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Abstract. We present a monocular system that uses
shape priors for improving the quality of estimated depth
maps, specially in the region of an object of interest,
when the environment presents complex conditions like
changes in light, with low-textured, very reflective and
translucent objects. A depth map is built by solving a
non-convex optimization problem using the primal-dual
algorithm and a coupling term. The energy functional
consists of a photometric term for a set of images with
common elements in the scene and a regularization term
that allows smooth solutions. The camera is moved
by hand and tracked using ORB-SLAM2. The resulting
depth map is enhanced by integrating, with a novel
variational formulation, depth data coming from the 3D
model that best fits to observed data, optimized w.r.t.
shape, pose and scale (shape prior). We also present an
alternative algorithm that simultaneously builds a depth
map and integrates a previously estimated shape prior.
We quantify the improvements in accuracy and in noise
reduction of the final depth map.

Keywords. Dense mapping, shape priors, variational
methods, primal-dual algorithm, depth integration,
depth denoising.

1 Introduction

For building a depth map with a monocular
camera its location for a set of frames must be
known, photo-consistency must be satisfied and
the images must have texture. However, real

environments present changes in light conditions
and low-texture, very reflective or translucent
objects. These facts break the Lambertian
condition (photo-consistency) and affects the
photometric error estimation reducing the accuracy
of the estimated depth maps. The regularizer
term in a variational framework tackles this problem
to some extent, but under difficult conditions, the
estimations still have low accuracy.

One alternative is to include information of a
known object in the scene (shape prior). In this
sense, we propose to optimize a model w.r.t.
shape, pose and scale and then include depth data
of the shape prior seen from the estimated camera
pose. This data integration is done using also
variational methods and the primal dual algorithm,
achieving a denoised and enhanced depth map,
especially in the region of the selected object.

The main contributions of this work are as
follows. (1) The coupling of four modules:
a module for tracking the camera based on
keyframes, bundle adjustment and ORB features
called ORB-SLAM2; a module for dense mapping
based on a photometric error, a regularizer and
a decoupling term; a module for estimating the
optimal 3D model that best fits to observed
data based on Gaussian Process Latent Variable
Models GPLVM ; a module for denoising, inpainting
and depth merging based on variational methods.
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(2) A novel variational formulation that integrates in
one algorithm both the module for dense mapping
with monocular camera and the module for depth
merging using a shape prior. (3) The experiments
carried out in order to quantify the improvements in
depth accuracy.

This paper is structured as follows. In section
II we describe related work. In section III we
present the proposed methodology: initial depth
map estimation, depth refinement using variational
methods, shape prior estimation, integration of
depth data of the optimal model (shape prior) for
enhancing the estimated depth map in sequential
(depth map building followed by shape prior
integration) and simultaneous way (depth map
building and shape prior integration at the same
time). Finally, we present the results and
conclusions in section IV and V, respectively.

2 Related Work

Two techniques for minimizing the energy func-
tional in the process of building a depth map with
a monocular camera stand out. The technique
of sequential convex optimization linearises the
photometric error, as is explained in [20], so the
camera motion must be small.

A coarse-to-fine scheme with a pyramid of sev-
eral levels is built to copy with fast camera motion.
This technique was successfully implemented in
the work of dense mapping of [18]. The other
technique, the non-convex variational one, based
on optical flow for long displacements [17], uses an
auxiliary variable that decouples the cost function
into two terms. The regularizer term is solved
with the primal-dual algorithm [1], [21], and the
photometric term is solved by exhaustive search
over a finite range of discrete values of the inverse
depth. This technique was implemented in the
work of dense localization and dense mapping
of [12].

In order to improve the accuracy of depth maps
created with a monocular camera, a shape prior
that considers the scene with box-like structures,
with extensive low-texture surfaces like walls,
ceilings and floors, can be used. This scene shape
prior allows to improve the whole scene. For
example, the system [13] estimates depth maps

using a monocular camera in workspaces with
large plain structures like floors, walls or ceilings.
The curvature of a second order approximation of
the data term at the minimum cost defines the
reliability of the initial depth, getting good depth
estimates at the borders of bland objects (high
curvature). Good depth data is propagated to
an interior pixel (inpainting) from the closest valid
pixels along the main 8 star directions by using
a non-local high-order regularization term, in a
variational approach, that favours solutions with
affine surfaces (prior). The energy is minimized in
straight way with the primal-dual algorithm.

The system [3] shows outstanding performance
in low-textured image regions and for low-parallax
camera motion. It includes a term, besides the
data term and regularization term, that depends
on three scene priors: planarity of homogeneous
color regions (using superpixels), the repeating
geometry primitives of the scene (data-driven
3D primitives learned from RGBD data), and
the Manhattan structure of indoor rooms (layout
estimation and classification of box-like structures).
The scene prior terms model the distance from
every point to its estimated planar prior. The
energy is minimized using a variational approach
with a coupling term, the primal-dual algorithm and
exhaustive search. In contrast to [13], it requires a
preprocessing step.

Other kind of shape prior, the object-based
one, is also used for 2D segmentation, 3D
reconstruction and point cloud refinement. The
monocular system [14] uses DCT for compressing
the 3D level-set embedding functions and GPLVM
for nonlinear dimensionality reduction to capture
shape variance.

The energy function measures the discrepancy
between the projected 3D model into the image
plane and the probabilistic 2D occupancy map
that defines the foreground of the observed
object in the image (image-based energy). The
minimization is done w.r.t. pose and shape
of the 3D model. A 2D segmentation results
automatically after convergence. The system [4]
also uses DCT, GPLVM, and a monocular camera
but unlike [14] it builds depth maps minimizing the
photo-consistency error with variational methods

Computación y Sistemas, Vol. 24, No. 2, 2020, pp. 781–796
doi: 10.13053/CyS-24-2-3021

Andrés Alejandro Díaz Toro, Eduardo Francisco Caicedo Bravo, Lina María Paz Pérez, Pedro Piniés Rodríguez782

ISSN 2007-9737



and PTAM [7] for camera tracking and fuses them
into a volumetric grid through time.

The main goal is to improve the dense
reconstruction by replacing the TSDF values of
the optimal model in the volumetric grid in a
straight way. Moreover, the energy function
combines image and depth data for pose, shape
and scale optimization (image and depth-based
energy). The system [9] removes point cloud
artifacts like noisy points, missing data and outliers
using a learned shape prior. Besides using DCT
and GPLVM as [4, 14], it uses part-based object
detector [5] for detecting the object in the scene,
VisualSFM [19] for performing structure from
motion and getting a point cloud that represents
the scene, SAC-segementation for segmenting
the point cloud into the region of the object,
and iterative optimization of an energy function
that depends on the evaluation the point cloud
into the embedding function (depth-based energy).
The shape prior is finally used for enhancing the
accuracy and the completeness of the estimated
3D representation.

Our system uses, like in [12], an auxiliary
variable that decouples the data term and the
regularization term. The solution is found with
the primal-dual algorithm and exhaustive search.
We employ object shape priors like [4, 9], but
instead of modifying a point cloud like [9] or a
volumetric structure directly like [4], we enhance
the built depth maps by merging a synthetic depth
map coming from the shape prior using a novel
variational formulation that considers an additional
term for the shape prior data, like is done in
[3, 13], and exploiting the ideas of [8] where color
aerial images are fused considering the redundant
information of the scene.

Finally, we propose to couple both modules
(depth map creation and shape prior integration) in
just one module, considering a known shape prior
previous to build the depth map.

3 Methodology

The main pipeline of the system is shown in
fig. 1. An initial depth map is estimated by
minimizing the photo-metric error gathered from
a set of images with the camera pose estimated

with ORB-SLAM2. This coarse depth map is
refined using a variational framework with an
energy functional made up of a data term, a
regularizer term and an additional decoupling term.
The primal-dual algorithm and exhaustive search
are employed in an alternating fashion for solving
this problem.

We use DCT for compressing the 3D models of
the object of interest represented as 3D level sets
embedding functions, GPLVM for dimensionality
reduction and Levenberg-Marquart for minimizing
the discrepancy between a model hypothesis and
depth data of the segmented region of the object,
having as argument its shape, pose and scale.

The optimal model is used for creating a
synthetic depth map by reading the depth buffer of
its explicit representation in OpenGL, seen from the
estimated camera pose. The synthetic depth map
is merged with the built depth map using a novel
variational formulation. Finally, a variant in this
formulation is presented for making simultaneously
depth map building and shape prior integration.

3.1 Building an Initial Depth Map

A 3D point in the reference frame r is represented
as Xr = (Xr,Yr,Zr). This 3D coordinate can be
computed as:

Xr(µ) = ζr
−1(µ)K−1µ̂, (1)

where µ̂ is the homogeneous version of the
coordinate in the image plane, that is µ̂ =
(ur, vr, 1)T , K is the intrinsic camera matrix, and
ζr is the inverse depth. We use inverse depth
instead of depth because a uniform sampling of the
inverse depth corresponds to a uniform sampling in
epipolar lines in the image, allowing the system to
make exhaustive search to solve the photometric
error and the decoupling term in the refinement
process. The 3D point Xr can be referenced to
the camera frame c, as follows:

Xc(µ) = TcrXr(µ). (2)

This 3D point is projected into the image
plane Ic for getting the coordinate µc =
(uc, vc) = µ́ = Kπ(Xc) that corresponds to
the estimated observation of the 3D point from

Computación y Sistemas, Vol. 24, No. 2, 2020, pp. 781–796
doi: 10.13053/CyS-24-2-3021

Depth Map Building and Enhancement using a Monocular Camera, Object Shape Priors and Variational... 783

ISSN 2007-9737



Fig. 1. Main pipeline of the proposed system. The resulting depth map integrates depth data from the optimal model
(shape prior)

the new camera pose (see fig. 2), where π
represents the function that computes normalized
homogeneous coordinates:

π(Xc) = (Xn,Yn, 1)T =

(
Xc

Zc
,
Yc
Zc

, 1

)T
. (3)

Fig. 2. Projection of a 3D point referenced to the
coordinate system r into the image plane c, using the
transformation Tcr

If the same process is carried out for all the
pixels of the reference image, a synthetic image
that represents the scene observed from the pose
defined by the transformation matrix Tcr, can
be estimated.

However, the inverse depth of the pixel ζr(µ),
required in equation (1), is unknown. To estimate
the inverse depth of each pixel of the image Ir,
the photometric error is defined as the difference
in intensity between a pixel of the reference image
Ir(µ) and a pixel of the current image in the

projected coordinate Ic(µ́), that is:

ρr(Ic,µ, ζr(µ)) = Ir(µ)− Ic(µ́) = Ir(µ)− Iw(µ),
(4)

where the projected image Iw(µ) is:

Iw(µ) = Ic(Kπ(Tcrζr
−1(µ)K−1µ̇)), (5)

as Tcr is supposed to be known, the true value of
ζr(µ) minimizes the photometric error. Now, this
process is extended to a set of consecutive images
Ici : i ∈ [1,n] that share common elements of the
scene. An average photometric error is defined as
a function of the inverse depth ζr(µ):

Cr(µ, ζr(µ)) =
1

n

n∑
i=1

‖ρr(Ici ,µ, ζr(µ))‖1, (6)

where ρ was defined in the equation (4). Finally,
the problem of finding the inverse depth of a pixel
ζr(µ) is equivalent to solve:

min
ζr(µ)

Cr(µ, ζr(µ)). (7)

In real environments, there are changes in
light conditions, which break the assumption of
photo-consistency and the estimations are affected
drastically. Besides, images of real scenes present
regions with low texture that generate depth
estimations in the most dominated by noise [2]. All
these problems are reduced to some extent when
using a regularizer in a variational framework.

3.2 Refining the Initial Depth Map with
Variational Methods

A variational approach [16] is adopted for smooth-
ing the depth map, preserving discontinuities and
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increasing the robustness of the algorithm against
illumination changes, occlusions and noise. It was
proposed first by Ruding, Osher and Fatemi ROF
to consider the “Total Variation” as a regularizer∫

Ω
∇h(µ)dµ, for functions h(µ) in the Sobolev

space W 1,1. The big advantage is that it is convex
in the variable h, so this problem has a unique
solution. For the pure denoising case [15] it is:

min
h

∫
Ω

‖∇h(µ)‖1︸ ︷︷ ︸
regularizer term

dµ +
λ

2

∫
Ω

‖h(µ)− g(µ)‖22︸ ︷︷ ︸
data term

dµ,

(8)
where h is the sought solution and g is the
noisy input image. The parameter λ defines the
tradeoff between regularization and data fitting.
In our context, the data term measures the
photo-consistency between images, the regularizer
term smoothes surfaces preserving discontinuities
and λ plays the same role as in eq. (8), resulting
the energy functional:

E(µ, ζr(µ)) =

∫ w(µ)‖∇ζr(µ)‖ε︸ ︷︷ ︸
regularizer term

+λC(µ, ζr(µ))︸ ︷︷ ︸
data term

dµ,

(9)
where w(µ) is a weighting function, C(µ, ζr(µ)) is
the photometric error, and ‖ · ‖ε is the Huber norm
over the gradient of the inverse depth map, with:

‖x‖ε =

{
‖x‖22

2ε if ‖x‖2 ≤ ε,
‖x‖1 − ε

2 otherwise
(10)

The L2
2 norm promotes smooth solutions while

the L1 norm (total variation regularizer) allows
discontinuities at depth edges. As depth
discontinuities often coincide with edges in the
reference image, the per pixel weight w(µ) is:

w(µ) = e−α‖∇Ir(µ)‖β2 , (11)

reducing the regularity strength where the edge
magnitude is high, therefore decreasing the
smoothing effect in boundaries. The problem of
computing the inverse depth map becomes:

min
ζr(µ)

E(µ, ζr(µ)), (12)

where E is the energy defined in eq. (9). It is a
non-convex problem: the regularizer term is convex

and the photometric error is not convex. Next, we
describe how to solve it with a decupling term.

3.2.1 The Decoupling Approach

In order to solve (12), we use the iterative
primal-dual algorithm described in [12] for depth
map building. This algorithm requires both the
regularizer and the data term to be convex.
However the last term is not a convex function.
One solution to this problem is to decouple both
terms and solve the decoupled version instead of
the original one. The advantage of the decoupling
approach is that it allows us to independently solve
for the regularizer term using convex optimization
methods and for the data term using a simple
exhaustive search. The decoupling approach is
based on eliminating the constraint ζr(µ) = η(µ)
of the problem:

minζr,η Ereg(ζr(µ)) + Edata(η(µ)),
s.t. ζr(µ) = η(µ),

(13)

where Ereg(ζr(µ)) = w(µ)‖∇ζr(µ)‖ε,
Edata(η(µ)) = λC(µ, η(µ)) and η(µ) is an
auxiliary variable, through the use of a penalty
function. Using this approach, (13) is minimized by
sequentially solving an unconstrained minimization
problem of the form:

min
ζr(µ),η(µ)

Ereg(ζr(µ))+
1

2θ
‖ζr(µ)−η(µ)‖22+Edata(η(µ)),

(14)
enforcing ζr(µ) = η(µ) as θ → 0 and therefore
E(ζr(µ), η(µ)) → E(ζr(µ)). This new energy
functional allows us to split the minimization into
two different problems that are alternately solved
until convergence. The regularizer term and the
decoupling term:

w(µ)‖∇ζr(µ)‖ε +
1

2θ
‖ζr(µ)− η(µ)‖22, (15)

correspond to the TV-ROF denoising problem,
defined in eq. (8). It is convex in ζr(µ) and
can be solved using a primal-dual algorithm.
Doing an analogy with image denoising, η(µ)
represents a noisy image whereas ζr(µ) is the
searched denoised result. The non convex in
the auxiliary variable η(µ), 1

2θ‖ζr(µ) − η(µ)‖22 +

Computación y Sistemas, Vol. 24, No. 2, 2020, pp. 781–796
doi: 10.13053/CyS-24-2-3021

Depth Map Building and Enhancement using a Monocular Camera, Object Shape Priors and Variational... 785

ISSN 2007-9737



λC(µ, η(µ)) is point-wise optimisable and the
solution is exhaustively searched over a finite
range of discretely sampled inverse depth values.
The energy with the decoupling term of eq. (14)
can be written as follows:

min
y,z

‖AWy‖ε︸ ︷︷ ︸
regularizer term

+
1

2θ
‖y − z‖22︸ ︷︷ ︸

decoupling term

+ λC(z)︸ ︷︷ ︸
data term

, (16)

where A = ∇ is the gradient operator, W is
the element-wise weighting matrix, y and z are
row-wise vector versions of the sought solution
ζr(µ) and auxiliary variable η(µ) respectively. The
regularizer and the decoupling term of eq. (16)
for a fixed auxiliary variable z have the more
general form:

min
y
F (Ay) +G(y). (17)

In our case, the convex functions are F (Ay) =
‖AWy‖ε, G(y) = 1

2θ‖y − z‖
2
2. We do a Legendre-

Fenchel transformation:

F (Ay) = max
%,‖%‖2≤1

〈AWy,%〉 − F ∗(%), (18)

where % is the dual of y and F ∗(%) is the conjugate
of F (Ay):

F ∗(%) = δ(%) +
ε

2
‖%‖22, (19)

δ(%) =

{
0 if ‖%‖1 ≤ 1.
∞ if otherwise (20)

Replacing F (Ay) and G(y) in (17), we get the
primal-dual formulation of this problem. It is a
generic saddle-point problem:

min
y

max
%,‖%‖2≤1

E =

〈AWy,%〉+
1

2θ
‖y − z‖22 − δ(%)− ε

2
‖%‖22. (21)

We do a step of projected gradient ascent
(maximization problem) for the dual variable %
and one step of gradient descent (minimization
problem) for the primal variable y (considering a
fixed auxiliary variable z), resulting the updates:{

%n+1 = proj%((%n + σWAyn)/(1 + σε)),

yn+1 =
yn−τ(WA∗%n+1− 1

θn z
n)

1+ τ
θn

,
(22)

where A∗ is the adjoint operator of the gradi-
ent operator and corresponds to the negative
divergence operator, σ and τ are the step size
for the dual variable % and primal variable y
respectively, proj%(x) = x/max(1, ‖x‖2) projects
the gradient ascent step back onto the constraint
‖%‖1 ≤ 1. Finally, for a fixed (and updated) y
we use a point-wise search to solve the remaining
non-convex functional:

arg min
zn+1

Eaux =
1

2θn
(yn+1 − zn+1)2 + λC(zn+1).

(23)
The primal-dual algorithm and the exhaustive

search are alternated and θn is decreased in each
step until convergence, it means, until θn ≤ θth,
where θth is a predefined threshold.

3.3 Tracking the Monocular Camera

For tracking the camera we use ORB-SLAM2
[11] with RGB-D inputs. It builds globally
consistent sparse reconstructions for long-term
trajectories with either monocular, stereo or RGB-D
inputs, performing in real time on standard
CPUs and including loop closure, map reuse
and relocalization. This system has three
main parallel threads: the tracking with motion
only bundle adjustment (BA), the local mapping
with local BA, and the loop closing with pose
graph optimization and full BA. It does not fuse
depth maps but uses ORB features for tracking,
mapping and place recognition tasks. With BA
and keyframes, it achieves more accuracy in
localization than state-of-the-art methods based on
ICP or photometric and depth error minimization.
Place recognition, based on bag of words, is used
for relocalization in case of tracking failure.

3.4 Shape Prior Estimation

In order to estimate the 3D model (shape prior) that
best fits to depth data associated to an object of
interest in the scene, we minimize the discrepancy
between a model hypothesis and observed depth
data back projected from the segmented region of
the object. We evaluate the resulting point cloud in
a 3D level-set embedding function that encodes the
object model implicitly. This alignment consist in
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reducing the distance of the points to the zero-level
of the embedding function having as arguments
the pose, scale and shape (latent variable), using
Levenberg-Marquardt.

Initially, the 49 3D models are loaded in OpenGL
using just geometric data. These models are
aligned using ICP for getting models with the
same position, orientation and scale. A volumetric
structure with truncated signed distance function
TSDF values is estimated and compressed,
passing from 1283 STDF values to 253 coefficients,
using the discrete cosine transform DCT.

The Latent variable Model LVM is used for
dimensionality reduction, to capture the shape
variance as low dimensional latent shape spaces.
The dimensionality reduction is applied to DCT
coefficients such that the resulting latent variables
have 2 dimensions instead of 253 dimensions of the
original observed data (coefficients). We initialize
the latent variables with the estimation got with
Dual Probabilistic PCA. Then, we use the scaled
conjugate gradient SCG algorithm for refining the
initial estimation [10].

The mapping is modeled using a Gaussian
process that defines areas where there are high
certainty of getting a valid shape. Next, the latent
variable that best fits to depth data is searched
over a continuous space (no just the ones used for
learning) and the coefficients associated to it are
estimated.

The 3D level-set embedding function encoded
in the coefficients is computed with the inverse
discrete cosine transform IDCT. Besides shape
optimization, the pose and scale of the 3D model
are optimized in alternating way, using initially a
coarse estimation of pose and scale, computed
with depth data of the object and assuming that
the car is over a flat surface. For model pose we
use Lie algebra instead of Rodrigues notation for
rotations.

3.5 Shape Prior Integration

Following a similar process for solving the
minimization problem of the regularizer term

and decoupling term of eq. (16), we minimize
the energy:

min
Df

E(Df (µ)) =

∫
(‖∇Df (µ)‖1︸ ︷︷ ︸

regularizer term

+

λ

2∑
k=1

wk(µ)‖Df (µ)−Dk(µ)‖ε︸ ︷︷ ︸
data term

)dµ,
(24)

where λ defines the balance between the
regularizer term and the data term, wk(µ) ∈ {0, 1}
defines the inpainting domain of the depth maps,
with wk(µ) = 0 for pure inpainting at location
µ, ‖ · ‖ε is the Huber norm defined in eq. (10),
D1(µ) = Ds(µ) is the refined depth coming from
the monocular camera, D2(µ) = Dm(µ) is the
depth coming from the optimal 3D model (shape
prior) and Df (µ) is the sought solution. We
express eq. (24) in a more general form:

min
y
F (Ay) +

2∑
k=1

Gk(y), (25)

where A = ∇ the gradient operator, F (Ay) =
‖Ay‖1, Gk(y) = λ$k‖y − ϕk‖ε, y, ϕk and $k

are row-wise vector versions of the sought solution
Df (µ), the depth sources Dk(µ), and the matrix
wk that defines the inpainting domain, respectively.
With Legendre-Fenchel transformations we get:

min
y

max
‖rk‖1≤λ$k,‖%‖2≤1

〈Ay,%〉 − F ∗(%)+

2∑
k=1

[〈y −ϕk, rk〉 −Gk∗(rk)],
(26)

where % and rk are dual variables associated to
the primal variables y and ϕk respectively, F ∗(%)
and Gk

∗(rk) are the convex conjugates of F (Ay)
and Gk(y), respectively, and are defined as:

F ∗(%) = δ%(%), (27)

Gk
∗(rk) = δrk(rk) +

ε

2
‖rk‖22, (28)

δ% and δrk are indicator functions of the convex
sets, defined as:

δ%(%) =

{
0 if ‖%‖1 ≤ 1,
∞ otherwise. (29)
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δrk(rk) =

{
0 if ‖rk‖1 ≤ λ$k.
∞ otherwise. (30)

We propose to use the scheme of [8] (where
color images for aerial applications are merged,
denoised and inpainted) for merging depth data
of two sources, getting an enhanced depth
map. The iterative optimization corresponds to
perform in alternating way gradient ascent over
the dual variables and gradient descent over the
primal variable y, projecting the results onto the
constraints and updating the primal variable, as is
summarized next:

%n+1 = proj%(%n + σAȳn),

rn+1
k = projrk

(
rnk+σ(ȳn−ϕk)

1+σε

)
, k = 1, 2.,

yn+1 = yn − τ(A∗%n+1 +
∑2
k=1 r

n+1
k ),

ȳn+1 = yn+1 + Φ(yn+1 − yn),
(31)

where A∗ is the adjoint operator of the gradient op-
erator and corresponds to the negative divergence
operator, Φ = 1, proj% and projrk are projections
of the dual variables % and rk, respectively, onto
convex sets. They are defined for each element of
the vectors as:

proj%(%̃) =
%̃

max(1, ‖%̃‖1)
, (32)

projrk(r̃k) =

 r̃k if ‖r̃k‖1 < λ$k,
λ$k if r̃k > λ$k,
−λ$k if r̃k < −λ$k.

(33)

Following the algorithm 1 of [1] and the
parameter setting of [8] we set the primal and dual
time steps with τ = 0.05, σ = 1/(8τ), the Huber
norm parameter ε = ..., and λ = .... We set the
initial primal variable as ȳ0 = ϕs since it is the most
informative depth source. The dual variables % and
rk are initialized with zeros.

3.6 Putting together Depth Map Estimation and
Shape Prior Integration

The algorithms previously described for building
a depth map with a monocular camera and
for integrating the shape prior are based on
variational techniques that are solved with the
primal-dual algorithm so they share common
modules. Moreover, the object of interest is

static and rigid so its pose, scale and shape
do not change with time. We exploit these
facts for implementing one algorithm that takes a
shape prior estimated previously (for example in
a previous keyframe) and makes simultaneously
depth map building and shape prior integration.
Now, we integrate shape prior data into the energy
functional (9) with an additional term, the shape
prior term:

E(µ, ζr(µ)) =

∫
(w(µ)‖∇ζr(µ)‖ε︸ ︷︷ ︸

regularizer term

+

λmwm(µ)‖ζr(µ)− ζm(µ)‖εm︸ ︷︷ ︸
shape prior term

+λC(µ, ζr(µ))︸ ︷︷ ︸
data term

)dµ,

(34)

where λm is a balance factor for the shape prior
term, wm ∈ {0, 1} defines the inpainting domain
of the inverse depth map coming from the model
ζm(µ). The shape prior term forces the solution
ζr(µ) to be similar to the shape prior ζm(µ).
Using the decoupling approach and discretizing the
energy we have:

min
y,z

‖AWy‖ε︸ ︷︷ ︸
regularizer term

+λm$m‖(y −ϕm)‖εm︸ ︷︷ ︸
shape prior term

+

1

2θ
‖y − z‖22︸ ︷︷ ︸

decoupling term

+ λC(z)︸ ︷︷ ︸
data term

,
(35)

where A = ∇ is the gradient operator, W is
the element-wise weighting matrix, y, ϕm, z and
$m are row-wise vector versions of the sought
solution ζr(µ), the inverse depth map of the model
ζm(µ), the auxiliary variable η and the inpainting
domain of the inverse depth map of the model
wm(µ), respectively. For a fixed auxiliary variable
z, the regularization term and the shape prior
term have the general form of eq. (17), where
F (Ay) = ‖AWy‖ε, Gk(y) = λ$k‖y − ϕm‖ε. With
Legendre-Fenchel transformations, we get:

min
y

max
‖rk‖1≤λ$k,‖%‖2≤1

〈AWy,%〉 − F ∗(%)+

〈y −ϕm, rm〉 −Gk∗(rk) +
1

2θ
‖y − z‖22,

(36)

where % and rk are dual variables associated to
the primal variables y and ϕm respectively. F ∗(%)
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and Gk
∗(rk) are the convex conjugates of F (Ay)

and Gk(y), respectively. They are defined as:

F ∗(%) = δ%(%) +
ε

2
‖%‖22, (37)

Gk
∗(rk) = δrk(rk) +

εm
2
‖rk‖22, (38)

δ% and δrk are the same as the ones defined
in eq. (29) and (30). The parameter setting is
similar to the one used for denoising, inpainting
and integration described previously in section
3.5. Considering the auxiliary variable z fixed, the
gradient ascent and gradient descent steps of the
primal dual algorithm are:

%n+1 = proj%(%
n+σWAȳn

1+εσ ),

rn+1
m = projrm

(
rnm+σ(ȳn−ϕm)

1+σεm

)
,

yn+1 =
yn−τ(WA∗%n+1+rn+1

m − 1
θn z

n)

1+ τ
θn

,

ȳn+1 = yn+1 + Φ(yn+1 − yn),

(39)

where A∗ is the negative divergence operator, σ
and τ are the step size for the dual variables
%, rm, and for the primal variable y respectively,
Φ = 1, proj% and projrm are projections of
the dual variables % and rm, respectively, onto
convex sets. They were defined in eq. (32)
and (33). Finally, for a fixed (and updated) y we
use a point-wise search to solve the remaining
non-convex functional defined in eq. (23). The
primal-dual algorithm and the exhaustive search
are alternated and θn is decreased as was done
for building the depth map in section 3.2.

4 Results

We carry out three experiments: one with synthetic
data for computing the accuracy of the estimated
depht map and the other ones with real data for
enhancing the created depth map with shape priors
and variational methods. For the first experiment
we use 40 images (n = 40) and one reference
image from the dataset of Ankur Handa [6]. The
depth is in the range [0.5 5]m that corresponds
to an inverse depth range of [2 0.2]m−1. The
number of samples (linear sampling in inverse
depth) is ns = 100, the balance λ is 1, the threshold
for the Huber norm ε is 0.01, α and β of eq. (11)

are 0.4 and 2.4 respectively. Figures 3(a) and 3(b)
show the image of reference in gray and the ground
truth in depth. Figures 3(c) and 3(d) show the initial
depth map obtained by minimizing eq. (7) and the
refined depth map after 200 iterations, respectively.
The mean error in depth diminishes from 0.1685m
(standard deviation of 0.4483) to 0.0953m (standard
deviation of 0.2397) when the regularization term
is used in the optimization problem. Figure 3(e)
shows the absolute error for the solution (using
both the data term and the regularization term)
while fig. 3(f) compares the depth for row 240 and
its ground truth. Note that the solutions is smooth
but preserves discontinuities.

For the second and third experiments the kinect
1.0 is employed: the RGB images for building a
depth map and the depth map coming from the
sensor as reference for estimating the accuracy
of the solution. We use 40 images (n = 40)
and one reference image. The range of depth is
[0.3 1.5]m that corresponds to an inverse depth
range of D = [3.33 0.66]m−1. The number of
samples is ns = 100, the balance λ is 0.7, the
threshold for the Huber norm ε is 0.01, α and β of
eq. (11) are 0.4 and 2.4 respectively.

Figures 4(a) and 4(b) show the image of
reference in gray and the depth coming from the
sensor. Figures 4(c) and 4(d) show the initial
depth map obtained by minimizing eq. (7) and the
refined depth map after 200 iterations, respectively.
The mean error in depth diminishes from 0.0841m
(standard deviation of 0.1161) to 0.0474m (standard
deviation of 0.0964) when the regularization term
is used in the optimization problem. Figure 4(e)
shows the absolute error for the solution (using
both the data term and the regularization term)
while fig. 4(f) compares the depth for row 210 and
its ground truth.

Next, we manually segment the car (see fig 5(a))
and compute a point cloud (red points in fig. 5(b))
with the depth data of the built depth map in the
segmented area. This point cloud is aligned with
a 3D model by minimizing an energy function w.r.t.
pose, scale and shape. For an initial estimation
of position we use the centroid of the point cloud,
adding 4% of the x component to itself since the
data belongs just to a side of the whole car.
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(a) Gray image from reference frame Ir(µ) (b) Ground truth of the depth map from reference
frame Dr(µ)

(c) Initial Depth map. It is noisy due to regions of
low texture.

(d) Depth map after 200 iterations of primal-dual
algorithm.

(e) Absolute error in depth using the data term
and regularization term.

(f) Depth for row 240 using the data term and
regularization term.

Fig. 3. (a) Gray image from reference frame, (b) ground truth of the depth map from reference frame, (c) initial depth
map built using the photometric error, (d) refined depth map after 200 iterations of primal-dual algorithm, (e) absolute
error of the solution and (f) depth for row 240 compared to ground truth

For the scale we consider the average distance
of each point to the centroid. We suppose a

supporting plane (blue points in fig. 5(b)) in order
to estimate two of the three angles that define the
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(a) Gray image for the reference frame Ir(µ), real
data.

(b) Depth from kinect Dr(µ). Used for estimating
accuracy of solution.

(c) Initial Depth map. It is noisy due to regions of
low texture.

(d) Depth map after 200 iterations of primal-dual
algorithm.

(e) Absolute error in depth using the data term
and regularization term.

(f) Depth for row 210 using the data term and
regularization term.

Fig. 4. (a) Gray image from reference frame (real data), (b) depth got with kinect sensor for reference frame (used for
estimating depth accuracy of solution), (c) initial depth map built using the photometric error, (d) refined depth map after
200 iterations of primal-dual algorithm, (e) absolute error of the solution and (f) depth for row 210 compared to ground
truth
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initial orientation of the car. The third angle is
found with exhaustive search. Summarizing, the
initial position is two = [0.7433 0.0065 0.0264],
the initial orientation corresponds to (rotations over
fixed axis) αx = 14.3506◦, αy = −17.8619◦, and
αz = −31.6360◦. The initial scale is s = 0.2222,
and the initial shape is the one associated to the
reference model employed in the model alignment
process χ = [0.3895 1.6162]. Figure 5(c) shows
the initial conditions for the model.

For refining the initial estimation we carry out
two cycles with the sequence: 15 iterations for
pose and 5 iterations for scale. At the end of this
sequence, 40 iterations have been done and very
close pose and scale estimations are obtained (see
fig. 5(d)). With these estimations we can perform
exhaustive search over the Nm = 49 models
of cars used for learning the latent space. The
latent variable with the 3D level set that produces
the minimum energy χ = [−0.0659 0.2060] is
used as initial value in the following refinement
process. Finally, we carry out three cycles with the
sequence: 10 iterations for shape, 10 iterations for
pose and 5 iterations for scale, getting a refinement
in pose and scale for a more approximated shape
(see fig. 5(e)). The final scale is s = 0.2325, and
the final latent variable is χ = [−0.0763 0.1037].

The final position is two =
[0.7614 0.0173 0.0393] and the final orientation
is αx = 13.3060◦, αy = −19.9214◦ and
αz = −37.1394◦. Finally, we create a synthetic
depth map by reading the depth buffer from the
current camera pose (see fig. 5(f)). The evolution
of the energy for this alternating optimization is
shown in fig. 6.

Once we have two depth maps: one from the
optimal 3D model and the other one built with
a monocular camera, we integrate this data for
getting an enhanced depth map. Figure 7(a) shows
the built depth map using algorithm of eq. (22)
while fig. 7(b) shows the resulting depth map after
100 iterations of the algorithm for merging shape
prior data of eq. (31).

Note that the most significant changes are
presented in the car area where the depth map
built with the monocular camera and the depth map
from the optimal 3D model interact and integrate.
Outside the car area just depth smoothing is

carried out. Figure 7(c) compares depth data
through the x-slice for row 210. In this figure we
can see the smoothing effect and the improvement
in accuracy in the car area.

The alternative approach, that makes simul-
taneously depth map building and shape prior
integration (supposing that we already have a
shape prior), produces similar results than running
both algorithms sequentially.

Figure 8(a) shows the initial depth map got by
solving the data term (see eq. (7)), while fig.
8(b) shows the results of the simultaneous depth
refinement and shape prior integration defined in
eq. (39). In fig. 8(c) we can see a comparison of
depth data through the x-slice for row 210.

For quantifying these improvements we compute
the error in depth of the built depth map, of the
depth map estimated with a sequential building
and shape prior integration and of the depth
map estimated with a simultaneous refinement
and shape prior integration, considering only the
segmented area (car area) and taking the depth
coming from the sensor as reference. The
comparison is summarized in table 1.

We found that the RMSE, the mean error and
the median error diminish when shape prior data
is integrated in a sequential or simultaneous way,
although the maximum values (in both algorithms)
and the standard deviation (in the simultaneous
algorithm) increase a little bit due to mismatches in
the borders of the car. Moreover, comparing these
values we can say that the simultaneous algorithm
produces depth maps with higher accuracy in the
car area than the sequential one.

Finally, we present the processing time for the
main steps of the three algorithms analyzed in this
work: depth map building, shape prior integration
and simultaneous depth map building and shape
prior integration.

Since they share the same structure, with the
primal-dual algorithm for solving the optimization
problems, the processes are similar, as is shown
in table 2.

An iteration for building a depth map takes
18.452ms so the computation of the initial depth
map and 200 iterations for refining it takes 4.7529s.
An iteration for integrating the shape prior data into
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(a) Mask of segmented image (b) Point cloud of segmented
area (toy car) and supporting
plane (in blue) with its normal
(red line)

(c) Initialization. Real data

(d) Iteration 40. Real data (e) Iteration 115. Real data (f) Depth map Dm(µ) coming
from the model

Fig. 5. Steps in the process for estimating the optimal 3D model and a synthetic depth map from the current camera
pose. (a) Mask of the segmented car, (b) Point cloud of the segmented car and supporting plane, (c) Initial state of the
3D model, (d) 3D model for iteration 40, (e) 3D model for iteration 115 and (f) depth map from the model

Fig. 6. Evolution of the energy for pose, scale and shape
optimization

the built depth map takes 15.694ms so the total
time for 100 iterations is 1.5694s.

The time for building and merging shape prior
data sequentially is 6.3223s. On the other
hand, an iteration of the algorithm that makes
simultaneously depth refinement and shape prior
integration takes 25.287ms. Considering the

time for estimating the initial depth map and
200 iterations of the simultaneous algorithm, the
resulting depth map takes 6.1199s.

5 Conclusion

We have developed a system that builds a depth
map with a monocular camera and integrates
shape prior data, in sequential and simultaneous
way, for improving its accuracy. The depth map is
built by minimizing an energy functional, composed
of a data term and a regularization term, using
a decoupling term, the primal-dual algorithm and
exhaustive search. The models are represented
as 3D level-sets that are compressed and reduced
in dimensions for improving the search of the
optimal model. The energy function aligns a point
cloud of the segmented area associated to the car
and the level-set embedding function of a model
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(a) Built depth map Ds(µ) (b) Sought depth map Df (µ) for
iteration 100

(c) Depth for row 210. The vertical lines encompass the car

Fig. 7. (a) Built depth map using a monocular camera, (b) Resulting depth map after 100 iterations for merging the
built depth map and the shape prior data, (c) Depth for row 210; data of the built depth map (dark blue), the smoother
and complete solution resulting from merging shape prior data (cyan) and the incomplete depth coming from the sensor
(green)

(a) Initial depth map computed
with eq. (7)

(b) Depth map after 200 it-
erations of the algorithm for
simultaneous depth refinement
and shape prior integration

(c) Depth for row 210. The vertical lines encompass the car

Fig. 8. (a) Initial depth map computed by solving eq. (7), (b) Resulting depth map after 200 iterations of the algorithm
for refining and shape prior integration, (c) Depth for row 210; data of the built depth map (dark blue), the smoother
and complete solution resulting from merging shape prior data (cyan) and the incomplete depth coming from the sensor
(green)

hypothesis. The optimization is done w.r.t. pose,
scale and shape. Once the alignment is done,
a synthetic depth map coming from the optimal
model is created and integrated to the built depth
map (sequential way).

In the simultaneous way, the energy functional
for building a depth map is modified by adding a
term that constraints the solution to be similar to
the synthetic depth map coming from the shape

prior. Finally, the improvement in accuracy is
quantified. The results are satisfactory:

1. The mean error of the depth map created with
a monocular camera (using a synthetic depth
map as reference) is 0.0953m, when both the
data term and the regularization term are used
in the optimization.

2. When the shape prior is integrated into
the built depth map the mean error in the
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Table 1. Comparison in accuracy in depth in the car area using the depth map built with the monocular camera and the
depth map resulting of merging the shape prior data

Built depth map With shape prior
data

built and shape
prior

RMSE [m] 0.0624 0.0572 0.0531
Max. error [m] 0.2038 0.2195 0.2316
Min. error [m] 3.4114e-04 1.0117e-04 5.7745e-05
Mean error [m] 0.0596 0.0545 0.0487
Median error [m] 0.0582 0.0537 0.0452
Standard dev.
[m]

0.0187 0.0176 0.0212

Table 2. Processing time for depth map building DMB, shape prior integration SPI and both depth map building and
shape prior integration simultaneously DMB-SPI

Process-Algorithm Time[ms] DMB Time[ms] SPI Time[ms]
DMB-SPI

Creation initial depth
map
Eq. (7) 1062.5 — 1062.5
Update of %
First line of eq. (22) 6.627
First line of eq. (31) 6.501
First line of eq. (39) 6.648
Update of r
Second line of eq. (31) — 5.373
Second line of eq. (39) — 5.415
Update of y
Second line of eq. (22) 3.350
Third line of eq. (31) 3.247
Third line of eq. (39) 3.366
Update of z
Eq. (23) 6.293 — 6.352
Remaining processes 2.182 0.573 3.506
TOTAL ITERATION 18.452 15.694 25.287

segmented area diminishes from 0.0596m
to 0.0545m for the sequential algorithm and
from 0.0596m to 0.0487m for the simultaneous
algorithm, and the data for both cases is
smoother, closer to the object’s shape and
preserves discontinuities.

The processing time in commodity graphics
hardware is 6.3223s for the sequential algorithm,
with 200 iterations for building a depth map
and then 100 iterations for merging shape prior
data. The processing time is 6.1199s for the
simultaneous algorithms with 200 iterations for
building a depth map and merging shape prior
data at the same time (times do not consider the
estimation of the shape prior).

As future work we leave the implementation
of the algorithm for estimating the optimal model
(shape prior) in commodity graphics hardware.
Moreover, we leave as future work the fusion of
several enhanced depth maps into a volumetric

structure in order to make a dense reconstruction
of the scene and quantify the improvement in
geometry of the reconstructed 3D model.
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