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Abstract. Computation paradigms are changing due to 

the idea of quantum computers. Although today this kind 
of technology is not available and has not reached its full 
potential, public-key cryptography is at risk since its 
security depends on problems that classical computers 
cannot solve in polynomial time, while quantum 
computers can. Quantum-resistant cryptography has 
been developed for years, and this work proposes a new 
implementation that reduces the processing time of 
XMSS signature generation of SPHINCS+, a stateless 
scheme designed for digital signature and is in the 
process of standardization by the National Institute of 
Standards and Technology of the United States. The 
proposed implementation has a tradeoff between time 
and memory space. While original documentation is 
focused on space optimization, this new implementation 
needs an additional 20 kB of memory for each tree 
during the signing process in order to generate a 
signature but optimizes the time the internal process 
requires in the authentication path generation, from 
exponential to linear complexity. Digital signatures 
generated by both ways are the same. 

Keywords. Digital signatures, hash-based scheme, 

post-quantum cryptography, public-key cryptography. 

1 Introduction 

The quantum supremacy race is a matter of fact 
and has serious contenders like Google [1], IBM 
[18], and governments around the world [7]. 

Although it has not been possible to build large-
scale quantum computers yet, quantum algorithms 
already exist, like Shor’s [19] and Grover’s [8] that 
have the potential of breaking public-key 
cryptography through the resolution of integer 
factorization, discrete logarithm, and elliptic curve 

discrete logarithm problems in polynomial time and 
the quadratic speed-up on database searches [21]. 

Digital signature schemes represent an 
important part of public-key cryptography used on 
the internet since they provide authenticity, 
integrity, and non-repudiation services [6]. Current 
digital signature schemes are vulnerable to 
quantum attacks as their security lies on the lack 
of feasibility to solve problems, such as listed 
before, on a classical computer. 

Post-quantum cryptography is a recently 
created study field that researches cryptographic 
schemes that are resistant to known quantum 
attacks and can be implemented on classical 
computers. Several post-quantum schemes have 
been generated in the last few years and are 
categorized in hash-based, code-based, lattice-
based, and multivariate-quadratic [3]. The security 
level of code-based, lattice-based, and 
multivariate-quadratic schemes is still uncertain 
because they have not been researched enough, 
and there are no known attacks for them [20]. The 
National Institute of Standards and Technology of 
the United States works in evaluating post-
quantum cryptography schemes [16]. 

On the other hand, Hash-based schemes have 
more certainty in their security levels, which lie 
mainly on the security of their underlying hash 
functions, and standardized hash functions have 
been tested for unpredictability, first and second 
preimage attacks resistance, and collision 
resistance [17]. Thus, if a standardized hash 
function is used as the base of a scheme, it is just 
needed to prove the higher part of such scheme. 
Within hash-based schemes, there are two main 
classes: stateful and stateless; the first class 
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requires more secure implementation assumptions 
but shows better performance than the 
second class. 

This work is focused on SPHINCS+, a stateless 
hash-based scheme for digital signatures that is in 
the process of standardization by the NIST [2], and 
more specifically in XMSS, a scheme implemented 
inside SPHINCS+. 

At the moment of this writing, no complexity 
analysis of implementations other than those 
shown in this work were found. 

2 SPHINCS+ 

SPHINCS+ [2] is the evolution of the original 
SPHINCS (Stateless Practical Hash-based 
Incredibly Nice Cryptographic Signatures) [4], 
submitted to the NIST in 2019 for standardization. 
The scheme consists of the orchestration of the 
other four nested schemes, as shown in Fig. 1. 
Through the signing and verification processes, 
these schemes call for a family of tweakable hash 
functions that share the same underlying standard 
hash function, that must have second 
preimage resistance. 

2.1 WOTS+ 

The base scheme is WOTS+ [10], the Winternitz 
One-Time Signature is an extension of Lamport 
one-time signature [14] used to sign a fixed-length 
group of bytes through a recursive chaining 
function that calls the tweakable hash function F, 
and a checksum with the purpose of making the 
signature existentially unforgeable [5]. 

At the highest level, this scheme has 
four routines: 

– A secret key generation that calls the 
tweakable hash function PRF. 

– Public key generation, which calls the 
chaining function. 

– Sign, which calls the chaining function. A 
signature is a bidimensional array of bytes, as 
described in [10]. 

– Public key generation from a signature, which 
calls chaining function. 

I.e., in the context of SPHINCS+, WOTS+ has 
not a direct signature verification routine, but a way 

to compute the public key from a given signature 
and a message; if the generated public key is the 
known public key of the sender, the signature 
is valid. 

2.2 XMSSMT 

XMSS is a scheme proposed in [11] and analyzed 
in [12] with the goal of generating parameter sets 
suitable for different implementations. 

XMSS is an eXtended Merkle Signature 
Scheme and takes from Ralph Merkle [15] the idea 
of a tree made of hashes. MT means multi-tree. 

For a single tree, the leaves are WOTS+ public 
keys, i.e., in the context of SPHINCS+, XMSS 
instances sign WOTS+ public keys instead of 
actual messages and use the WOTS+ signing 
routine; hence the message must be a fixed-length 
group of bytes, but it is possible to sign more 
messages, according to the number of leaves. 

2.2.1 Treehash Routine 

A tree of height ℎ is generated from ℎ2 WOTS+ 
public keys. The nodes in each level are computed 
using a bitmask on the concatenation of the 
hashes contained in the nodes below and applying 
the tweakable hash function H as shown in Fig. 2, 
taken from [13]. This routine is known as treehash 
and is detailed in [2]. The public key of an XMSS 
instance is the root node of the tree. 

 

Fig. 1. Inner schemes of SPHINCS+ 
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2.2.2 Signing Routine 

An XMSS signature consists of a selected leaf, i.e., 
a WOTS+ signature, and the authentication path, 
which is the set of hashes of the intermediate 
nodes needed to generate the root node, which is 
the public key of the instance. 

In [9], it is recommended to use the treehash 
routine to generate the authentication path, and in 
[2], it is used in this way. This method is memory-

efficient but also time-expensive since it is 
necessary to regenerate the entire XMSS tree. 

2.2.3 Signature Verification 

XMSS signature verification follows the same 
approach as WOTS+ because there is not a direct 
verification method but a public key generation 
method that needs the signature (WOTS+ 

 

Fig. 2. XMSS nodes generation 

 

Fig. 2. SPHINCS+ hypertree 
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signature and authentication path) and the 
message. If the public key generated by this 
method matches the known sender’s public key, 
the signature is valid. 

2.3 Hypertree 

An instance of XMSS can sign up to 2ℎ messages 
so, the greater ℎ is the more messages that can be 
signed, increasing the execution time of the 
treehash routine. 

The processing time growth is circumvented, 
splitting a big tree into layers of certification trees. 
The trees on the lower level sign WOTS+ public 
keys, and the trees in higher levels sign the root 
node of each tree below. This construction is 
known as hypertree, see Fig. 2, taken from [13], 
and gives the MT to XMSSMT. 

The hypertree scheme constructs intermediate 
layers of trees. This method is more time-efficient 
than generating a tree with the total height of 
the hypertree. 

As XMSS instances, the hypertree has routines 
for public key generation (the higher root node) and 
signature generation, but this scheme does have 
an explicit signature verification routine. 

2.4 FORS 

So far, there is a need to maintain a state, so the 
FORS scheme is implemented to make 
SPHINCS+ stateless. 

FORS is the acronym for Forest Of Random 
Subsets and is the successor of HORS and 
HORST schemes present in the previous versions 
of SPHINCS. All of these are few-time signature 
schemes used to sign at random leaves, so the 
SPHINCS+ key pair may be used several times 
without degrading security. 

FORS scheme has routines for private key 
generation, public key generation, signature 
generation, and public key generation from a 
signature. As XMSS, it uses its own version of the 
treehash routine. 

2.5 SPHINCS+ Orchestration 

SPHINCS+ is the higher scheme and is used for 
the orchestration of the other schemes. 

It has routines for key pair generation, signature 
generation, and signature verification. 

SPHINCS+ generates a FORS instance and 
adds randomness to it for signing the original 
message. Then signs the FORS public key with an 
instance of the hypertree to get the 
SPHINCS+ signature. 

3 Object-Oriented Implementation 

This work is about an object-oriented 
implementation of SPHINCS+ that aims to 
optimize the processing time of the original one. In 
addition, the fact of working with objects facilitates 
the understanding, scalability, and maintenance 
of code. 

Each scheme can be instantiated as an object 
of the class with its name and makes use of related 
supplementary classes. 

Some schemes have common functionalities, 
i.e., generic routines that are organized in 
the classes: 

– Hash: Contains every tweakable hash function 
used by the schemes. If a change on the 
underlying hash function is needed, like the 
implementation of new standard digest 
functions, this is the single place to make 
the modifications. 

– Utils: It has the byte operations needed in the 
schemes, like number base changes, XOR, 
array comparisons, and the like. 

– Address: along the schemes implemented by 
SPHINCS+, it is necessary to maintain indexes 
of leaves, trees, and chains. These indexes 
are stored in byte arrays called addresses. 

– Random: Used for the generation of 
pseudorandom bytes. 

As this paper is focused on XMSS signing 
optimization, the relevant structs will be detailed in 
the following section. 

3.1 XMSS Objects 

As XMSS consists of a tree, there is a struct for 
nodes. Since the tree is for signing messages and 
verifying signatures, there is a struct for signatures; 
both are described below.  

Computación y Sistemas, Vol. 25, No. 3, 2021, pp. 557–565
doi: 10.13053/CyS-25-3-3331

Rafael Soto Landa, Octavio Ortiz Ortiz, Juan Manuel García García560

ISSN 2007-9737



3.1.1 TreeNode Struct 

An XMSS node is a struct with three 
relevant values: 

– hash: The hash is a fixed-length byte array 
that may contain a WOTS+ public key for leaf 
nodes or the node construction shown in 
section 2.2.1 Treehash Routine for 
intermediate and root nodes. 

– height: It is an unsigned integer number that 
represents the vertical position of the node 
inside the tree. Leaf nodes have a zero (0) 
value, and the root node has a value ℎ. 

– index: The horizontal position of the node 
within a level is represented by this unsigned 
integer number. The leftmost node of each 
level has a zero (0) index. 

3.1.2 XmssSignature Struct 

As described in section 2.2.2 Signing Routine, a 
signature is the bidimensional byte array that 
represents the WOTS+ signature on the selected 
leaf and the authentication path from that leaf to 
the root node. In Fig. 3., taken from [13], the 
WOTS+ signature is represented with 𝑖, and the 
dark nodes are conforming the authentication path. 
In this context, the authentication path is a list of 
the hashes generated in the construction of 
TreeNode objects. 

Therefore, this struct has: 

– authentication_path: This is a list of byte 
arrays that represent the hashes of the 
TreeNode objects. It could be an array too. 

– wots_signature: Bidimensional byte array.  

3.2 XMSS Variant 

In [2], it is recommended to generate the 
authentication path by using the Treehash method 
directly, although this routine was already used 
before to generate the XMSS public key. 

The suggested way to sign is the best-known 
solution to improve space performance since it 
does not store in memory every node but the 
currently needed hash. 

The problem with using Treehash again at this 
point is that it is the heaviest time processing 
routine in XMSS because it must generate every 
single node again. 

The solution proposed in this work has the 
opposite tradeoff, less processing time at the 
expense of more memory to do the same task. This 
decision is based on the current computers’ 
capabilities and the need for immediacy when 
providing a signing service. 

Tests on an Intel® Core™ i7-8550U processor 
at 1.99 GHz, signing and verification time was 
reduced from about 5.2 seconds to 2.7 seconds on 
average for trees of height 8, with 𝑛 = 32 and 𝑤 =
16 as shown in section 5 Implementations 
Testing. The complexity analysis is in the next 
section, where the tradeoff is formally 
demonstrated. 

To get the proposed improvement it was 
necessary to make changes in the scheme 
implementation. These changes are described in 
the next three subsections. 

3.2.1 Treehash Routine 

The original idea of the Treehash routine was 
preserved, but a hashtree argument was included 
and filled inside the routine, as shown in 
Algorithm  1. The algorithm was taken from [2], and 
the added elements are distinguished in 
bold  letters. 

3.2.2 TreePathGeneration Routine 

TreePathGeneration (tree_path_generation in 
pseudocode, see Algorithm 2) is a routine added 
to the original scheme. This algorithm computes 
the index of all the nodes that must be appended 
to the authentication path on each level of the 
XMSS tree.  

 

Fig. 3. XmssSingature struct construction 
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The routine returns a stack of integers that is 
used in the signing routine, where each number is 
popped out from the stack and is used to get the 
node at the corresponding index and height of 
the tree. 

3.2.3 Signing Routine 

The signing routine implementation is different 
from the original one only in the build 
authentication path section. The logic is in 
Algprithm 3. It is originally computed by the 
treehash function. In the new implementation, it is 
calculated through the hashtree list, and the 

indexes are returned by the 
TreePathGeneration routine. 

The strikethrough text was removed from the 
original implementation, while the bold text was 
added. The values of z and hashtree are taken 
from the XMSS object. 

4 Complexity Analysis 

As mentioned in earlier sections, the aim of this 
work is to optimize the processing time, and this is 
done by losing memory efficiency. In the next 
subsections, there is an analysis of how these two 
variables in both implementations have been 

Algorithm 1. Treehash algorithm Algorithm 2. TreePathGeneration algorithm 

# Input: Secret seed SK.seed, start index 
s, target node height z, public seed 
PK.seed, address ADRS, list of XmssNode 
elements hashtree 
# Output: n-byte root node - top node on 
Stack 

 
treehash(SK.seed, s, z, PK.seed, ADRS, 
  hashtree) 
{ 
  if (s % (1 << z) != 0 ) return -1; 
  for (i = 0; i < 2^z; i++) 
  { 
    ADRS.setType(WOTS_HASH); 

 ADRS.setKeyPairAddress(s + i); 
 node = wots_PKgen(SK.seed, PK.seed, 
   ADRS); 
 ADRS.setType(TREE); 
 ADRS.setTreeHeight(1); 
 ADRS.setTreeIndex(s + i); 
 hashtree.append(node); 
 while (Top node on Stack has same 
   height as node) 
 { 
   ADRS.setTreeIndex( 
     (ADRS.getTreeIndex() – 1) / 2); 
   node = H(PK.seed, ADRS, 
     (Stack.pop() || node)); 
   ADRS.setTreeHeight( 
     ADRS.getTreeHeight() + 1); 
   hashtree.append(node); 
 } 
 Stack.push(node); 

  } 
  return Stack.pop(); 
} 

# Input: Tree height z, index of leaf 
selected for WOTS+ signature idx 
# Output: Stack of integers that represent 
the index of the nodes in the path 

 
tree_path_generation(z, idx) 
{ 
  path = new Stack(); 
  hi_bound = 2^z; 
  low_bound = 0; 
  srch_idx = 0; 
  for (i = z; i > 1; i--) 
  { 
    half = (hi_bound + low_bound) / 2; 
    if (idx >= half) 
    { 
      low_bound = half; 
      srch_idx = srch_idx * 2 + 1; 
    } 
    else 
    { 
      hi_bound = half; 
      srch_idx *= 2; 
    } 
    path.push((srch_idx % 2 == 0) ? 
      srch_idx + 1 : srch_idx - 1); 
  } 
  path.push((idx % 2 == 0) ? 
      idx + 1 : idx - 1); 
  return path; 
} 
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affected. In this section, 𝑧 represents the height of 
the XMSS tree. 

4.1 Time 

4.1.1 Treehash Routine 

Treehash has two new lines for adding every single 
node to the list hashtree. 

There are 2𝑧+1 − 1 nodes on a tree, and each 
assignation has three internal assignations (hash, 
height, and index). So, this routine has added 
3 ∗ (2𝑧+1 − 1) operations to the scheme. Since 
these operations are in the same structure as the 
rest of the computation of Treehash, they do not 
increase the complexity of the routine. 

4.1.2 TreePathGeneration Routine 

TreePathGeneration is new to the scheme, so all 
its operations count in the total. 

There are up to 12 operations inside the for loop 
that is repeated 𝑧 − 1 times. There are 𝑛𝑖𝑛𝑒 
operations outside the for loop. Therefore, this 
routine adds 12 ∗ (𝑧 − 1) + 9 operations. The 
complexity of this routine is linear. 

4.1.3 Signing Routine 

Original singing routine calls for the original version 
of Treehash routine, which calls 2𝑧 times 
wots_PKgen, whose complexity is quadratic 
because it calls the recursive chain function in a for 
loop, while new implementation calls for the 
TreePathGeneration routine, which has linear 
complexity as it is demonstrated in 
previous subsections. 

In conclusion, by adding those operations to 
Treehash and TreePathGeneration routines, the 
number of operations is reduced since it is not 
necessary to regenerate the entire tree but just go 
through it. 

4.2 Space 

New implementation requires storing the list of 
instances of TreeNode. The list must contain 
2𝑧+1 − 1 nodes, and each node contains a 32-byte 
hash, a 4-byte height, and a 4-byte index, giving a 
total of (2𝑧+1 − 1) ∗ 40 bytes. 

The complete SPHINCS+ implementation uses 
trees of height 8, so the total needed storage for a 
tree is 20,440 bytes that are not necessary at all in 
the original implementation. 

Note that this use of memory is not persistent 
since the hashtree object is discarded once the 
signing processing is finished. 

5 Implementations Testing 

The proposed solution was implemented besides 
the original one in a library using C# on .NET Core 
2.1 framework and tested on an Intel® Core™ i7-
8550U processor at 1.99 GHz. Tests were 
performed with Xunit. 

Two performance scenarios were tested 50 
times over both implementations. The first scenario 
aimed to compare the whole process of generating 

Algorithm 3. XMSS signing algorithm 

# Input: n-byte message M, secret seed 
SK.seed, index idx, public seed PK.seed, 
address ADRS 
# Output: XMSS signature SIG_XMSS = (sig || 
AUTH) 
 
xmss_sign(M, SK.seed, idx, PK.seed, ADRS) 
{ 
  path = tree_path_generation(z, idx); 
  // build authentication path 
  for (j = 0; j < z; j++) 
  { 
    k = floor(idx / (2^j)) XOR 1; 
    AUTH[j] = treehash(SK.seed, k * 2^j, 
      j, PK.seed, ADRS); 
  } 
  for (j = 1; j < z; j++) 
  { 
    srch_idx = path.pop(); 
    AUTH[j - 1] = (hashtree node with 
      height == j and index == srch_idx); 
  } 
  ADRS.setType(WOTS_HASH); 
  ADRS.setKeyPairAddress(idx); 
  sig = wots_sign(M, SK.seed, PK.seed, 
    ADRS); 
  SIG_XMSS = sig || AUTH; 
  return SIG_XMSS; 
} 
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the XMSS object, generate the public key with the 
Treehash routine, and to sign a 32-byte message. 

The second scenario compares just the 
authentication path generation inside the signing 
routine. This subroutine in the optimized 
implementation assumes that a hashtree object 
was created at a cost of 3 ∗ (2𝑧+1 − 1) extra 
operations, i.e., 1,533 extra operations for 
implementation with 𝑧 = 8, and does not call for the 
Treehash routine at all. Table 1 shows the resulting 
times and time reduction percentage. 

6 Conclusions 

Current applications need immediacy, and this 
implementation improves it compared with the 
original proposed one.  

The tradeoff between time and memory space 
proposed in this work seems affordable for modern 
computers since the space cost of signing 32 bytes 
in almost half of the original time is about 20 kB, 
which are released once the signing process 
is  finished. 

Test and complexity analysis of this work 
demonstrate that Treehash is the time costliest 
routine in the overall process of XMSS and should 
be avoided when possible. 

XMSS is just a sub-scheme inside SPHINCS+; 
in higher scheme FORS, there is a version of 
Treehash and is implemented in a similar way 
inside the FORS signing process. 

Future research could be about the elimination 
of hashtree objects by implementing the Treehash 
routine just once and get the signature and the 
public key in a single run, but this could imply 
greater coupling between classes and, therefore, 
less maintenance ease. 
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