is also used as input of the first stage
(feedback loop). Our methodology optimizes the orthographic generation process when working with large quantities of
images. Each stage is described in subsequent sections.

depth. This paradigm is a basic element in many
computer vision tasks.

On the other hand, a feedback methodology
allows communication between the input and
the output of the architecture, thus preventing
information loss and improving processing times.

Therefore, we propose a neural network based
on two known models. The first one is composed of
152 layers and its based on the original ResNet50
model, pre-trained with the ImageNet database.
We replaced the original ReLU activation function
with a parametric ReLU. We used the output of
the fourth convolutional block to obtain feature
maps and append a fully connected layer and
an Image Retrival layer to obtain key points and
correspondences of the points between each pair
of images. Finally, for the geometric correction,
two more layers were added: a max-pooling and
a fully connected layer. With the results of these
network, we employ classical computer vision
techniques to obtain point correspondences and
perform image stitching.

In general, a typical CNN contains several
convolutional layers. These layers apply con-
volution between a filter and an image to
generate feature maps necessary for subsequent
processing. However, residual networks propose
some changes as shown in Fig. 3. A typical
CNN (see Fig. 3a), organizes the architecture
by combining basic units such as convolution,
nonlinear mapping, pooling or batch-normalization
in cascade. In contrast, a residual network

(see Fig. 3b), has a shortcut pathway directly
connecting the input and output of a building block.

(a) (b)

Fig. 3. Block diagram of two different CNN models. In
a typical CNN model, the learning block combines basic
units in cascade (see Fig. 3a). In contrast, a residual
network (see Fig. 3b), has a shortcut pathway directly
connecting the input and output in a building block

Mathematically, instead of approximating an
underlying function H(x) directly, residual learning
turns to fitting its residual mapping F (x), where:

F (x) := H(x)− x. (1)

The output F (x) + x of a residual learning block,
approximates the output of a typical CNN, H(x).

However, it is easier to fit a residual mapping
F (x) than the original mapping H(x), especially
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when H(x) is an identity or a near identity mapping
[8, 28]. The parameters of the residual learning
network are learned using a parametric ReLU
function, which generates an embedding for the
whole input image.

Afterwards, based on the model developed
by Noh et al. [19], we decided to use the
cross-entropy loss function given by:

L = −x∗log
(

exp(x)

1T exp(x)

)
. (2)

where x∗ is ground-truth in one-hot vector form and
1 is vector of ones. The parameters in the score
function α are trained using backpropagation with
a gradient function given by:

∂L

∂θ
=
∂L

∂x

∑
n

∂x

∂α

∂α

∂θ
=
∂L

∂x

∑
n

WFn
∂α

∂θ
. (3)

where the backpropagation of the output score
α(Fn; θ) with respect to θ is the same as
the standard multi-layer perceptron and alpha is
restricted to be non-negative.

The second stage is based on the original
SRGAN model and it generates a high-resolution
image with realistic textures. We use a
discriminator to distinguish the HR images and
backpropagate the GAN loss. It is mostly com-
posed of convolutional layers, batch-normalization
and parameterized ReLU (PreLU). Also, the
generator implements skip connections similar to
ResNet. For this stage, we decided to use the
same 10 residual blocks generated in stage one of
our methodology and only retrain the discriminator.
With this configuration, we reduced the complexity
of the model and improved processing time. To
train the discriminator we used the typical GAN
discriminator loss.

To discriminate real HR images from super-
resolution (SR) generated images, the discrimi-
nator network follows the architectural guidelines
summarized by Ledig et al. [13] and Goodfellow
et al.[5] by using a LeakReLU activation function
(α = 0.2) and avoiding max-pooling throughout the
network. The discriminator network is trained using
the maximization function shown in equation 4:

minθGmaxθDEIHR∼ptrain(IHR)[logDθD (I
HR)] +

EILR∼pG(ILR)[log(1−DθD )(GθG(I
LR))]. (4)

To perform fine-tuning and transfer learning we
use 2, 000 images for training, 1, 000 images for
validation and train the network for 50 epochs with
a batch size of 40. The training was carried out
in a machine with two NVIDIA RTX 2080Ti graphic
cards, Ubuntu 19.04 operating system and 32GB
of RAM memory.

After twelve hours of training, we obtained a loss
of 0.5911 in training and 0.1714 in validation (see
figure 4a), and an accuracy of 78.464% in training
and 96.875% in validation (see figure 4b).

(a)

(b)

Fig. 4. Accuracy (see Fig. 4a) and Loss (see Fig. 4b)
graphs during training.

3.3 Generation of a Low-Resolution
Orthomosaic

The first stage generates a stitched image from two
high-resolution images. The CNN in the first stage
is based on the model developed by Noh et al. [19]
and is responsible for extracting dense features
from the input images by using the outputs of
the fourth convolutional block of the ResNet50 [8]
network pretrained with the ImageNet dataset [22].

The residual blocks are designed with two con-
volutional layers followed by batch-normalization
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layers and Parametric ReLU [7] as the activation
function. To be able to carry out this procedure
correctly, we use transfer learning and fine-tuning
using our previously generated dataset. The
network’s layers are shown in figure 5a.

(a)

(b)

Fig. 5. Inspired by Noh’s work, the first stage (shown
in Fig 5a.) is based on ResNet50. However, we
simultaneously use two branches (each composed as
shown in Fig. 5b) to extract dense features from input
images.

We use image-retrieval techniques and the
features obtained from the two branches to perform
a feature descriptor matching for all pairs of
images. We use the upper part of the max- pooling
layer to establish correspondences. In Fig. 6 the
feature points are marked with black circles and the
correspondences between the images are marked
with colored lines. Using these correspondences,
image stitching is performed and the low-resultion
orthomosaic is obtained.

The results are acceptable and robust even
in exteriors. Unfortunately, among many pairs
of images, more than one pairwise-aligment
ambiquity is present (see Fig. 7a).

This ambiguity cannot be eliminated using
traditional computer vision techniques. Therefore,
employing a pruning algorithm across this image
and enforcing group consensus may be a better
strategy [12]. A global-consensus restriction for

Fig. 6. Correspondences between an image pair. The
output of the model in the first stage provides the correct
matches between a pair of input images. The results
show that the proposed methodology obtains good
results even in the adverse conditions of a challenging
environment, such as the university campus.

loop closure has been widely adopted in SLAM
[24, 18] and has shown to be effective in these
tasks. For this reason, we use a Greedy Loop
Closing (GLC) [12] algorithm to enforce global loop
closure constraints, which eliminates ambiguities
during the alignment of image pairs.

3.3.1 A Greedy Loop Closing (GLC) Algorithm

We use a directed multi-graph G = {V ,E} to store
all image-pair alignment candidates.
In our application, each vertex V and each edge
ek ∈ E corresponds to a pairwise alignment, where
the k index indicates the k-th potential alignments
between them.

We use the correspondences obtained in the
previous step to join image A to image B using
a rigid 2D transformation matrix TA,B,k. As Le et
al. [12] proposed, the loop closure constraint is
defined as: ∏

(A,B,k)∈lt

TA,B,k = I, (5)

where, A and B are images which will be joined
with the k-th alignment potential between them,
and I is the identity matrix. A loop that satisfies
this constraint is called a closed loop and also
satisfies the alignment, meaning that the stitching
is acceptable. The results shown in Fig. 7b show
considerably better results during the stitching of
the images.
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(a) (b)

Fig. 7. Generation of the orthomosaic. A significant
improvement is shown when applying a loop closure
algorithm to stitched images. Therefore, zooming in on
an area of the image shows and an improvement in the
stitching of the images. Visible image stitching (see Fig.
7a) and improved image stitching (see Fig. 7b)

3.4 Generation of a High-Resolution
Orthomosaic

The purpose of the second stage of our proposed
methodology is to generate a high-resolution
orthomosaic. To do this, we use a SRGAN inspired
by the work of Wang et al. [26] and follow the
architectural guidelines developed by Ledig et al.
[13]. SRGAN is a generative adversarial network
(GAN) for super-resolution imaging (SR) and it
efficiently scales a LR image by a factor of x4
to obtain a HR image. This model is illustrated
in Fig. 8a. Originally, the model contains 16
residual blocks, which are similar to those used for
dense feature extraction. However, in the proposed
network, we only use 10 of these residual blocks.

One of the main parts of the second network
is the upsampling layer used, proposed by Shi
et al. [23], which increases the resolution of
the input image using two blocks made up of a
convolutional layer, two PixelShuffler layers and
a Parametric ReLU activation function. The
sub-pixel convolutional neural network aggregates
the feature maps from an LR image and builds an
HR image in a single step.

The periodic shuffling is fast, compared to
the reduction or convolution of an HR image,
because each operation is independent and thus
is trivially parallelizable.

The SRGAN model receives as input and image
in LR (see Fig. 9a) and is able to scale it by up to 4

(a)

(b)

Fig. 8. SRGAN model used to increase the scale of
the input images (Fig. 8a). This model implements
connections similar to those in ResNet (same blocks
used in stage one) and we only retrain the discriminator
as explained in section 3.2. The same upsampling block
(Fig. 8b) as in the original model is used

times the scale of the original image (see Fig. 9b).
Unfortunately, the generated textures are of lower
quality compared to the originals.

The previous result (Fig. 9b) shows that
fine-tuning and transfer learning must be applied,
using our generated dataset, to increase the quality
of the textures obtained from the SRGAN model.
Once applied, we obtain the super-resolution
image (Fig. 9c) which contains improved details,
similar to those in the original images.

4 Experimental Results

To evaluate our proposal, we visually analyzed the
qualitative results of our proposed methodology.
First, we analyzed the low-resolution orthomosaic
generation results (Fig. 7a), and later analyzed
the result obtained after applying a loop-closure
algorithm (see Fig. 7b). Also, in section 3.4, we
validate the high-resolution orthmosaic generation
results (see Fig. 9), which are obtained by using
fine-tuning and transfer learning.

We also compared our HR orthomosaic with
two other orthomosaics, the first one being a
manual reconstruction done by an expert in
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(a) (b) (c)

Fig. 9. High-resolution (HR) image generation. These results show that our proposal is able to generated an HR image
(Fig. 9c) from a LR image (Fig. 9a). It also shows the importance of applying transfer learning and fine tuning to
generate super-resolution images

orthophotography, and the second one being
generated by a commercial software.

For testing, we selected images of different
university areas. To generate the orthomosaic, we
used images in 4K resolution (from our dataset)
taken at a height of 100 meters and with 50%x50%
overlapping. With this configuration is possible to
appreciate a great amount of detail in areas of
interest. The total area covered was approximately
22, 500m2.

Using our proposed methodology, we were able
to obtain acceptable low-resolution (Fig. 7) and a
high-resolution (Fig. 9) orthomosaics. Although,
each stage has been configured correctly, and both
can work together to generate orthomosaics, it was
observed that the first stage presents limitations
when working with more than 100 images. This
means that the image-paring process needs to be
simplified. To do this, a closed-loop feedback is
used between the output of the second stage and
the input of the first stage (see Fig. 2). By doing so,
the stitching between the image of the dataset and
a previously stitched image is performed in HD.

This process improves processing times and
increases the ability to work with more than 100
images. The only drawback is a decrease in the
image’s resolution, which is now in HR. The results
are also validated by comparing them against a
manual reconstruction obtained by an expert and

a reconstruction obtained using the Pix4DMapper
software.

Manual reconstructions were done using high-
resolution images, however, these results show
inferior image quality when compared to our
results. The orthomosaics obtained using
commercial software (last column of Fig. 1) are in
high-resolution. However, Pix4DMapper was only
able to get 80% of the selected area. In addition,
the images used for the software require special
characteristics to guarantee a correct operation.

To analyze the similarity between the three
resulting orthomosaic we use the Euclidean
distance, given by equation 6 (the smaller the
distance, the greater the similarity) [25, 1], which
is the most commonly used image metric due to
its simplicity:

d2E(x, y) =

MN∑
k=1

(xk − yk)2. (6)

Root mean square error (MSE) and peak signal-
to-noise ration (PSNR) are common evaluation
metrics used to compare generated high-resolution
images and real images. Image-quality evaluation
methods are based on comparisons using explicit
numerical criteria and expressed in terms of
statistical parameters and tests [9]. Peak
Signal-to-Noise Ratio (PSNR) is a commonly
used example.
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Table 2. Orthomosaic comparison. This table shows the Euclidean distances as a measure of similarity, and the peak
signal-to-noise ratio (PSNR) between our generated orthomosaic, a manual reconstruction obtained by an expert and
an orthomosaic obtained using the Pix4DMapper software

Orthomosaic Euclidean distance PSNR Processing time Resolution
Our orthomosaic - - 60 mins HR
Manual reconstruction 7.294145 28.1705654 dB 1500 mins HR
Orthomosaic from Pix4DMapper 20.139497 24.9170499 dB 120 mins HR

The PSNR (measured in decibels (dB)) between
two images g(x, y) and h(x, y) is defined as:

PSNR = 10log10
S2

MSE
, (7)

where S is the maximum pixel value and the Mean-
Squared Error (MSE) is given by:

MSE =
1

MN

M∑
x=1

N∑
y=1

[g(x, y)− h(x, y)]2. (8)

However, the ability of MSE (8) (and PSNR (7))
to differentiate perceptually relevant differences,
such as high-texture detail, is very limited, as it
is defined in terms of image-per-pixel differences
[27, 6, 30]. Furthermore, a high PSNR value does
not necessarily reflect a perceptually better HR
result. The difference in perception between the
original image and the supersolute image means
the recovered image may not be photorealistic. We
know that the objective of applying this metric is
to evaluate the results obtained by an algorithm to
generate super-resolution images or, in this case,
the architecture of neural networks to generate
high quality textures in an HR image.

The results of the evaluation of the generated
orthomosaics are shown in Table 2, where we can
see that the high value of PSNR corresponds with
a low Euclidean distance.

With this, we can be certain that the results
will provide high quality textures, at the pixel
level, similar to those of an original image. The
results, also show that the proposed methodology
is better than commercial software in several
aspects. Furthermore, the results are validated
by their similarity to the reconstruction done by
an expert.

5 Conclusion and Future Work

In this work, a methodology for the reconstruction
of high-resolution orthomosaics is presented. This
study focuses on verifying the possibility of combin-
ing the main structure of two deep-neural-network
models. We modified the main parts of the models
and we applied transfer learning and fine-tuning
to acquire our results and optimize the processing
time. To work with a high number of images,
we applied a closed-loop feedback to generate an
orthomosaic in high resolution. In addition, we
also verified the network’s ability to process large
amounts of high-resolution images.

The resulting orthomosaics were evaluated
using Euclidean distance as a measure of similarity
and the peak signal-to-noise ratio (PSNR). This
demonstrates that both metrics coincide in the
validation of the results. Also, we employed
a widely used greedy algorithm to improve the
image stitching process. This strategy improved
the stitching alignment and got better results
than the ones presented by Chen et al. [2].
Moreover, our orthomosaic was compared with
a manual reconstruction performed by an expert
in photogrammetry and a reconstruction obtained
with commercial software. Our methodology
provides similar results to those of a manual
reconstruction but with high quality details.

The generation of orthomosaics in higher
resolutions is being considered for future work.
Furthermore, by using SLAM algorithms, we will
use this methodology in Visual SLAM systems.
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