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Abstract. The convergence of Social Mobility Analytics
and Cloud (SMAC) technologies gives rise to an
unforeseen aggrandization of the web services on the
internet. The resilience and payment-based approach of
the cloud makes it an obvious choice for the deployment
of web services-based applications. Out of available
web services, to gratify the similar functionalities, the
choice of the web service based on the personalized
quality of service (QoS) parameters plays an important
role in determining the selection of the web service.
The role of time is rarely being discussed in deciding
the QoS of web services. The delivery of QoS is not
made as declared due to the non-functional performance
of web services correlated behavior with the invocation
time. This happens because service status usually
changes over time. Hence, the design of the time
aware web service recommendation system based on
the personalized QoS parameters is very crucial and
becomes a challenging research issue. In this study,
LSTM based deep learning models were used for the
prediction of these time aware QoS parameters and the
results are compared with the previous approaches. The
experimental results show that the LSTM based Time
Series Forecasting Framework is performing better. The
RMSE, MAE, and MAPE are used as an evaluation
metric and their value for the prediction of Response
time (RT) is found to be 0.030269, 0.02382 and 0.59773
respectively with adaptive moment estimation as the
training option and is found to be 0.66988, 0.66465 and
27.9934 respectively with root mean square propagation
as the training option. The RMSE, MAE, and MAPE
value for the prediction of throughput (TP) is found to
be 0.77787, 0.4792 and 1.61 respectively with adaptive
moment estimation as the training option and is found
to be 0.2.7087, 1.4076and 7.1559 respectively with
root mean square propagation as the training option

respectively. Thus, the experimental results show that
the LSTM model of Time Series Forecasting for Web
Services Recommendation Framework is performing
better as compared to previous methods.

Keywords. Time-Aware web services recommendation,
QoS-Prediction, LSTM, SMAC, cloud services.

1 Introduction

The convergence of SMAC technologies begins a
new era known as the third computing paradigm
[28, 31]. This era resulted in humongous growth
of multifarious web services on the internet.
These web services are invoked in a variety of
applications ranging from social networking sites,
mobility-based applications to a sensor-based
application such as the Internet of Things, Internet
of Vehicles [30], Healthcare Streams [29], etc.

The advent of cloud computing services leads
to the further exponential growth of web services
that are deployed on cloud platforms. In [27],
authors emphasize the role of Information Security
Management System (ISMS) standards in handling
the security challenges faced by Cloud Service
Providers (CSP) during cloud engineering. Web
services evaluation in real time on a large-scale
is a tedious task. From the user’s point of view,
Evaluation of Web services with user-dependent
QoS properties are important to find out the optimal
choice among them.

The performance of web services in a cloud
computing setting has significantly affected by
the Quality of Service which in turn depends on
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various quality factors. These quality factors are
categorized into two types of viz. Functional and
non-functional performance parameters [24]. The
non-functional performance parameter is further
subdivided into two groups viz. user-independent
and user-dependent. The user-independent
parameters, like price and popularity, are not
significant in making the recommendation of the
web services for users. On the other hand,
the user-dependent parameters such as response
time, failure probability and throughput play a
very crucial role in deciding the choice of the
web services which can be a recommendation to
the users [2, 8, 46, 51, 52]. Recommendation
of appropriate web services is a multi-criteria
decision process which makes it a very challenging
research problem.

There exist various types of QoS-motivated
research-based approaches which are listed in
the Related Work section. One of the core
challenges faced by cloud service providers is
that the delivery of QoS is not made as declared
due to the non-functional performance of web
services correlated behavior with the invocation
time. This is due to the reason that service
status usually changes over time. This makes time
aware personalized QoS prediction a very crucial
research area for high-quality web service recom-
mendation. To the best of our knowledge, none of
the existing web service recommendation methods
based on neighborhood-based CF considers the
service invocation time. This is an important
context factor affecting QoS Performance since
web service performances usually are affected due
to time-varying factors (e.g. service status, network
condition, etc.)

To resolve this problem, this study utilized Long
Short-Term Memory (LSTM) architecture with two
deep learning neural network training options such
as adaptive moment estimation [18] (ADAM) and
root mean square propagation [26] (RMSProp).
The RMSE, MAE, and MAPE are calculated at
various Epoch through tuning of hyper parameters.

From a large number of real-world web services
QoS values (response time and throughput), data
is collected from 142 users who are accessing
4500 web services taken at 64-time slices where
each time slice is of 15 minutes.

The experiments are conducted to find the best
performing models for the prediction of response
time and throughput and LSTM is found to be
performing in the best manner. The current
work is distributed into five sections. The first
section introduces the problem and the related
work is discussed in the second section. The third
section discusses briefly about the data set and the
experimentation. The fourth Section discusses the
result and conclusion are given in the last section.

2 Related Work

2.1 Collaborative Filtering (CF)

It is extensively used in commercial recommender
systems, such as Netflix and Amazon.com. In
[34, 43, 50], CF based on user-item matrix
concepts was used for recommendation systems.
In [4, 3], the authors proposed a prediction
method called empirical analysis for CF. They
used several algorithms for predicting values based
on correlation-coefficient, vector-based similarity
calculation and statistical Bayesian methods. It has
been shown that Bayesian networks perform better
in terms of correlation-coefficient and vector-based
similarity. They also used a ranking system for a
product which was based on voting.

UPCC is a user based prediction algorithm using
PCC. UPCC is employed to predict a QoS value y
for the current time slot, it uses all other collected
QoS values at the current time slot for prediction.
In [39], the authors proposed a framework of
imputation-boosted collaborative filtering (IBCF)
using machine learning classifiers to fill-in the
sparse user-item matrix, then it runs a traditional
Pearson correlation coefficient based CF algorithm
for this matrix to predict the rating. They did
it by working with classifiers which are good in
handling missing data, such as naı̈ve Bayes, by
use of predictive mean matching (PMM), with no
content information.

They performed a comparative analysis of IBCF
with 9 commonly-used machine learning classifiers
and an ensemble classifier to impute the missing
rating data, in terms of MAE.
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2.2 Neighborhood-Based Collaborative
Filtering Approach

These methods use correlation coefficients,
vector-based similarity calculations, and
statistical Bayesian methods. The drawback
of Neighborhood-Based CF Approach is that it is
vulnerable to data sparsity. In [3, 17] , User-Based
methods that utilize historical QoS experience
from a group of similar users were used to make
QoS predictions. In [7, 32], Item Based methods
that uses historical QoS information from similar
services were utilized for QoS prediction. In
[50, 49], the authors introduces a hybrid approach
that combines the user based and service
based methods which can achieve a higher QoS
prediction accuracy. All the methods often uses
the Pearson Correlation Coefficient (PCC) as their
similarity models.

In [1], the authors discussed all other similarity
computation methods e.g. cosine measure,
adjusted cosine measure, constrained PCC, etc. of
neighborhood-based CF approach. In [40, 14, 5],
Model based CF approaches that incorporates
training data to train a predefined model and then
utilize that trained model were introduced to predict
QoS. The most important model discussed are
clustering models, aspect models, and latent factor
models.

2.3 Matrix Factorization based Collaborative
Filtering Approach

In [10], the authors considered neighborhood
information for a Matrix Factorization (MF) based
QoS predictor. In [23], the authors proposed
an extended MF-based model by considering the
location information in each historical QoS record.
In [51], the authors proposed an MF-based model
that integrates the time interval as an additional
factor in an MF process and found that the
prediction accuracy was found improving. In
[43], the authors investigated the non-negative
latent factor model to deal with the sparse QoS
matrix subject to the non-negativity constraint.
They also introduced Tikhonov regularization to
obtain the regularized non-negative latent factor
model. In [12], They proposed a method called
location-based Hierarchical Matrix Factorization

(HMF), which was used to provide service
recommendations and makes a cluster of users
and services on their location information. They
used local matrix factorization and global matrix
factorization to predict the missing QoS values.
In [42], a general context-sensitive approach that
took advantages of both implicit and explicit factors
entailed in the QoS data through exploitation
of contextual information was presented for
collaborative QoS prediction. In [25, 35, 6], the
authors discussed location as context information
and it was deduced that geographically close users
or services usually have similar experiences.

2.4 Service Recommendation System

In [22], the authors explored the use of two
main machine learning approaches. Bayesian
unsupervised method was utilized to cluster
the data into classes and supervised decision
tree-based classifier such as C4.5 to model the
missing variables. In [8], the authors proposed a
novel cloud service, selection through the missing
value prediction and multi-attribute trustworthiness
evaluation for user support. In [45], Non-negative
Tensor Factorization (NTF) algorithm that works on
three parameters like a user’s-services-time model
was used to predict the missing values of QoS
performance and recommend Web services to the
users. In [2], neural-network adapter models were
used for Web Services response time prediction in
cloud environments.

In [48, 53] , the authors combined item and
user-based CF algorithms to recommend web
services and also integrated Neighbourhood ap-
proach through MF. In [44], the authors presented
an approach that integrates MF through decision
tree learning to bootstrap service recommendation
systems. In [6], the authors utilized a region-based
CF algorithm web service recommendation. In
[21], a comparative study of important seven
machine learning algorithms was discussed in
the prediction of QoS-values for Web service
recommendations. Bagging and SMO-regression
were performing well in the case of response time
and throughput QoS datasets respectively. In [19],
the authors applied an artificial neural network
(ANN) approach for missing values imputation.
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Fig. 1. Variation of Loss and RMSE Observed during Training at Epoch 200 for Response Time for training option ADAM

Fig. 2. Observed Vs Forecasted Cases at Epoch 200 for Response Time and associated RMSE, MAE, and MAPE for
training option ADAM

Bayesian regularization (BR) was giving promis-
ing results for both datasets other than two
important algorithms such as Levenberg Marquardt

and scaled conjugate gradient. In [20], the
authors have applied two major types of Meta
learners, namely bagging and additive regression
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Fig. 3. Observed Vs Predicted Cases at Epoch 200 for Response Time and associated RMSE, MAE, and MAPE for
training option ADAM

Fig. 4. Observed Vs Forecasted Throughput for training option ADAM

with a different combination of base learners for
solving the problem of missing value imputation
in QoS dataset consisting of response time and
throughput values. Random forest algorithm was
found performing relatively better than other base
learners, for both bagging and additive regression.

2.5 Time Aware Web Service Recommendation
System

In [15], the authors proposed a novel time aware
approach for QoS Prediction that integrates time
information into both the similarity measures. In
[16], an improved time aware collaborative filtering
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Fig. 5. Variation of Loss and RMSE Observed during Training at Epoch 200 for Throughput for training option ADAM

Fig. 6. Observed Vs Forecasted Cases at Epoch 200 for Throughput and associated RMSE, MAE, and MAPE for
training option ADAM

approach that uses an applied hybrid personalized
random walk to infer indirect user similarities and
service similarities was proposed for high-quality
QoS Prediction.

In [41], the authors proposed a novel spatial-
temporal QoS prediction approach for time-aware

Web Service recommendation by using ARIMA as
the baseline method.

In [38], the authors used extraction of feature
points of QoS sequences and dynamic time
warping distance to compute the similarity instead
of Euclidean distances for a personalized QoS
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Fig. 7. Observed Vs Predicted Cases at Epoch 200 for Throughput and associated RMSE, MAE, and MAPE for training
option ADAM

Fig. 8. Variation of Loss and RMSE Observed during Training at Epoch 200 for Response Time for training option
RMSProp

prediction of dynamic web services. A web service
QoS prediction framework WSPred was proposed
to provide the time aware personalized QoS values
prediction service for different service users in [47].

In [36, 37], authors experimented with econo-
metrics model and wavelet enabled LSTM to
explore the working in time aware recommenda-
tion systems.
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Fig. 9. Observed Vs Forecasted Cases at Epoch 200 for Response Time and associated RMSE, MAE, and MAPE for
training option RMSProp

Fig. 10. Observed Vs Predicted Cases at Epoch 200 for Response Time and associated RMSE, MAE, and MAPE for
training option RMSProp

3 Data Set and Experiments

The data set used in the current work is taken
from the Web services linked dataset which was
shaped by [2, 8, 46, 51, 52]. They set up

a lab called PlanetLab1 to collect these online
invocations of Web services by active users in a
cloud environment. The details about the dataset
are given in Table 1. They have generated
two matrices, which contains response time and

1http://www.planet-lab.org
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Fig. 11. Variation of Loss and RMSE Observed during Training at Epoch 200 for Throughput for training option RMSProp

Fig. 12. Observed Vs Forecasted Cases at Epoch 200 for Throughput and associated RMSE, MAE, and MAPE for
training option RMSProp

throughput values of different Web services for
different users and are named as rtmatrix and
tpmatrix. Here an element RTi,j in the rtmatrix
indicates the value of response time of user i for

Web service j and similarly the value of an element
TPi,j in the tpmatrix indicates the throughput value
of the user i for Web service j.
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Fig. 13. Observed Vs Predicted Cases at Epoch 200 for Throughput and associated RMSE, MAE, and MAPE for training
option RMSProp

Table 1. Descriptions of original dataset

Statistical parameters Values

No. of Service Users 142

No. of Web-Services 4532

Time Slices 64( 15 minutes)

No. of Web-Service Invocations 41186816

The range of Response time 0 – 20 seconds

Range of Throughput 0 – 1000 kbps

4 Results and Discussion

To access the performance of the proposed model,
the following error measures are employed as
Evaluation Criteria:

MAE =
1

N

N∑
t=1

|dt − yt| , (1)

RMSE =

√√√√ 1

N

N∑
t=1

(dy − dt)2, (2)

MAPE = 100× 1

N

N∑
t=1

∣∣∣∣dt − ytdt

∣∣∣∣ . (3)

Table 2. Hyperparameters of the LSTM

Hyperparameters Training Options

Hidden Units =200 Adaptive

Dropout layer =0.2 Moment

Gradient Threshold =1 Estimation

Initial Learn Rate =0.005 (ADAM)

Learn Rate Drop Factor = 0.2

Learn Rate Drop Period =125

Hidden Units =200 Root Mean

Dropout layer =0.2 Square

Initial Learn Rate =3e-4 Propagation

Squared Gradient Decay =0.99 (RMSProp)

Mini Batch Size =64

In the above formula, dt represents the original
value of the t moment, yt represents the predicted
value of the t moment and N represents the total
number of the samples. Smaller the value of
MAE, RMSE, and MAPE, smaller is the deviation
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Table 3. Prediction error of the model at 200 epoch for
response time

Epoch Model MAE RMSE MAPE

200 ADAM LSTM
(Observed Vs
Forecast)

0.07928 0.09711 1.65260

200 ADAM LSTM
(Observed Vs
Predicted)

0.02382 0.03026 0.59773

200 RMS
Optimizer
LSTM
(Observed
Vs Forecast)

0.76301 0.76995 33.4842

200 RMS
Optimizer
LSTM
(Observed
Vs Predicted)

0.66465 0.66988 27.9934

between the predicted value and the original value.
MAPE is being used as the main predictor because
of its stability.

The tuning of hyperparameters is described in
Table 2. The result of the experiment is given in
the Table 3 and Table 4. It is quite clear from
the results that LSTM produces best result for the
prediction of response time as well as throughput
as compared to the previous approaches as
mentioned in Table 5.

The experiment is conducted with training
options ADAM and RMSProp. The experiment
is carried out by standardizing the data to avoid
the data from diverging and then LSTM network
architecture is created to train the LSTM network
for forecasting the future time steps.

In case of ADAM as a training option, this is
represented in Figure 1 and Figure 5 where the
variation of Loss and RMSE can be observed.
The Network state with Predicted value and
observed values is represented in Figure 2, Figure
3 for response time and Figure 6, Figure 7 for
throughput. Figure 4 represents the observed and
forecasted throughput.

In case of RMSProp as a training option, LSTM
architecture is represented in Figure 8 and Figure

11 where the variation of Loss and RMSE can be
observed. The Network state with Predicted value
and ob-served values is represented in Figure 9,
Figure 10 for response time and Figure 12, Figure
13 for throughput.

The network state is updated with observed
values and found that the predictions are more
accurate when updating the network state with the
observed values instead of the predicted values.

Table 4. Prediction error of the model at 200 epoch for
throughput

Epoch Model MAE RMSE MAPE

200 ADAM LSTM
(Observed Vs
Forecast)

0.4792 0.7778 1.61

200 ADAM LSTM
(Observed Vs
Predicted)

0.58402 1.0795 2.2732

200 RMS
Optimizer
LSTM
(Observed
Vs Forecast)

1.388 2.7226 6.3549

200 RMS
Optimizer
LSTM
(Observed
Vs Predicted)

1.4076 2.7087 7.1559

In case of time series and sequence data, long
term dependencies play a crucial role which makes
an LSTM [13, 9, 11, 33] a wonderful choice in which
layer learns through long-term dependencies in
data. There is an additive interaction among the
layers which improves the gradient flow very long
sequences during training. The state of the layer
comprises the hidden state also known as output
state and the cell state. The cell state stores the
information learned from the past time steps.

Figure 14 elucidates the flow of data at time step
t. At every time step, the layer either adds the
information to or removes the information from the
cell state. The hidden state at time step t stores the
output of the LSTM layer for that time step. These
updates are controlled using gates. The roles of
the gates are mentioned below:
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Table 5. Comparison with the previous works

MAE RMSE Reference

WSPred (RT) 2.1266 3.8943 [47]

WSPred (RT) 6.8558 36.572 [47]

AVG at 75 % 1.159 3.206 [49]

UPCC at 75 % 1.464 3.026 [4, 3]

UPCC* at 75 % 1.242 2.763 [41]

IPCC at 75 % 1.374 2.923 [32]

IPCC* at 75 % 1.202 2.717 [32]

WSRec at 75% 1.372 2.923 [49]

WSRec* at 75% 1.202 2.721 [41]

ARIMA 1.028 2.986 [41]

LS, K=1 1.006 2.774 [41]

1.102 3.062 [41]

LASSO, K=1 0.997 2.735 [41]

0.89 2.538 [41]

RT-0.0635 at 35 % RT-0.0692 at 35 % [38]

TP-4.4101 at 40 % TP-5.1943 at 40 %

Components Purpose

Input gate (i) Cell State Update is controlled
through this gate.

Forget gate (f ) Cell State Reset or Forget is
controlled here.

Cell candidate (g) Information to the cell state is
added here.

Output gate (o) The level of cell state that is
added to the hidden state is
controlled here.

The weights that can be learned in an LSTM
layer are the input weights W, the recurrent weights
R and the bias b. The concatenated input weights
are represented as matrices W , R and b. The state
of the cell at a given time step t is provided as:

ct = ft � ct−1 + it � gt, (4)

where � designates the Hadamard product, which
is element-wise multiplication of the vectors.

W =


Wi

Wf

Wg

Wo,

 R =


Ri

Rf

Rg

Ro,

 b =


bi
bf
bg
bo.



The state of the hidden at a given time step t is
provided as:

ht = ot � σc (ct) , (5)

here σc designates the state activation function. By
default, the hyperbolic tangent function (tanh) is
used in the LSTM layer function to calculate the
state activation function.

The component at a given time t is described
as following:

Here, σg designates the gate activation function.
The sigmoid function σ(x) = (1 + e−x)

−1 is used to
calculate the date activation function.

5 Conclusions

In the current work, time information is incorpo-
rated into web service recommendation for the
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Fig. 14. The flow of the data in the LSTM network

Component Formula

Input gate it = σg(Wixt +Riht−1 + bi)

Forget gate ft = σg(Wfxt +Rfht−1 + bf )

Cell candidate gt = σc(Wgxt +Rght−1 + bg)

Output gate ot = σg(Woxt +Roht−1 + bo)

prediction of QoS parameters namely, response
time and throughput accurately. This forms a series
which is a kind of nonlinear and non-stationary.
Thus, efficient processing of the data is required.
Effective preparation and processing strategies
should take this nonlinear and non-stationary
behavior into account. The effectiveness of the
proposed approach is being validated by thorough
experiments.

After standardizing the data to avoid the data
from diverging, LSTM network architecture is
created to train the LSTM network for forecasting
the future time steps. The network state is updated
with observed values and found that the predictions
are more accurate when updating the network
state with the observed values instead of the
predicted values.

The LSTM gave the best RMSE in case of
Response time as 0.030269 with ADAM as the

training option and 0.66988 with RMSProp as the
training option. In case of throughput, the LSTM
gave the best RMSE value as 0.77787 with ADAM
as the training option and 2.7087 with RMSProp as
the training option.

In future work, context also needs to be explored
in time aware web services recommendation
through QoS prediction.
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