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Abstract. Synchrony and causality analyses performed
in EEG data have improved the understanding of
complex interactions within the human brain. However,
few attempts have been conducted for using the delay
magnitude as a feature of synchrony events. A new
methodology for studying synchrony in EEG data is
presented here. It includes synchrony detection and a
novel mechanism to estimate delay magnitude and sign
- hence causality - between narrow bandwidth signals.
Synchrony detection and delay estimation are separated
in two steps: first, significant synchrony is detected using
a measure based on phase differences, then, delay
is estimated by analyzing the dispersion of measure
maxima in the space spanned by time, frequency and
delays. Synthetic EEG data is used to validate the
methodology using a synchrony spectral model with
controlled bandwidth and multivariate autoregressive
models (MVAR). The proposed methodology achieves
a superior performance in causality estimation than
state-of-the-art techniques in accuracy and robustness
to noise. We also present an analysis of data from a
psychophysiological experiment of figure categorization.
This methodology provides a reliable method to estimate
the delay magnitude of synchrony events and it is
a better alternative for studying causality than the
state-of-the-art techniques employed here.

Keywords. Delay estimation for synchrony
events, synchrony detection, causality analysis,
time-frequency analysis.

1 Introduction

The study of interactions among brain areas
has been conducted for achieving a better
understanding of brain function. EEG has
been used in these studies because it allows
one to observe a dynamic evolution of complex
connectivity networks, based on the analysis
of electric potential series recorded at several
electrode sites. Besides, an increasing interest to
establish causality or information flow associated
to a synchrony relation has existed since the latter
part of the previous century [31]. These studies
still are conducted in recent neurophysiological
research [25, 34, 6].

Often, a synchrony event is represented by its
time and/or frequency localization, extracted from
event detection, and its causality. The use of
the associated delay magnitude as an additional
element to characterize a synchrony relation allows
a more complete representation of an event,
since it allows for a better discrimination among
synchrony relations that occur in a same region of
the time-frequency plane and can be used to find
evidence of a single event in several electrode pairs
and thus, to construct a compact representation
that could lead to a better understanding of a
relation, allowing one to observe its associated
connectivity network in a summarized way.

A new methodology for synchrony and causality
analysis in EEG data is presented in this work,
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that provides a complete characterization of a
synchrony relation. The methodology is based
on the detection of significant synchrony events
using a measure based on phase differences
between the narrow-band signals that come from
a time-frequency decomposition, and on the
subsequent analysis of the dispersion of maxima
of this measure in the space spanned by time,
frequency and possible delays to estimate the
associated delay magnitude. We show that this
methodology constitutes a better alternative for
causality estimation than state-of-the-art methods,
besides the fact that it provides more information
than those measures (i.e., the delay magnitude).

2 Related Work

Cross-correlation function [30], h2 index [22],
Granger causality [11] and mutual information
[8] have been used to detect synchrony in the
time domain. Time localization and causality are
determined by the first three measures, while
cross-correlation [17, 39] and h2 [39] have been
used to estimate delay magnitude. However,
localizing a synchrony event in frequency is not
possible with any of these time domain measures.

Other measures are designed to study syn-
chrony in the frequency domain, like: co-
herence [9], coherence corrected for zero-lag
connections[26, 27], the imaginary part of nor-
malized cross-spectrum [23], partial coherence
[29], Noise Contribution Ratio (NCR) [1], Directed
Transfer Function (DTF) [18], direct Directed
Transfer Function (dDTF) [20], Partial Directed
Coherence (PDC) [3], generalized Partial Directed
Coherence (gPDC) [4] and isolated effective
coherence (iCoh) [28]. Frequencies involved in
a synchrony event are estimated by all these
measures and the causality estimation is provided
by all but coherence, the imaginary part of
normalized cross-spectrum and partial coherence.
However, these frequency domain techniques are
not able to estimate time localization or delay
magnitude of a synchrony relation.

Phase Slope Index (PSI) is proposed for
studying synchrony and causality in the frequency

domain [24], by analyzing the slope of the phase of
normalized cross-spectrum. PSI is defined by:

PSIxy(Ω) = Im

(∑
ω∈Ω

C∗xy(ω)Cxy(ω + ∆ω)

)
,

where ω is expressed in radians per sample,
Im (.) is the imaginary part of a complex number,
the operator (.)

∗ indicates the complex conjugate,
Cxy(ω) represents the normalized cross-spectrum
between signals x and y, Ω is a set of frequencies
and ∆ω refers to the distance between adjacent
frequencies expressed in radians per sample. If
PSI has a positive value then causality is x → y
for frequencies in Ω, while if PSI is negative then
x ← y. If a synchrony relation does not exist
or a synchrony event has zero phase difference,
then PSI gets close to zero. However, PSI cannot
estimate the time interval or the associated delay
magnitude for a detected relation.

Other techniques like time-frequency coherence
[2], Phase Lock Value (PLV) [21], Magnitude of
Phase Difference (MPD) [2], Phase Lag Index
(PLI) [32] and Weighted Phase Lag Index (WPLI)
[38] have been proposed for the time-frequency
plane. In [2], normalized cross-spectrum
estimation is performed over a sliding time
window to calculate time-frequency coherence.
Time and frequency localization is performed by
time-frequency coherence, PLV and MPD while PLI
and WPLI provide frequency localization only. On
the other hand, MPD is designed to detect relations
with zero phase difference, hence an event cannot
be detected if its associated phase difference is
distant from zero. These measures do not estimate
causality or delay magnitude.

The possibility to estimate causality based on the
asymmetry of the phase difference sign distribution
is discussed in [32] and it is the basic concept of
directed Phase Lag Index (dPLI) [33], a measure
defined for each frequency ω as:

dPLI(ω) =
1

N

N∑
t=1

H(sgn (∆φxy(t,ω))),

where ∆φxy(t,ω) is the instantaneous phase
difference, wrapped into the interval (−π,π],
between the signals that are obtained from a
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Table 1. Measures employed to study synchrony and
causality in EEG data. The table presents a summary
of the information each technique provides regarding
a synchrony event. Horizontal lines delimit measures
proposed in the same domain i.e., time domain,
frequency domain and time-frequency domain, from top
to bottom. The legend corresponding to the Event
Localization column is: t (time localization), f (frequency
localization), tf (time and frequency localization) and n
(none)

Measure Event Causality Delay
localization

cross-correlation t yes yes
h2 t yes yes
granger causality t yes no
mutual information n no no

coherence f no no
Im Coherency f no no
PSI f yes no
partial coherence f no no
NCR f yes no
DTF f yes no
dDTF f yes no
PDC f yes no
gPDC f yes no
iCoh f yes no

time-frequency coherence tf no no
PLV tf no no
MPD tf no no
PLI f no no
WPLI f no no
dPLI f yes no

time-frequency decomposition of signals x and y
for time t and frequency ω; H(.) corresponds to
Heaviside step function. dPLI ranges from 0 to
1 and its reference value to estimate causality is
0.5. If dPLI has a value significantly lower than
0.5 then information flow is x ← y, while if dPLI
is significantly greater than 0.5 causality is x →
y. dPLI provides the frequency localization of a
relation, but does not estimate its time localization
or delay magnitude.

As mentioned before, none of the above
measures is able to extract complete information
about a synchrony event, as can be seen in
Table 1.

3 Methods

We call the proposed methodology Simultaneous
Synchrony and Delay Estimation (SSDE) because
it detects synchrony and estimates its associated
delay, although the detection stage is isolated from
the delay estimation procedure. SSDE is designed
to analyze pairs of electrode series with several
trials x(t, r) and y(t, r) using their time-frequency
decompositions X(t,ω, r) and Y (t,ω, r). The
definition of a plausible delay set is required by
SSDE and it is defined as the interval Γ = [−a, a],
where a ∈ Z is measured in samples. A proper
selection of a depends on data sampling frequency
because delays in Γ should be reasonable when
they are expressed in milliseconds.

A time-frequency decomposition for each elec-
trode time series trial is obtained passing each
trial signal through a quadrature filter bank where
each filter is centered at a given frequency, defining
decomposition frequency bands [12]. The output of
each filter is a complex signal that has non-zero
amplitude in a frequency interval (ω0,ω2) where
filter center frequency ω1 satisfies ω0 < ω1 < ω2

(see [12] for details).
In the synchrony detection step, first, we calcu-

late a synchrony measure in the time-frequency
domain; then, significant synchrony is detected by
performing multiple hypothesis tests and finally, we
group significant synchrony points into synchrony
regions in the time-frequency plane. In the
delay estimation procedure, we compute the delay
associated to each detected synchrony event.

3.1 Synchrony Analysis

Let ρ(t,ω) be a synchrony measure. SSDE
main idea for synchrony detection is to apply a
delay τ ∈ Γ to a time-frequency decomposition
signal Y (t,ω, r), trying to maximize the synchrony
between X(t,ω, r) and Y (t + τ ,ω, r), according
to ρ. The selected measure ρ is MPD, which for
X(t,ω, r) and Y (t+ τ ,ω, r) is defined by [2]:

ρ(t,ω, τ , r) = 1−
1

π
|wrap (φx(t,ω, r)− φy(t+ τ ,ω, r))| , (1)

where φx and φy indicates instantaneous phase at
time t, frequency ω and trial r for each signal, while
the wrap(.) operator wraps phase difference into
the interval (−π,π].
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Fig. 1. Panel a: Curve of ρ(t0,ω0, τ) (see equation 2) vs τ ∈ Γ for a given (t0,ω0) with significant synchrony. One
observes two local maximum, where barτ represents the real delay. Panel b: Curves ρ(t0,ωi, τ) vs τ ∈ Γ for a given t0
and frequency bands ωi around ω0. Discontinuous lines indicate the true delay τ̄ . Local maximum are aligned around
the real delay

An oscillatory behavior with respect to τ ∈ Γ
is expected in ρ(t,ω, τ , r) because of the periodic
nature of the wrapped phase difference.

Then, the mean over trials is calculated for each
triplet (t,ω, τ) as:

ρ(t,ω, τ) =
1

R

R∑
r=1

ρ(t,ω, τ , r). (2)

Finally, the proposed synchrony measure ρ∗ for the
time-frequency plane is defined by:

ρ∗(t,ω) = max
τ

ρ(t,ω, τ). (3)

For each (t,ω) in the time-frequency plane,
the maximum degree of phase synchronization
between X(t,ω, r) and Y (t,ω, r) is quantified by
ρ∗. The detection of significant synchrony requires
to perform multiple hypothesis tests where the
test statistic is ρ∗. Note that MPD in [2] only
detects synchrony with zero delay. Thus, ρ∗

may be considered as an extension of MPD that
detects synchrony events with any associated
phase difference.

Once significant synchrony points (t,ω) in the
time-frequency plane are detected, then synchrony
connected regions are built using a region growing
algorithm considering an 8-point neighborhood.
It is assumed that a single synchrony event is
represented by each connected grown region.

Hence, the time and frequency localization of a
synchrony event are given by the localization of the
associated region in the time-frequency plane.

3.2 Delay Estimation

Synchrony measure ρ(t,ω, τ , r) exhibits an oscil-
latory behavior with respect to the delays τ ∈
Γ, because of the circular nature of the wrapped
phase difference. Therefore, a delay estimation
based on the delay that maximizes ρ∗ is not
reliable. An example of this oscillatory behavior is
observed in Fig. 1 Panel a.

In formal terms, for a given frequency ω1 could
exist delays τ1, τ2 ∈ Γ that satisfy:

∃k ∈ Z : ω1τ1 = ω1τ2 + 2πk.

We call τ1 and τ2 periodic delays for frequency ω1.
It follows from equation (1) that:

ρ(t,ω1, τ1) = ρ(t,ω1, τ2).

The distance ∆τ between periodic delays τ1 and
τ2 for a frequency ω is given by:

∆τ(ω) = |τ1 − τ2| =
2π

ω1
|k| .

If a set of frequencies {ωi}, where a synchrony
relation exists for a given t0, is inspected then it
is observed that local maxima of ρ(t0,ωi, τ) (see
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equation 2) with respect to τ ∈ Γ are found close
to the real delay τ̄ for all frequencies. However,
local maxima that correspond to periodic delays
with respect to τ̄ are going to be more dispersed
because ∆τ(ω) depends on frequency. This
phenomenon is shown in Fig. 1 Panel b, where
it is observed that local maxima located at the left
portion of the X axis have a better alignment than
local maxima at the right portion.

Our delay estimation procedure is based on
the previous observation and studies the delay
concentration over a connected region C in the
time-frequency plane, that represents a synchrony
event: first, possible delays for C are estimated,
e.g., as local maxima of ρ(t,ω, τ), considering
only Γ. Then, the most concentrated delay is
selected as estimate for the real delay. Note that
this procedure requires that a non-zero frequency
bandwidth is involved in each synchrony event.

Let ω and ω + ∆ω be frequencies with ∆ω >
0, τ1 be a delay, τ2 and τ3 be periodic delays
with respect to τ1 for ω and ω + ∆ω, respectively.
The distance between τ2 and τ3 is referred to as
the movement of periodic delays, it is denoted by
∆τ2π(ω,ω + ∆ω) and it is defined as:

∆τ2π(ω,ω + ∆ω) = ∆τ(ω)−∆τ(ω + ∆ω).

Direct calculation shows that ∆τ2π(ω,ω + ∆ω) for
periodic delays with a same k ∈ Z is:

∆τ2π(ω,ω + ∆ω) =
2π∆ω |k|
ω(ω + ∆ω)

. (4)

Dispersion between periodic delays at two different
frequencies is quantified by expression (4), that
indicates a decrease in spread as frequencies
increase. This implies that delay estimation will be
more difficult as frequencies increase.

In practice, it is not necessary to construct
the curves ρ(t,ω, τ) vs τ and then find the local
maxima. Rather, if the wrapped phase difference
∆φexy is estimated, one can find the candidate
delays for each (t,ω) as:

τk(t,ω) =
∆φexy + 2πk

ω
, (5)

where the integers k are selected so that all candi-
date delays are within the interval Γ. In particular,
one may take k ∈ [kmin(t,ω), kmax(t,ω)] where:

kmin(t,ω) = Int
[

(−a− τ0(t,ω))ω

2π

]
, (6)

kmax(t,ω) = Int
[

(a+ τ0(t,ω))ω

2π

]
, (7)

where the Int[.] operator takes the integer part
of its argument. The mean direction ∆φexy may
be estimated by averaging the wrapped phase
difference direction over trials:

∆φe
xy(t,ω) = arctan


R∑

r=1

sin ∆φe
xy(t0,ω0, r)

R∑
r=1

cos ∆φe
xy(t0,ω0, r)

 . (8)

By repeating this procedure over all (t,ω) ∈ C,
one obtains groups Gk of candidate delays -one
for each value of k- and the representative of the
group with the least dispersion may be selected as
the estimated delay τ∗.

These representatives m(k) may be found as
modes of a kernel estimator for their distribution Pk:

Pk(τ) =
∑

(t,ω)∈C

Kh(τ − τk(t,ω)), (9)

where Kh is a kernel with bandwidth h. The
modes are:

m(k) = arg max
τ
Pk(τ),

and may be found by direct search over a
discretization of Γ. Note that the height of these
local modes represents a robust estimate for their
associated dispersions -as the height goes lower
then greater is the dispersion- , so that the highest
mode may be selected as the estimate τ∗. A
synchrony event delay magnitude is estimated by
|τ∗|, while τ∗ sign indicates causality. If τ∗ > 0
then x→ y, while if τ∗ < 0 then x← y.

The correct implementation of this procedure
requires an appropriate estimation for the kernel
bandwidth h. For instance, if one chooses a
Gaussian kernel:

Kh(x) = exp
(
−0.5x2/h2

)
,
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then h may be obtained using Silverman’s rule:

h = 1.06σ̂n−1/5, (10)

where σ̂ is calculated as the standard deviation of
the delay group G0 and n is its cardinality. The
complete procedure is summarized in Algorithm 1.

The results are improved if one uses a
resampling procedure over trials to produce a
robust delay estimator. To do this, one applies
Algorithm 1 Nc times using a random subset of
Nr trials each time and then one obtains the final
estimator as the median of these Nc results.

Algorithm 1 Delay estimation over a connected
synchrony region

Require: Connected region with significant syn-
chrony C, Γ.

Ensure: Delay estimator τ∗ for the synchrony
relation represented by C.

1: for all (t0,ω0) ∈ C do
2: Find the mean direction of the wrapped

phase difference ∆φexy(t,ω) using Eq. (8).

3: Compute k ∈ [kmin(t,ω), kmax(t,ω)] using
Eqs. (6), (7).

4: Calculate τk(t,ω) for all k ∈
[kmin(t,ω), kmax(t,ω)] using Eq. (5) with
∆φexy(t,ω).

5: end for
6: Compute the kernel bandwidth h using Eq.

(10).
7: Find k̄min = min

(t,ω)∈C
kmin(t,ω) and k̄max =

max
(t,ω)∈C

kmax(t,ω).

8: for all integer k ∈ [k̄min, k̄max] do
9: Compute Pk(τ) for τ in a suitable discretiza-

tion of Γ.
10: Calculate the mode m(k) and H(k) =

Pk(mk).
11: end for
12: Find k∗ = arg max

k
H(k).

13: Set τ∗ = m(k∗).

3.3 Experiments

In this section we describe a set of experiments
conducted to characterize the performance of

SSDE and compare it with other techniques. PSI
and dPLI are selected as reference measures
for synchrony detection and causality estimation
because they are causality techniques that could
be extended to give time-frequency information in
a simple way, facilitating a fair comparison with the
proposed methodology.

Time-frequency coherence also is selected as
reference measure because is widely used for
detecting synchrony in EEG data. A method
based on MVAR models is also employed as
a reference measure because the most used
techniques to estimate causality are based on
MVAR models [1, 11, 18, 20, 3, 4, 28]. In PSI
extension, the time-frequency estimation of the
normalized cross-spectrum Cxy(t,ω) is performed
over trials, and the asymmetry of the phase
difference sign distribution is also computed over
trials. Time-frequency PSI extension is defined as:

PSI(t,ω) =
∑

ω′∈Ω(ω)

Im{C∗xy(t,ω′)Cxy(t,ω′ + ∆ω)}, (11)

where Ω(ω) is a 2Hz frequency window, centered
at ω. Time-frequency dPLI extension is:

dPLI(t,ω) =
1

R

∑
r

H(∆φxy(t,ω, r)). (12)

Time-frequency coherence is calculated by:

c(t,ω) = |Cxy(t,ω)| , (13)

where Cxy(t,ω) estimate is calculated over trials.
Since coherence detects synchrony but does not
estimate causality then it is used only for studying
detection capability. MVAR models are defined by
the general expression:

~x(t) =

p∑
l=1

A(t, l)~x(t− l) + ~ξ(t), (14)

where ~x(t) = [x1(t),x2(t), . . . ,xd(t)]
T is a vector

whose elements are time series corresponding to
electrodes or selected regions of interest, A(t, l)
are the coefficient matrices of the model, p
indicates the model order and ~ξ(t) represents an
uncorrelated noise vector.

In the MVAR method considered here (denoted
in what follows as Time Dependent MVAR or
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TDMVAR), coefficients matrices A(t, l) for a given
instant t0 are estimated by solving a least squares
problem over trials and over a time window v(t)
centered at t0:

Ā(t0, l) = arg min
A(l)

R∑
r=1

∑
t∈v(t)

D (t, r,A(l)) ,

D (t, r,A(l)) =

∥∥∥∥∥~x(t, r)−
p∑
k=1

A(l)~x(t− l, r)

∥∥∥∥∥
2

2

,

where r denotes the trial number, and it is assumed
that the time series are organized in R trials with
the same amount of samples. Note that since
one wishes to detect synchrony events that are
localized at unknown time locations, frequency
domain MVAR methods are not adequate. We
employ two models for synchrony simulation:
a spectral model that produces narrow-band
synchronization and an MVAR model.

3.3.1 Generation of Simulated EEG Data

Synchrony relations are simulated with two kinds
of generators: an MVAR model and a novel
synchrony spectral model that keeps synchrony
bandwidth properly controlled. The last one
is employed to study synchrony events with
narrow bandwidth.

Data generation with MVAR models is performed
using equation (14), with time invariant coefficient
matrices {A(l)}pl=1 and a Gaussian white noise
vector ~ξ ∼ Nd(~0, Id×d). During the generation
process, the first p values of each time series are
generated as white noise while the remaining data
are obtained from equation (14). The first 100
values of each time series are not included and
a total of 102400 valid instants are generated for
every time series, that are organized in 200 trials
consisting of 512 samples each.

3.3.2 Proposed Synchrony Spectral Model with
Controlled Synchrony Bandwidth

Signal generation with this proposed model is
based on the Fourier representation of a signal.
The generation process is a modification of the

Surrogate Data algorithm [35] and it allows to
model power spectra variations over trials. Let Ω be
a frequency set formed by the DC and the positive
frequencies of the discrete Fourier transform, A(ω)
be a mean amplitude spectrum calculated over real
EEG data and Bx(ω) be a random positive variable
that satisfies:

E [Bx(ω)] = A(ω).

Let φx(ω) be a random variable with uniform
distribution over [0, 2π). The synthetic EEG signal
x̃(t) is obtained by:

x̃(t) =
∑
ω∈Ω

Bx(ω) cos (ωt+ φx(ω)) + η(t), (15)

where η(t) represents additive white Gaussian
sensor noise.

Let x̃1(t) and x̃2(t) be signals generated by
model (15) using phase spectrum φ1(ω) and φ2(ω),
respectively, Ω1 ⊂ Ω be a set of frequencies
where the synchrony relation is introduced, v(t)
be a window function that specifies synchrony
time localization, τ̄ be the associated delay and
γ ∈ [0, 1] be a parameter controlling synchrony
strength. An instantaneous phase function
φ2s(t,ω) for a signal synchronized with x̃1(t) is
computed as:

φ2s(t,ω) =


v(t) (φ1(ω) + ωτ̄)
+(1− v(t))φ2(ω)
+I[v(t)>0]ψ(t),

ω ∈ Ω1,

φ2(ω), ω /∈ Ω1,

where I[.] is the indicator function and ψ(t)
represents phase noise in a synchrony relation.
A signal x̃2s(t) synchronized with x̃1(t) is
calculated by:

x̃2s(t) =
∑
ω∈Ω

B2(ω)(1− γ) cos (ωt+ φ2(ω))

+
∑
ω∈Ω

B2(ω)γ cos (ωt+ φ2s(t,ω))

+η(t),

(16)

where η(t) indicates additive white Gaussian
sensor noise. A synchrony event is introduced
between x̃2s(t) and x̃1(t) with time localization v(t)
and frequency localization Ω1, hence synchrony
bandwidth is properly controlled. If τ̄ > 0, then
x̃2s(t) precedes x̃1(t), while if τ̄ < 0 then the
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synchrony event causality is x̃2s ← x̃1. When γ = 0
a synchrony relation does not exist while if γ = 1
then synchrony strength is maximum.

3.3.3 Performance Indicators

Hypothesis testing is required for detecting
synchrony, where the null hypothesis represents
the non existence of synchrony. If the null
hypothesis is rejected then synchrony is detected.
To test this hypothesis, in all cases we estimate
the null distribution by a permutation procedure in
which the repetitions corresponding to one of the
considered electrodes are permuted while those of
the other electrode are kept fixed and the statistics
of interest are collected [21]. Selected statistics
for time-frequency PSI, time-frequency dPLI and
time-frequency coherence are the measure values
themselves, while off-diagonal coefficients of
A(t, l) are the selected statistic for TDMVAR
since these coefficients are zero under the null
hypothesis. The detection statistic for SSDE is the
value of ρ∗.

Causality is determined by comparing a measure
value with a reference value (generally 0 although
this value is 0.5 for dPLI). Causality estimation with
a TMAVR is based on the matrix position of a
significant coefficient value.

SSDE estimates an associated delay τ∗ over
a synchrony region C, and therefore SSDE
causality estimation is not a punctual estimator,
while time-frequency PSI (equation (11)) and
time-frequency dPLI (expression (12)) provide a
causality estimation for each point (t,ω). Here,
causality determination with time-frequency PSI
and time-frequency dPLI is performed by selecting
the predominant causality over the modelled
synchrony region. If a tie occurs then it
is considered as a bidirectional relation that
corresponds to delays τ̄ = 0, as is discussed
in [2][7]. If causality estimation coincides with
the modelled synchrony event causality then the
causality estimation is considered a success.

For SSDE, if delay estimator τ∗ computed over
region C satisfies that:

|round(τ̄)− round(τ∗)| ≤ 2,

where τ̄ is the true delay, then delay estimation is
regarded as a success.

Employed performance indicators are:

— True Positives Rate (TPR) to quantify syn-
chrony detection capability.

— Causality Estimation Success Rate (CESR).

— Delay Estimation Success Rate (DESR) that
it is used only for SSDE, since it is the only
technique with this feature.

A comparison between SSDE and TDMVAR
needs to consider that synchrony relations are
characterized by SSDE using time-frequency infor-
mation while TDMVAR provides time information
only. If there is a frequency ω where synchrony
in (t,ω) is detected by the SSDE methodology,
then we say that SSDE detects synchrony in t.
A voting over detected frequencies is required
to assign a causality for t using SSDE, and the
most common causality is selected. The following
performance indicators are employed to compare
SSDE methodology and TDMVAR:

— Global Temporal Detection Rate (GTDR):

detected instants
instants where synchrony exists

.

— Temporal Causality Estimation Success Rate
(TCESR):

instants with correct causality estimation
instants where synchrony exists

.

— Instantaneous Detection Rate (IDR):

examples where synchrony is detected for an instant t

total of examples
.

The first two indicators are calculated as mean
rates over the total of examples and their values
correspond to detection and causality estimation
over the complete time course. A time curve
is provided for the third indicator, allowing an
observation of detection rates for each instant t
when synchrony is restricted to a time interval.
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3.3.4 Experiments with Simulated EEG Data

Experiments conducted with simulated EEG data
are described in this section. Simulated data is
generated using the proposed synchrony spectral
model with controlled synchrony bandwidth and
MVAR models. Sampling frequency is 200
samples per second and each trial is formed by 512
samples. Every example contains 200 trials and
synchrony is located between the 201st and the
311st sample. Associated delays τ̄ for synchrony
events are selected randomly between 0 and 13
samples (τ̄ ∈ R) with causality x← y.

Time-frequency decompositions are obtained
using a bank of quadrature filters tuned at
frequencies between 0.5 and 30Hz, where
contiguous frequency bands are separated by
0.5Hz and each filter has a frequency support of
2Hz. Correction for multiple hypotheses testing is
done by selecting a confidence level α low enough,
so that the expected number of false positives is
kept under control.

In particular, we chose α = 5 × 10−5, which
corresponds to expecting less than one false
positive on a time frequency field with 512
time samples and 60 frequency samples. The
frequency localization of a synchrony event is
described using the central frequency and the
synchrony bandwidth. The interval of possible
delays is Γ = [−15, 15] and its discretization used
to find modes m(k) is built using delay groups
Gk. When the resampling procedure is used to
estimate τ∗, the total of random trial subsets was
Nc = 100 and each trial subset contains Nr = R/2
trials that are selected using bootstrap, where R is
the total of trial in each example.

When simulated data are generated by the
synchrony spectral model, generated signals are
not contaminated with sensor or phase noises
and the synchrony strength parameter is γ =
1. The window size for estimating the temporal
MVAR model coefficients is computed as the
size of a rectangular window, associated to a
uniform distribution with equal variance than the
low-pass filter temporal response. This is the
general configuration of experiments, unless some
different configurations are explicitly described for
any parameter of the analysis.

3.3.5 SSDE Reliability Study

In a first experiment, 24 datasets are employed,
each one contains 1000 examples synchronized
using the synchrony spectral model of equation
(16). Central frequencies ranges from 5 to 28Hz
and the synchrony bandwidth is 2Hz. In this
experiment, reliability of SSDE in relation to delay
and causality estimations is studied, including the
use of the resampling strategy. Delay estimation
is assessed by DESR and causality estimation
by CESR.

A second experiment studies the behavior of
DESR as the modelled synchrony bandwidth is
increased. Generated datasets contain 1000
examples where central frequencies ranges from
5 to 28Hz and synchrony bandwidth varies from 2
to 6Hz.

A third experiment explores the performance of
SSDE for different values of the central frequency
of the synchrony event as the number of trials is
varied. Generated datasets contain 500 examples
where synchrony is located at central frequencies
5, 10, 15, 20 and 25Hz with a bandwidth of 2Hz.
The number of trials is chosen between 50, 100,
150, 200 and 300 trials.

A fourth experiment compares SSDE and
TDMVAR regarding their detection capabilities,
using IDR as performance indicator, over data
synchronized with the proposed synchrony spec-
tral model of equation (16), when the synchrony
bandwidth is narrow (2Hz). Two cases are
considered: when synchrony is over the complete
time course and when it is limited to a time interval
between the 200th and the 310th sample number.
A total of 300 examples are synchronized with
synchrony’s frequency localization between 14 and
16Hz. The associated delays τ̄ for synchrony
events are selected randomly between 0 and 13
samples (τ̄ ∈ Z) with causality x← y.

3.3.6 SSDE Sensibility to Data Contamination

The noise sensibility study considers two contami-
nation models:

— Noise sensor model, varying the variance of
the noise process η(t).
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— Spurious trials model, where some trials do
not have synchrony relations.

For each contamination model, a dataset of
500 examples is built where synchrony events are
introduced by the proposed synchrony spectral
model (see equation (16)) with central frequencies
10, 15 and 20Hz and 2Hz synchrony bandwidth.
Let fc be a central frequency expressed in Hz
where a modelled synchrony event is localized,
then the time-frequency decomposition calculates
frequency bands in the interval [fc − 3.5Hz, fc +
3.5Hz]. The synchrony measures included
in the noise sensibility analysis are SSDE,
time-frequency PSI, time-frequency dPLI and
time-frequency coherence (see equation (13));
time-frequency coherence is excluded from the
causality comparison because it cannot estimate
causality. SNR levels considered for the noise
sensor model ranges from 1 to 6, and the
percentage of spurious trials goes from 0 to 70 for
the spurious trials model.

3.3.7 SSDE Performance on Data Generated
from MVAR Models

In these experiments, time-frequency decompo-
sitions are obtained using a bank of quadrature
filters with frequency support of 6Hz. SSDE and
TDMVAR are included in this comparative study,
where SSDE delay estimation procedure does not
include the resampling strategy.

Detection and causality estimation when data
are generated from an MVAR model with varying
synchrony strength, are studied in the first
experiment, where the following MVAR model is
employed for generating simulated data:

x1(t) = 1.2x1(t− 1)− 0.9x1(t− 2)
+βx2(t− τ̄) + ξ1(t),

x2(t) = 1.45x2(t− 1)− 0.85x2(t− 2) + ξ2(t),

where the true delay τ̄ ∈ Z satisfies 1 ≤ τ̄ ≤ 5 and
parameter β controls synchrony strength. Values
of β on interval [0.01, 0.09] are analyzed in this
experiment. A set of 500 examples is generated
for each value studied of β, selecting randomly the
true delay τ̄ for each example. GTDR is used as

detection indicator and TCESR is employed for the
causality comparison.

A second experiment explores the detection
capabilities of both techniques when synchrony is
confined to a certain temporal window, employing
IDR as performance indicator. The data for
this experiment are generated using the following
MVAR model:

x1(t, r) = 1.42x1(t− 1, r)− 0.85x1(t− 2, r)
+v(t)x2(t− 5, r) + ξ1(t, r),

x2(t, r) = 1.8x2(t− 1, r)− 0.96x2(t− 2, r)
+ξ2(t, r),

where v(t) is defined by:

v(t) =

{
β, t ∈ [200, 310] ,
0, t < 200 ∨ t > 310,

for every trial r. Two values are considered for
parameter β: 0.2 and 0.07. The synchrony relation
x2(t) → x1(t) is presented in the time interval
[200, 310], instead of over the complete time course
as in the previous experiment. We employ a
different base MVAR model because the peaks of
energy spectrums are located in lower frequencies
than the previous MVAR model, allowing to study
synchrony in lower frequencies.

3.3.8 Experiments with Real EEG Data

A figure categorization experiment [14] is studied
using SSDE. A series of figures representing
an animal or other object are presented to
subjects (18 children, 9 females, 8 to 10 years
old, right-handed and with a normal neurological
examination), that are instructed to press a button
if a figure represents an animal that its name starts
with a vowel. If the name of a represented animal
begins with a consonant, then subjects have to
press another button. In the case when a figure
represents another kind of object, subjects do not
press a button.

Activity is recorded from 1000 milliseconds
before the presentation of stimulus to 1560
milliseconds after its onset using a MEDICID
3E system with a sampling frequency of 200
samples per second. The inter-stimulus interval
was 5 seconds. Subjects are seated in a
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comfortable chair in front of the videomonitor.
Stimuli are delivered by a MINDTRACER system
synchronized to the MEDICID 3E acquisition
system. The EEG signals are registered on 20
electrode sites corresponding to the 10/20 system
with reference to linked ears: Fp1, Fp2, F7, Fz, F3,
F4, F8, T3, C3, Cz, C4, T4, T5, P3, Pz, P4, T6, O1,
Oz and O2. EOG is obtained from a supraorbital
electrode and from another electrode located on
the external canthus of the right eye.

The amplifier bandwidth is selected between
0.5 and 30Hz. Each trial is visually edited and
only those corresponding to correct responses and
without artifacts are analyzed.

Fig. 2. Curves of Delay Estimation Success Rate
(DESR) vs central frequency of synchrony events,
calculated for a relation with 2Hz bandwidth. The
curves correspond to delay estimation with and without
resampling

The experiment is divided in 4 experimental
conditions (animal starting with a vowel, animal
starting with a consonant, not animal starting with
a vowel, not animal starting with a consonant)
and we present here results corresponding to the
condition where the stimuli correspond to animals
starting with a consonant, that has a total of 270
trials. We perform two separate analysis: one

corresponding to the pre-stimulus – where the
valid time window is 430-995 milliseconds – and
one studying the post-stimulus, where the valid
time window is 1005-2125 milliseconds or 5-1125
milliseconds after the stimulus onset.

The time-frequency decomposition for each
signal is computed using a bank of quadrature
filters centered at frequencies between 0.5 and
30Hz, where contiguous frequency bands are
separated by 0.5Hz and each filter has a frequency
support of 2Hz. To correct for multiple hypotheses
testing, false positives are restricted to a level α =
10−7, corresponding to expecting 1 false positive
pixel for the complete time-frequency plane over all
possible electrode pairs in the analysis.

Delay estimation τ∗ is obtained combining
the resampling strategy and the other algorithm
(Algorithm 1), where the resampling strategy
is employed when synchrony events have a
bandwidth lower than 4Hz and the delay estimation
without resampling is used when synchrony
relations are extensive in frequency (bandwidth
of or greater than 4Hz). This combined delay
estimation technique is employed because the
resampling procedure takes too much time to
estimate delays when regions are too extensive
within the time-frequency decomposition, like
volume conduction regions. When the resampling
strategy is applied, we employ 100 samplings with
replacement, each one conformed by 135 trials, to
estimate the associated delay. A set of possible
delays Γ = [−15, 15] is employed, that corresponds
to consider delays with a maximum magnitude of
75 milliseconds.

4 Results

Results obtained with simulated and real EEG data
are presented in this section.

4.1 SSDE Reliability Study

A plot of DESR vs synchrony’s central frequency
for delay estimation with and without resampling is
shown in Fig. 2. A decreasing behavior is observed
in both curves when the central frequency of
synchrony events is increased. Note that the delay
estimation procedure with resampling improves
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performance for all frequencies. If the synchrony
bandwidth is 2Hz then a reliable delay estimator
is provided by SSDE when synchrony is located
in the delta, theta and alpha bands, having a
DESR greater than 80% for all frequencies lower
than 18Hz.

In Fig. 3, a comparative between SSDE with re-
sampling, time-frequency PSI and time-frequency
dPLI, for synchrony events with bandwidth of 2Hz
is presented, regarding causality estimation. Note
that the best performance was achieved by SSDE
when central frequencies are lower than 22Hz,
while SSDE and PSI had a similar performance
for higher frequencies. In both cases CESR was
greater than 85% for all frequencies.

Fig. 3. Curves of Causality Estimation Success Rate
vs central frequency of synchrony events, calculated for
synchrony relations with 2Hz bandwidth. The curves
correspond to SSDE with resampling, time-frequency
PSI and time-frequency dPLI

Fig. 4 displays the values of DESR for SSDE
with resampling, calculated when the synchrony
bandwidth was varied from 2 to 6Hz. Note that
delay estimations were correct in more than 95%
of the examples when the synchrony bandwidth
is equal or higher than 4Hz for all frequencies.
The worst case corresponded to a synchrony
bandwidth of 2Hz, therefore this bandwidth is used
in all experiments as representatives of the worst
case for delay and causality estimations.

Fig. 4. Curves of DESR vs central frequency of
synchrony events, computed for synchrony relations with
varying bandwidth. Results were achieved by SSDE with
resampling

Results calculated over examples with different
number of trials are shown in Fig. 5. Reliability
of delay estimation increased as the total number
of trials was increased, though the difference in
performance became smaller when the examples
contained 200 or more trials. If a synchrony event
was located at a central frequency equals or lower
than 15Hz then a good delay estimate (over 83%
of correct delay estimations) was achieved using
150 trials or more. For all studied frequencies,
good delay estimations were obtained using 200
trials, therefore this value is employed in the
next experiments.

In Fig. 6, IDR curves corresponding to SSDE
and TDMVAR are shown, when synchrony events
were introduced with a synchrony spectral model,
where synchrony was located between 14 and
16Hz (central frequency 15Hz and a synchrony
bandwidth of 2Hz). Note that SSDE detection
was correct when synchrony was located over
the complete time course (Panel a) or it was
limited to some time window (Panel b), though
detection slightly decreased around the time
window boundaries. TDMVAR, however, failed to
detect synchrony in both cases.
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Fig. 5. Curves of DESR vs central frequency of
synchrony events calculated for synchrony events with
2Hz bandwidth, located in several central frequencies,
when the number of trials was varied. Results were
obtained by SSDE with resamping

4.2 Study of Sensibility to Data Contamination

TPR vs SNR curves obtained for the sensor noise
model are presented in Fig. 7. The best results
for synchrony detection were achieved by time-
frequency coherence, although competitive results
were provided by SSDE, while time-frequency PSI
and time-frequency dPLI gave worse results.

Causality estimation performance (CESR vs
SNR curves) for the sensor noise model are
presented in Fig. 8. The best performance
was achieved by SSDE while time-frequency
PSI became more competitive for high central
frequencies.

Synchrony detection performances (TPR) cal-
culated for synchrony events contaminated with
the spurious trials model is displayed in Fig.
9. The best detection power was achieved
by time-frequency coherence and SSDE had
competitive results. For all measures, performance
did not seen to depend on frequency.

Causality estimation performances computed for
varying levels of spurious trials contamination is
presented in Fig. 10. SSDE obtained the best
performance of all compared measures, for all

central frequencies. SSDE performance deterio-
rated for high frequencies, while time-frequency
PSI performance was less affected when central
frequencies were higher.

4.3 SSDE Performance on Data Generated
from MVAR Models

The results in Fig. 11 were obtained in the
study performed on data generated with an MVAR
model when the synchrony strength was varied
(parameter β) and it was localized over the
complete time course. The detection capability
was measured by GTDR and the quality of
causality estimates was established by TCESR.
Regarding synchrony detection (Fig. 11 Panel a),
SSDE was better than TDMVAR when β ≤ 0.07
and their performances were similar when β >
0.07. In the case of causality estimation, SSDE
had a superior performance than TDMVAR and it
achieved good results when β ≥ 0.03.

Results from an experiment conducted for data
generated with an MVAR model that had strong
or weak synchrony relations, where the synchrony
was located in a time window, are presented in Fig.
12. When the synchrony was strong (β = 0.2,
Fig. 12 Panel a), SSDE and TDMVAR obtained
good results over the synchrony time window,
considering that spurious detections outside the
synchronization interval were caused by border
effects. However, synchrony detections diminished
for TDMVAR when the synchrony was weak (β =
0.07, Fig. 12 Panel b), while SSDE maintained its
good performance.

4.4 Results Obtained by SSDE with Real EEG
Data

Several synchrony relations are detected by SSDE
when it is applied to the real EEG dataset
described above.

To summarize the results and facilitate
interpretation we performed a clustering between
electrodes involved in significant synchrony
relations, so that clusters are formed with
electrodes connected with small delays (with delay
magnitude smaller than 7.5 ms) synchronized with
other clusters with some relatively large common
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Fig. 6. Curves of IDR vs time calculated for synchrony events with central frequency 15Hz and a synchrony bandwidth
of 2Hz. The curves correspond to SSDE and temporal MVAR models. Panel a: Results obtained when the synchrony
existed over the complete time course. Panel b: Results achieved when synchrony was limited to a time window. Vertical
continuous lines delimit the time window where synchrony was introduced

delay. In particular we use the following clustering
rules:

1) Two electrodes in the same cluster must
be synchronized with delay magnitude smaller
than 7.5 ms.

2) For each electrode in a cluster, there must
exist a significant synchrony relation with an
electrode in other cluster such that the delay
magnitude and sign is the same for all related
electrodes in both clusters. In this way, each cluster
represents a network of electrodes interconnected
with 0-delay relations and connected with another
similar network with a common delay. The 0-delay
relations may be due to volume conduction, or to
some other more complex phenomenon, such as
Volume Transmission [13], but the differentiation
between these cases is beyond the scope of
this work. An example is presented in Fig. 13
for the synchronization in the alpha band in the
pre-stimulus, and the complete results in Tables
2 and 3, corresponding to pre-stimulus and
post-stimulus, respectively (note that in some
cases the clusters involve a single electrode). As
explained above, the significance level used for
synchrony detection corresponds to an expected
false positive ratio of less than one false positive
for a time-frequency field of 512× 60 pixels and for

all 190 possible electrode pairings.

Table 2. Information of synchrony events detected
by SSDE for the real EEG dataset in the pre-stimulus
segment

Source Sink Time Frequency
∣∣τ∗∣∣ (ms)

nodes nodes interval (ms) interval (Hz)

O1,O2,T6 F7,Fp1,Fp2,F8, F3 430-995 9.5-11.5 45

Cz,C4,Pz T3,F7 430-995 1.5-4 15

Fp1 Cz 430-885 23.5-25 40

T4 Cz 430-950 23.5-26.5 35

Table 3. Information of synchrony events detected by
SSDE for the real EEG dataset after the presentation of
the stimulus. The time interval reported is relative to the
stimulus onset

Source Sink Time Frequency
∣∣τ∗∣∣ (ms)

nodes nodes interval (ms) interval (Hz)

C3,Cz,P3 T4,T6 5-1125 1.5-4 15

Cz,C4,Pz T3,F7 5-1125 1.5-4 20

P3 T4 330-1125 5-8 10

P4 T3 265-1125 5-8 10

Pz Fp2 5-905 2-4 10

F3 T4 5-905 2-4 20

We confirm the causality estimation provided
by SSDE for each detected synchrony event,
performing a time-frequency PSI analysis, where
the causality of a detected synchrony relation
(connected region at time-frequency plane) is
estimated by means of a voting and the
predominant causality in the region is assigned as
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Fig. 7. Synchrony detection performance curves (TPR vs SNR) computed for time-frequency coherence, SSDE, time-
frequency PSI and time-frequency dPLI for synchrony events with a bandwidth of 2Hz and different central frequencies.
Panel a: Central frequency 10Hz. Panel b: Central frequency 15Hz. Panel c: Central frequency 20Hz

its causality.
These results confirm SSDE causality estima-

tions for every connectivity network and synchrony
relation presented in Tables 2 and 3.

We also performed the detection of significant
synchrony using time-frequency coherence (Eq.
(13)) and found that detected significant regions
coincide with those found with our method.

5 Discussion

The proposed SSDE methodology separates the
detection phase from the delay estimation phase.
This general strategy for causality analysis allows
one to use any other synchrony measure, e.g.,
time-frequency coherence, which may have better
performance regarding detection. Points in

the time-frequency plane that have a significant
degree of synchrony are found in the detection
phase. Then, connected regions of synchrony are
constructed in the time-frequency plane, so that a
synchrony event is represented by a single region.

Delay estimation is based on the analysis of
the dispersion of the maxima of the proposed
synchrony measure in the space spanned by time,
frequency and possible delays, so the delay that
gives the least dispersion of these maximums is
selected as the delay estimate τ∗ corresponding
to the complete synchrony region. SSDE is
able to separate “apparent” synchrony events
caused by volume conduction because of its delay
estimation feature, and a compact representation
of a synchrony relation, based on groups
of electrodes, may be constructed employing
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Fig. 8. Causality estimation performance curves (CESR vs SNR) for SSDE, time-frequency PSI and time-frequency
dPLI, calculated for synchrony relations with a bandwidth of 2Hz, located at different central frequencies. Panel a:
Central frequency 10Hz. Panel b: Central frequency 15Hz. Panel c: Central frequency 20Hz

simultaneously the evidence of the synchrony
relation in several electrode pairs and zero-lag
synchrony information, that could be cause
by volume conduction or other communication
mechanisms within the brain.

It is found that the performance of the delay es-
timation procedure may be improved by employing
a resampling strategy over trials. This, however,
has a significant impact on the computational cost.
For example, in a computer with a processor
Intel Xeon with cores at 2.2GHz, running a
Linux-based operating system and using a C++
implementation of SSDE without parallelization
techniques, for a single electrode pair – 200 trials,
Γ = [−15, 15], and a time-frequency decomposition
of 60 frequency bands and 512 samples per
trial – synchrony measure calculation takes about

25 seconds, and the delay estimation step lasts
around 2 seconds, when detected regions have an
estimated bandwidth between 1 and 2Hz, and the
modelled synchrony interval has a length of 110
samples.

If one uses the delay estimation procedure
with 100 subsets of 100 trials each -selecting
each subset employing bootstrap-, then the delay
estimation step takes approximately 43 seconds
for each pair, representing almost 22 times the
execution time without resampling.

One way for keeping the computation time
manageable is to use the resampling strategy only
for detected regions with relatively small bandwidth
(e.g., less than 4 Hz), since for regions with larger
bandwidth the procedure without resampling gives
practically the same results.
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Fig. 9. Synchrony detection performance curves (TPR vs spurious trials percentage) for time-frequency coherence,
SSDE, time-frequency PSI and time-frequency dPLI, computed for synchrony events with a 2Hz bandwidth, localized
at different central frequencies. Panel a: Central frequency 10Hz. Panel b: Central frequency 15Hz. Panel c: Central
frequency 20Hz

Thus, in the case of the real EEG dataset
-190 possible electrode pairs, 270 trials and
the rest of the parameters set as before- ρ∗

calculations take 1 hours and 23 minutes, and the
delay estimation stage, employing the resampling
strategy for synchrony events with bandwidth lower
than 4Hz, lasts 12 hour and 39 minutes.

Note that the use of parallelization techniques
will improve the execution time, diminishing
significantly the increase in computational cost
caused by the resampling strategy.

Delay estimation is more reliable for low
frequencies (below 18Hz), although the reliability
becomes greater as the synchrony bandwidth
increases, so that a synchrony bandwidth of 3Hz
is sufficient to analyze synchrony events located at

frequencies lower than 25Hz. When the analyzed
data contains at least 200 trials, SSDE delay
estimations can be trusted and they are more
accurate as the number of trials increases, for
all frequencies.

Our experiments show that SSDE has bet-
ter performance than time-frequency PSI and
time-frequency dPLI for synchrony detection and
causality estimation, and its performance is
comparable to that of time-frequency coherence
for detecting synchrony events. SSDE has
better detection capability than TDMVAR, when
synchrony relations are weak (β ≥ 0.07).
In general, it seems to be more robust for
synchrony detection and causality estimation than
TDMVAR even when data is generated with a
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Fig. 10. Causality estimation performance curves (CESR vs spurious trials percentage) for SSDE, time-frequency
PSI and time-frequency dPLI, calculated using synchrony events with a bandwidth of 2Hz, localized at several central
frequencies. Panel a: Central frequency 10Hz. Panel b: Central frequency 15Hz. Panel c: Central frequency 20Hz

Fig. 11. Results obtained for SSDE and TDMVAR for data generated with an MVAR model, when the synchrony strength
varied (parameter β). Panel a: Synchrony detection performance. Panel b: Causality estimation results
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Fig. 12. Synchrony detection results (IDR) obtained for SSDE and TDMVAR over data generated with an MVAR model,
when synchrony strength was varied and the synchrony was limited to a time interval. Vertical continuous lines indicate
the time interval limits. Panel a: Results for strong synchrony relations (β = 0.2). Panel b: Performance for weak
synchrony relations (β = 0.07)

Fig. 13. Results for the synchrony relation detected at
the alpha band by SSDE. Panel a: Electrode pairs where
the synchrony relation is observed. Arrows direction
indicates causality for each pair, which goes from the
occipital to the frontal region. Panel b: Representation
with electrode clusters, localized in the frontal area
(higher cluster) and the occipital region (lower cluster).
Arrow direction represents causality

MVAR model, if the data is contaminated with
non-synchronized trials.

However, MVAR based methods are able
to discriminate direct and indirect synchrony
relations, allowing for an accurate analysis of
complex connectivity networks, though synchrony
with a wide bandwidth is required.

The results in Tables 2 and 3 clearly differentiate
the different states between the samples of EEG
previous to the stimulus and those after.

From the psychophysiological point of view,
previous to the stimulation is generally observed
synchronic activity within the alpha band which
has been related to a state of rest. This alpha
activity has its origin in the occipital regions and
propagates to the anterior areas [36, 37].

Several psychophysiological experiments have
shown that during the performance of the task
(post-stimuli segment) frequencies within the delta
(1.5-3.5 Hz) and theta (3.6-7.0 Hz) bands had
higher power than the prestimulus segments
where frequencies within the alpha band are
characteristic. The increases in the slower bands
has been related to attention [5, 10, 19, 16, 15].

The complete characterization of narrow-band
synchrony events provided by SSDE, particularly
the delay magnitude estimation, is unique to this
method, and it allows one to build a representation
based on electrode clusters that allows us a better
interpretation of a synchrony relation.

6 Conclusions

In this work, we introduced a novel methodology
(SSDE) for analyzing synchrony and causality in
EEG data, based completely on a single synchrony
paradigm (phase differences). The SSDE
allows us to analyze narrow-band signals, which
provides a reliable mechanism, for estimating
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quantitatively the associated delay in detected
synchrony relations, providing a more complete
characterization of them.

However, the separation of detection and delay
estimation phases, allows one to use others
synchrony measures in the detection step.

Synchrony detection within a time-frequency
decomposition provides an accurate time and
frequency location for synchrony event, allowing
us to estimate the bandwidth associated to a
synchrony relation, based on the idea that a
synchrony relation is represented by a connected
region of the time-frequency decomposition.

The estimation of the delay is better for
low frequencies, increasing its reliability when
increasing the synchrony bandwidth, although is
reliable when synchrony is found in a narrow
bandwidth. SSDE proved to be a better
alternative than state-of-the-art techniques used
here for studying causality. This is based on the
observation that SSDE was more robust to the
influence of sensor noise and spurious trials in data
and its results were better when synchrony was
confined within a narrow bandwidth.

A spectral synchrony model was proposed.
This model allowed us to control the bandwidth
of a synchrony relation. The cluster-based
representation introduced here allows us a
better comprehension of the electrode network
associated to a synchrony event.
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