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Abstract. A hybrid and distributed geographical 

database is being developed which utilizes the 
database engines PostgreSQL and MongoDB for later 
implementation in Geoserver’s architecture. In the 
course of the study, it was necessary to establish 
whether there was difference between the response 
times of PostgreSQL and MongoDB per type of query 
and the use of geographical indexes, in order to 
appropriately select the Database Management System 
to be used by the Geoserver implemented Web Map 
Service. After a statistical analysis with 11 different 
types of query, the conclusion was that the type of query 
affects the response time of the Database 
Management Systems. 

Keywords. Performance evaluation, SQL, relational 

database, NoSQL. 

1 Introduction 

The demand for geographical information has 
grown considerably in recent years [1] and citizens 
are among the main generators of this 
geographical explosion [2]. While using it, users 
also participate actively in the generation of 
geographical data, in the sense that most people 
have currently become a mobile sensor that 
registers and records large volumes of data that 
require higher computing capability and more 
advanced and efficient processing and analyzing 
methods [3]. 

As a response to the issue raised above, work 
has been conducted on producing hybrids between 
the relational (SQL) and non-relational (NoSQL) 
database paradigms [4]. Hybrid databases work as 

an abstraction layer over SQL and 
NoSQL databases [5]. 

Currently, a hybrid and distributed database 
that uses PostgreSQL and MongoDB database 
engines is being developed for future 
implementation in the Geoserver base architecture 
[6] to evaluate whether this modification enhances 
its performance. However, while developing the 
project, it became necessary to establish if there 
was any difference in the response times of 
PostgreSQL and MongoDB, according to the type 
of query and use of geographical indexes. The aim 
was to choose appropriately the DBMS (Data Base 
Management System) to be employed by the Web 
Map Service (WMS) implemented by Geoserver. 

Since PostgreSQL was one of the first 
databases to address spatial issues, we selected it 
to construct the hybrid and distributed database 
[7]. PostgreSQL’s extension, PostGIS, [8], is highly 
optimized for spatial queries [3] and its large 
quantity of spatial functions make it relevant for this 
research project. On the other hand, there are 
currently over 225 NoSQL databases [9] with only 
a reduced number supporting geographical data 
operations, among which Neo4j, CouchDB, 
MongoDB [10] and ArangoDB outstand in this 
area. We chose MongoDB because, to date, it was 
the only document-based NoSQL database that 
supports line intersection and point containment 
queries [3]. 

Lastly, both are open code DBMS and 
Geoserver gives them support because in its 
version 2.11.4, Geoserver [6] included a data 
connexion and publication component 
from MongoDB. 
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One of the main motivations that led us to 
conduct this research was the scarce number of 
works comparing PostgreSQL’s and MongoDB’s 
performance. Among these works, there are [11] 
and [12], which focus on comparing the 
performance in the operations insert, select, 
update and delete. The study of [6] also focuses on 
comparing geographical queries using synthetic 
data. However, although the synthetic data usually 
favor the evaluation of queries regarding numeric 
and string characters, the synthetic geometries 
generated differ from real-world data, because the 
randomness of the generator can produce too-
square polygons and unnatural landforms [13]. 

Another work analyzes geographical queries 
using real data [13], but it focuses on analyzing 
PostgreSQL, MongoDB and Neo4j. Finally, [14] 
published the basis for the present article, with the 
restriction that its analysis was based on 
descriptive statistics. Here, this analysis is 
improved by carrying out a statistical analysis that 
uses real spatial data corresponding to the Huetar 
Norte Region of Costa Rica, focusing only in 
evaluating the query operation and both DBMS 
of interest. 

In this work, eleven types of queries were 
analyzed, using or not the geographical index. The 
results obtained allow us to conclude that the type 
of query influences the response time of 
both DBMS. 

2 Methodology 

2.1 Approach 

The present research applied a quantitative 
approach that permits the assessment of DBMS 
response times in data processing in eleven 
different reading operations. 

2.2 Type and Level of the Investigation 

This was an experimental study. Experiments to 
obtain the data were conducted in the laboratory. 
In addition, it is a prospective research from the 
point of view of data collection planning, as the 
data were obtained specifically for this article. 
Moreover, because of the number of times the 
variable was measured, this is a longitudinal study, 

with eleven query types with two thousand 
requests analyzed for each DBMS. The study is 
also analytical, since the behavior of the DBMS 
was analyzed in order to detect possible 
relationships between them. Lastly, it is an 
explanatory research aimed at establishing cause-
effect relationships between the variables 
analyzed based on the results obtained through 
the experiment. 

2.3 Collection of Information 

Valid SQL queries were defined and executed on 
MongoDB and PostgreSQL DBMS using 
equivalent databases, in order to evaluate the 
compatibility of different DBMS by comparing the 
results obtained [15]. Eleven database queries 
were generated, with different access patterns and 
levels of complexity, related to geographic 
information. The aim was to evaluate the behavior 
of the engines in simple data recovering 
transactions, as well as in filter application and 
geographical processing. 

Next, each query was executed with 2000 
requests and all measurements were executed 10 
times, aiming at minimizing the response time 
variations caused by the process allocation of the 
operating system. The queries utilized in the tests 
developed are described in Table 1. 

The tool JMeter was used for data collection 
[16]. JMeter allows the measurement of the 
behavior of the DBMS, according to the process 
described above. This application has a simple 
graphical user interface that offers ample load 
generation capability, is open code and 
implemented in Java [17]. 

Likewise, it is an environment that allows 
controlling the variables, that is, the operations are 
designed and managed by the testing team and 
the database used corresponds to a real project 
data sample. The component Summary Report, 
provided by the tool, was used to visualize and 
evaluate the test results in a table. The data this 
component shows are [18]: 

– Label: sample label. 

– #Samples: number of threads used. 

– Average: average response time in 
milliseconds for a set of results. 
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Table 1. Types of queries 

Query number Type of query Description 

Query 1 
Basic retrieval of the 
geographic table 

Selects all the attributes of the towns (type of geographic data: points). 

Query 2 
Information retrieval using the 
function within  

This is a geographic query that uses the function within. First, it determines 
the delimiting square of the geometry by using the R tree index, then it loads 
the geometry. This approach improves performance greatly [24]. That is, it 
takes two geometries as entry parameters and returns the number one if the 
first geometry is within the second one. Specifically, two towns are selected 
(geometry: points) that are within the district of Florencia (geometry: polygon).  

Query 3 
Information retrieval with 
condition on clause where  

Selects all the attributes of the San Carlos districts data set (geometry: 
polygon). The aim of including conditions in the where clause in an SQL query 
is to filter those tuples that meet certain characteristics represented by those 
conditions [25]. 

Query 4 
Information retrieval using the 
intersect function between two 
geometries of the type polygon  

The intersect function returns a geometry that represents the intersection of 
the set of points of the geometries [26]. 
The query specifically selects the districts that intersect the protected area of 
Arenal. 

Query 5 
Information retrieval using the 
functions within and intersect  

Selects the touristic attractions (geometry: points) found in the districts 
(geometry: polygons) that intersect the protected area of Arenal   

Query 6 
Information retrieval using the 
near function  

Given a point in a geospatial query, the near function in MongoDB returns the 
documents from the closest to the furthest. The $near operator can specify a 
GeoJSON point or an inherited coordinate point [27]. The restriction of this 
function is that it necessarily requires the use of a geospatial index. In the case 
of PostgreSQL, the equivalent function is ST_DWithin, which delivers true if 
the geometries are within the specified distance between them [26]. It uses 
indexes if available. In addition, the data should be ordered by distance by 
means of the ST_Distance function. It selects the towns (geometry: points) 
that are located 0.10 meters from the town of Quesada ordered from greatest 
to least distance.  

Query 7 
Information retrieval using the 
intersect function between two 
geometries of the type line  

Selects all the roads that intersect a specific river 

Query 8 

Information retrieval using the 
intersect function between a 
line-type geometry and a 
polygon-type geometry 

Selects all the rivers (geometry: line) that intersect the district of Quesada 
(geometry: polygon). 

Query 9 

Information retrieval using the 
intersect function between a 
point-type geometry and a 
polygon-type geometry  

Selects all the towns (geometry: point) that intersect the district of Florencia 
(geometry: polygon).  

Query 10 

Information retrieval using the 
intersect function between a 
point-type geometry and a 
line-type geometry 

Selects all the rivers (geometry: line) that intersect a specific town (geometry: 
polygon).  

Query 11 
Information retrieval using the 
intersect function between two 
point-type geometries  

Selects all the touristic attractions that intersect a specific town  
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– Max: maximum time it takes to a thread to 
access a page. 

– Performance: measured performance of the 
requirements per second/minute/hour. 

– Kb/sec: measured performance in Kilobytes 
per second. 

– Mean in bytes: mean response size of the 
server (in bytes). 

The data set used for test execution 
corresponded to the Huetar Norte Region in Costa 
Rica and included the geometric structures based 
on points, lines or polygons that correspond to 
vector data. For this, six files (shapefile) were 
selected [19] from the web site IDEHN 
(Infraestructura de Datos Espaciales de la Región 
Huetar Norte) [20]. 

These are: Caminos de Costa Rica; Ríos de la 
Región Huetar Norte de Costa Rica, which are 
represented as lines; Poblados de la Región 
Huetar Norte de Costa Rica and Atractivos 
turísticos de Costa Rica, which correspond to 
points, and Distritos de la  Región Huetar Norte de 
Costa Rica and Áreas Silvestres Protegidas de 
Costa Rica, which appear as polygons. Then, 
these geographic data layers were converted to 
GeoJSON format [21] by means of the QGIS tool 
[22]. In both DBMS, the data layers were used with 
the coordinate reference system WGS84 [23] 
associated to SRID (Spatial Reference System 
Identifier) number 4326. Next, the data were 
manually uploaded to each DBMS, so the data had 
to be read, processed and stored on a data disk. 

The river layer contains 204152 geographical 
records; the road layer, 222965; the town layer, 
200662; attractions, 100509; districts, 10037 and 
protected areas, 533 geographical records.  

2.4 Test Environment 

All tests were performed using an Intel core i7 
processor machine with the Ubuntu 16.04 LTS 64-
bit operating system with 16 GB RAM. The DBMS 
versions are MongoDB Server 3.4.10 [28], and 
PostgreSQL 9.6 [7]. 

The tool Apache JMeter 3.2 was used for 
performance evaluation and comparison [16]. The 
drivers used for connection with each DBMS were: 
PostgreSQL 42.1.4 JDBC, MongoDB 2.11.3 Java. 

2.5 Statistical Analysis  

The analysis was performed per type of query, 
evaluating for each case the criterion of normality, 
using the Anderson-Darling statistical test, see [29] 
and [30], and the homogeneity of variance, by 
means of the Levene test, for the quantitative 
variable response time. These tests represented 
input for performing the combined analysis of 
variance (ANOVA) of a factor for independent 
samples, per DBMS and type of query. 

Lastly, the descriptive statistics were calculated 
for the response time per DBMS and type of query. 
All the tests were verified at α=0.05 
significance threshold. 

3 Results and Discussion 

Queries 1 and 3 were executed without 
geographical index only, either because of their 
simplicity or because a sequential search of the 
table is performed. 

Query 6 was executed with geographical index 
only, because MongoDB does not allow the 
execution of the near function without using this 
data structure.  

Based on the characteristics of the hardware 
used and the excessive response time, queries 4, 
5, 7 and 8, which involved the intersection of 
polygons with polygons; an intersect with a within; 
intersection of lines with lines and lines with 
polygons, which could not be executed in none of 
the DBMS, without utilizing a geographical index.  
Queries 5 and 8 could not be executed in 
MongoDB using a geographical index either.  
Finally, query 10 could not be executed in 
MongoDB without geographical index.  

3.1 Queries without Geographical Index 

Query 1 

For query 1, the quantitative variable response 
time for the DBMS MongoDB and PostgreSQL was 
normal, with p-values of 0.6464 and 0.5232, 
respectively. As for the variance homogeneity, the 
p-value was 0.1217. In the ANOVA (see Table 2), 
the p-value calculated for the DBMS was lower 
than the level of significance, therefore the null 
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hypothesis of equal means was rejected and the 
existence of significant differences in the response 
times between the DBMS was admitted. In 
addition, figure 1 shows that MongoDB’s response 
time was lower than PostgreSQL’s. 

Query 2 

The response time for query 2 behaved normally 
with a p-value of 0.1414 for MongoDB and of 
0.1565 for PostgreSQL. The data showed 
homogeneity of variances with a p-value of 0.4483. 
Significant differences in response times between 
the DBMS were determined through the ANOVA 
(see Table 2). Similarly, figure 1 shows that 
PostgreSQL’s response time was lower than 
MongoDB’s. 

Query 3 

The response time in query 3 meets the 
assumption of normality, because the p-value 
calculated was of 0.3464 for MongoDB and of 
0.1724 for PostgreSQL.  Likewise, the 
homogeneity of variances between the two groups 
was corroborated, with a p-value of 0.1036. 

Through the ANOVA (see Table 2), significant 
differences were determined in the response times 
between the DBMS. Figure 1 shows that 
MongoDB’s mean response time was lower than 
PostgreSQL’s. 

Query 9 

The response time data in query 9 were normal 
with a p-value of 0.2911 for MongoDB and of 
0.3835 for PostgreSQL. The Levene test for 
equality of population variables was statistically 
significant with p-value of 0.2714.  

The response times of MongoDB and 
PostgreSQL were compared through the ANOVA 
(see Table 2) and significant differences were 
revealed. Figure 1 shows that PostgreSQL 
presented lower response time than MongoDB. 

Query 11 

The criterion of normality was satisfied with a p-
value of 0.2005 for MongoDB and of 0.5052 for 
PostgreSQL. Both groups evaluated complied with 
the homogeneity of variance with a p-value of 
0.2341. The DBMS showed significantly different 
response times, which can be corroborated with 
the ANOVA results in Table 2. Figure 1 shows that 
MongoDB’s mean response time was lower than 
PostgreSQL’s. 

3.2 Queries with Geographical Index 

Query 2 

The quantitative variable response time showed 
normal behavior. For the DBMS MongoDB, p-value 

Table 2. ANOVA for response time without geographical index 

Dependent variable: Response time 

 Sum of squares DF F Pr(>F) 

DBMS – Query 1 154708 1 52194 <2e-16 

Residual – Query 1 53 18   

DBMS – Query 2 746544 1 48030 <2e-16 

Residual – Query 2 280 18   

DBMS – Query 3 6321894 1 5576884 <2e-16 

Residual – Query 3 20 18   

DBMS – Query 9 1744101 1 3383 <2e-16 

Residual – Query 9 9280 18   

DBMS – Query 11 1345311 1 176099 <2e-16 

Residual – Query 11 138 18   
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was of 0.0765 and for PostgreSQL, the p-value 
was 0.1512. As for homogeneity of variance, the p-
value was 0.4909.  

According to the variance analysis (Table 3) the 
null hypothesis of equal means was rejected, and 
significant differences between the response times 
of both DBMS were accepted. Figure 2 shows that 
PostgreSQL had lower response time 
than  MongoDB. 

Query 4 

The normality test produced a p-value of 0.8479 for 
MongoDB and of 0.2873 for PostgreSQL, therefore 
the null hypothesis was accepted.  In like way, the 
hypothesis of homogeneity of variance was 
accepted with a p-value of 0.1610. The ANOVA 
results (see Table 3) led to the conclusion that 
there were significant differences in the response 
times between both DBMS. The average response 
time for PostgreSQL is lower than for MongoDB 
(see figure 2). 

Query 6 

Both MongoDB’s and PostgreSQL’s response 
times present normality, with p-values of 0.6549 
and 0.1461, respectively. In addition, these two 

groups of data present variance equality with a p-
value of 0.1376.  

A significant difference in the response times 
between both DBMS can be deduced from Table 
3. Figure 2 shows that the mean response time of 
MongoDB is lower than for PostgreSQL. 

Query 7 

With a p-value of 0.1570 for MongoDB and 0.1134 
for PostgreSQL, the response time for both DBMS 
was catalogued as normal. The data presented 
homogeneity of variance with a p-value of 0.8876. 
The ANOVA (see Table 3) led to reject the null 
hypothesis of equal means for there was a 
significant difference between the times responses 
of MongoDB and PostgreSQL.  

Figure 2 shows that PostgreSQL presented 
lower response time. 

Query 9 

The criterion of normality test for the response 
times of MongoDB and PostgreSQL produced p-
values of 0.9338 and 0.1367, respectively, 
meaning that the DBMS satisfied this criterion. The 
homogeneity of variance test was also accepted 
with a p-value of 0.1078. The analysis of variance 
(see Table 3) revealed a significant difference in 

Table 3. ANOVA for the response time with geographical index 

Dependent variable: Response time 

 Sum of squares DF F Pr(>F) 

DBMS – Query 2 154708 1 52194 <2e-16 

Residual – Query 2 53 18   

DBMS – Query 4 746544 1 48030 <2e-16 

Residual – Query 4 280 18   

DBMS – Query 6 6321894 1 5576884 <2e-16 

Residual – Query 6 20 18   

DBMS – Query 7 20161706 1 6585004 <2e-16 

Residual – Query 7 55 18   

DBMS – Query 9 7337813 1 144684 <2e-16 

Residual – Query 9 913 18   

DBMS – Query 10 29084 1 4497 <2e-16 

Residual – Query 10 116 18   

DBMS – Query 11 1050557 1 242507 <2e-16 

Residual – Query 11 78 18   

Computación y Sistemas, Vol. 24, No. 4, 2020, pp. 1461–1469
doi: 10.13053/CyS-24-4-3292

Marlen Treviño Villalobos, Leonardo Víquez Acuña, Rocío Quirós Oviedo1466

ISSN 2007-9737



the response times of both DBMS and figure 2 
shows PostgreSQL’s response time is lower than 
MongoDB’s. 

Query 10 

Normality of the variable was verified for each 
DBMS; p-value was 0.1307 for MongoDB and 
0.6134 for PostgreSQL. Similarly, homogeneity of 
variance of the two groups analyzed was 
demonstrated with a p-value of 0.2803. Table 3 
indicates a significant difference between the 
response times of both DBMS, where PostgreSQL 
had the lowest response time. 

Query 11 

The response time satisfied the normality 
assumption, for p-value was of 0.1131 for 
MongoDB and of 0.1640 for PostgreSQL. 
Homogeneity of variances between both groups 
was demonstrated, obtaining a p-value of 0.2038. 

A significant difference in the response times of 
the DBMS was determined through the ANOVA 
(see Table 3). Figure 2 shows that MongoDB’s 
mean response time was lower than 
PostgreSQL’s. 

4 Conclusions 

Based on the response time, using the MongoDB 
DBMS is preferable when the types of query to be 
executed have a non-geographic descriptive data 
filtering or their return implies a sequential scan of 
the table. It is also preferable when the query 
requires a single geographic processing between 
point-type geometries in intersect or near 
functions, as applicable. 

The use of PostgreSQL is recommended for 
higher level processing queries involving intersect 
or within functions and the combination of both. 

 

Fig. 1. Average response time without 

geographical index per number of query according 
to the DBMS 

 

 

Fig. 2. Average response time with geographical index per 

query number according to the DBMS 
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PostgreSQL is also recommended for more 
complex types of geographic data, such as lines, 
polygons and their variations, and in the 
implementation of geographic operation queries 
supported by this DBMS only. 

Currently, there are some limitations on the use 
of NoSQL databases over the SQL databases, 
since the geo-functions implemented in the SQL 
databases only admit basic operations, while the 
relational databases offer greater variety [31]. 

According to this research, to choose which 
DBMS is to be used for certain queries, multiple 
variables should be evaluated, such as: type of 
geometry, size of the geographical data, type of 
query, use and type of geographical index.  

We intend to deepen this study in the future with 
the implementation of other types of geographical 
indexes involving enhanced use of the resources, 
and also determine when to use a DBMS in 
function of the size of the geographical data.  
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