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Abstract. Representation and evaluation of knowledge 

are key concepts for the management of the domain 
module within an intelligent tutoring system. However, in 
order to develop more efficient education tools, not only 
should knowledge representation be considered as a 
base. One should go in depth into something more 
complex known as the representation of dependency 
between key knowledge concepts in a given domain, in 
such a way that the model is more robust and can be 
used to make decisions in didactic electronic devices, 
whose operation is similar to that of an intelligent tutoring 
system; which are connected, by the moment, to a local 
network, and later, the objective is to implement the 
concept of the internet of things in educational 
classrooms. The representation of dependency between 
key knowledge concepts in a given domain is supported 
by different pedagogical theories such as the Cognitive 
Load Theory (CLT), which computationally can be 
modeled through Fuzzy Cognitive Maps (FCM). FCMs 
help in the decision making process and allow us to 
represent such dependencies. The decision-making 
process is that the system can determine the types of 
problems that the student must solve, so that he can 
understand each of the topics of the domain. In this 
paper the results of the combination of fuzzy models 
(inference models and FCM) to identify cognitive skills 
and types of problems that help the student reach the 
appropriate levels in the domain of algebra topics and 
the differential calculus, are presented. The objective is 
to implement fuzzy models in electronic devices based 
on tangible interfaces. This tool is in an initial testing 
phase with students. Therefore, the results presented in 

this paper are experimental and are related, execution-
wise, to map efficiency. 

Keywords. Fuzzy cognitive maps, prototypes with 

tangible interfaces, automatic evaluation in algebra 
problem solving. 

1 Introduction 

Fuzzy Cognitive Maps (FCM) are fuzzy-graph 
structures for representing causal reasoning, 
analyze inference patterns and they acts as a 
nonlinear dynamical system [1]. Application areas 
on which the FCMs have demonstrated an 
exceptional performance include decision support, 
process control, pattern recognition, and data 
mining systems. They have been applied on 
various domains such as biomedicine, geographic 
information systems, and time-series analysis [2]. 

In education, the causality characteristic allows 
the FCMs to be adequate to represent the 
dependence between key concepts of some 
domain of the knowledge in question, allowing to 
detect the learning material that should be 
delivered, to some student, with respect to their 
knowledge level and personal needs [3, 4]. Experts 
with an interactive procedure of knowledge 
acquisition build FCM [5]. 
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Intelligent Tutoring System (ITS) is a system 
capable to guide students along a particular 
domain of knowledge through the solving of tasks 
tailored to the needs of the student [6]. In turn, a 
cognitive tutor is a type of ITS with a long-time 
proven efficacy. Its efficacy is based on its capacity 
to provide individualized support for the learning of 
complex cognitive abilities through the practice of 
problem solving [7, 8].  

According to Gonzalez [6], the key components 
of traditional ITS can be organized in different 
modules as a student model, domain model, tutor 
model and interface or communication module, 
which interact with the user. In this paper, the 
interest is focused on the domain module; it 
contains the representation of expert knowledge in 
areas related to evaluation processes, teaching 
and learning methodologies, so that FCM that can 
represent the knowledge of the experts in the 
teaching of algebra are proposed. Although this 
module is also responsible for the reasoning-
knowledge base and problem solving 
mechanisms, are processes that are still being 
worked, so they are left for a next research report. 

Likewise, in the development of tools for 
facilitating the teaching-learning process it is 
necessary to use as a basis pedagogical, theories 
related to cognitive processes. Theory of cognition 
was a theory that made claims about the 
organization and acquisition of complex cognitive 
skills [9]. One such theory is known as the 
Cognitive Load Theory (CLT), which is based on 
the assumption that the construction and 
automatization of cognitive schemas for learning 
are the main goals of teaching.  

However, those objectives may be thwarted by 
the limited capacity of working memory. Due to this 
factor, the proper allocation of available cognitive 
resources is essential for the learning process [10]. 
If a student has to spend limited resources on 
activities not directly related to the construction of 
schemes and automatization, learning can be 
inhibited [11]. Such activities may be related to the 
fact that the student should understand concepts 
that require previous knowledge that he does not 
recall or that he never learned. Within this theory, 
several approaches are handled, being one of 
them “expertise reversal”, which is based on 
classifying students as “experts” and “novices”. 

Several existing studies have proven that 
designs and techniques which are effective for 
persons with a low level of knowledge may lose 
efficacy, and even have a negative impact, on 
more competent students [12,13]. Therefore, these 
studies conclude that instructional designs should 
be handled according to the knowledge level of 
students. In other words, there should be an 
analysis of the students’ current knowledge as well 
as to what is desired that he/she learn, because, if 
concepts are related, based on its complexity level, 
the student should have a solid grip on concepts 
previous to new knowledge. That is why one of the 
main concepts that have revolutionized the 
inclusion of cognitive sciences in the development 
of didactic models is the conception of knowledge 
as an intern representation that is built and 
organized in internal structures known as mental 
schemes or models. 

Mental schemes allow the knowledge of the 
different states that in turn allow the maturity of 
expertise and the behavioral differentiation of 
novices and experts during problem solving that 
imply the use of different strategies to arrive to the 
solution. In order to make implicit knowledge 
available to the learner, some structured task must 
be available to elicit the knowledge from the 
learner [14]. 

Concept or cognitive mapping, represents a 
possible tool for developing such a structured 
environment [15] whereby, they are an element to 
be considered during the development of software 
systems that use artificial intelligence techniques, 
such as intelligent learning systems and expert 
systems, among others [14]. 

Here lies the importance of the representation 
of the dependency between the key concepts in 
the knowledge domain to be learned, and of not 
only using a general representation of knowledge 
the way conceptual networks do, should be in a 
deeper way. They should give answers to 
questions such as: “If a student learns the concept 
A, which is her/his knowledge level of the 
depended domain concept B? ”, or “If the student's 
knowledge of concepts A, B and C improves, how 
is her/his knowledge of the depended concept D 
affected?”, or “If the student has misconceptions 
on the domain concept A, how is her/his 
knowledge level of the depended concepts B, C 
and D affected?”. 
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In other words, they must represent how the 
knowledge of a domain concept of the teaching 
material, may be affected by the knowledge of 
another domain concept [4]. 

Because of the above-mentioned reasons, two 
of the main activities within the domain module are 
the detection of the dependency between the key 
concepts of a given subject, and the detection of 
students’ expertise level in each of the key 
concepts. These two activities have the purpose of 
guaranteeing that the implemented educational 
designs are adequate for learning achievement. 

These designs are teaching processes whose 
implementation is not easy without help from 
automatized tools such as intelligent tutoring 
systems. For this research, in particular we are 
focusing on systems for algebra teaching and 
differential calculus, through problems solving 
using fuzzy cognitive maps, for represent the 
mental schemas that model dependencies 
between key concepts of domain. 

The paper is organized of next form, in section 
2, a description of basic concepts is made. In 
section 3, the description of models used in the 
paper are showed. Finally, in the section 4, a 
description of results is explained.  

2 Basic Concepts 

2.1 Cognitive Maps as the Basis of FCM 

Political scientist Robert Axelrod (1976) introduced 
cognitive maps in the 1970s for representing social 
scientific knowledge. Robert Axelrod was the first 
to use the term in reference to the content and 
structure of individuals’ minds, thereby shifting its 
applied meaning from referring to a map that is 
cognitive, to a map of cognition. 

Using Axelrod’s definition, cognitive maps are 
visual representations of an individual’s ‘mental 
model’ constructs, and are therefore analogous to 
concept maps that represent a person’s structured 
knowledge or beliefs [1, 9, 16]. 

Cognitive mapping means knowledge 
projection, and a cognitive map is basically a 
dynamical associative network which consists of 
nodes and directed arcs such that the nodes 
represent information associated with domain 

knowledge and the directed arcs represent cause-
effect relationships between each pair of nodes [9]. 

In the signed digraphs of Axelrod's cognitive 
maps, a positive edge from node A to node B 
means A causally increases B. A negative edge 
from A to B means A causally decreases B [1,15]. 
This type of systems could be seen as graphs that 
handle causal relations with values of -1 or 1  (see 
Fig 1),  this means that the causal increment of one 
node over another is total, that is, it is considered 
that when the concept of origin node. A is fully 
increased and the weight associated to the edge 
connecting the source node to the destination node 
is 1 (Fig 1a), then it is interpreted as if the increase 
in the concept of the destination node B is also 
total. On the contrary, if the weight associated to 
the edge connecting the two nodes is -1 (Fig 1b), 
then when the value of the origin node A is fully 
increased, of destination node B is fully 
decreasing. However, this feature would not be 
including the full feature of fuzzy values, since in 
general, cognitive maps are too binding for 
knowledge base building and because causality is 
usually fuzzy. FCMs combine the strengths of 
cognitive maps with fuzzy logic. 

By representing human knowledge in a form 
more representative of natural human language 
than traditional concept mapping techniques, 
FCMs ease knowledge engineering and increase 
knowledge-source concurrence. FCMs can also be 
modeled on computers, thus allowing for dynamic 
modeling of cognitive systems [13, 16]. 

The fuzzy indicates that FCMs are often 
comprised of concepts that can be represented as 
fuzzy sets and the causal relations between the 
concepts can be fuzzy implications, conditional 
probabilities, etc. In general, the edges Eij can take 
values in the fuzzy causal interval [−1, 1] allowing 

 

Fig. 1. Cognitive maps with causal relation with values 
-1 or 1 

A B
+1

A B

-1
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degrees of causality or weights to be represented 
[17, 13, 16]: 

– Ejk > 0 indicates direct (positive) causality 
between concepts Cj and Ck. That is, the 
increase (decrease) in the value of Cj leads to 
the increase (decrease) on the value of Ck. 

– Ejk < 0 indicates inverse (negative) causality 
between concepts Cj and Ck. That is, the 
increase (decrease) in the value of Cj leads to 
the decrease (increase) on the value of Ck. 

– Ejk < 0 indicates inverse (negative) causality 
between concepts Cj and Ck. That is, the 
increase (decrease) in the value of Cj leads to 
the decrease (increase) on the value of Ck. 

2.1.1. Modeling Fuzzy Cognitive Maps 

For FCM reasoning process, a simple 
mathematical formulation is usually used. A model 
implication converges to a global stability, 
equilibrium in the state of the system. During the 
inference process, the sequence of patterns 
reveals the inference model. The simplicity of the 
FCM model consists in its mathematical 
representation and operation. So a FCM, which 
consists of n concepts, is represented 
mathematically by a n state vector A, which 
gathers the values of the n concepts, and by a n × 
n weighted matrix E. Each element Eij of the matrix 
indicates the value of the weight between concepts 
Ci and Cj. The value Ai of each concept Ci in a 
moment k + 1 is calculated by the sum of the 
previous value of Ai in a precedent moment t with 
the product of the value Aj of the cause node Cj in 
precedent moment k and the value of the cause-
effect link eij. The mathematical representation of 
FCMs has the following form [1, 5, 17, 18]: 

𝐴𝑖(𝑘 + 1) = 𝑓 (𝐴𝑖(𝑘) + ∑ 𝐴𝑖(𝑘) ∙ 𝑒𝑗𝑖

𝑁

𝑗=1

) , (1) 

where f (·) is a threshold (activation) function. 
Sigmoid threshold function gives values of 
concepts in the range [0, 1] and its mathematical 
type is: 

𝑓(𝑥) =
1

1 + 𝑒−𝑚∙𝑥
 , (2) 

where m is a real positive number and x is the 
value A(k)

i on the equilibrium point. 
The transformation function is used to reduce 

unbounded weighted sum to a certain range, which 
hinders quantitative analysis, but allows for 
qualitative comparisons between concepts [5]. The 
main reason why this function is used is the same 
reason why the same function is used in artificial 
neural networks:  goal is to describe human 
reasoning, and the sigmoid function provides a 
good approximate description of how similar 
processing in performed by the biological neurons 
in the brain [20]. 

FCM can be used to answer a “what-if” question 
based on an initial scenario that is represented by 
a vector S0 = {si}, for i = 1 . . .n, where si = 1 
indicates that concept Ci holds completely in the 
initial state, and si = 0 indicates that Ci does not 
hold [18]. 

To characterize a real-life system, we must 
know its properties. Some of these properties 
come from measurements and, thus, are 
represented by real numbers. However, in many 
cases, a large amount of information comes from 
expert estimates[20]. The development of a FCM 
often occurs within a group context. The 
assumption is that combining incomplete, conflict 
opinions of different experts may cancel out the 
effect of oversight, ignorance and prejudice. An 
expert draws a FCM according to his experience. 
That is, each expert provides its individual FCM 
matrix, which is then synthesized into a group FCM 
matrix. The group matrix (EG) could be computed 
as [18]: 

𝐸𝑗𝑖
𝐺 = 𝑚𝑎𝑥𝑡{𝐸𝑗𝑖

𝑡 },    

∀ 𝑡 = 1  𝑡𝑜 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑥𝑝𝑒𝑟𝑡𝑠 (𝑁𝐸),  

or                       𝐸𝑗𝑖
𝐺 = ∑ 𝑏𝑡𝐸𝑗𝑖

𝑡𝑁𝐸
𝑡=1  , (3) 

where Et
ji is the opinion of the expert t about the 

causal relationship among Cj and Ci, and bi is the 
expert’s opinion credibility weight. 

In a distributed system, a FCM is constructed 
for each subsystem. Then all FCM are combined 
in one augmented matrix E for the whole system. 
The unification of the distinct FCMs depends on 
the concepts of the segmental FCM. If there are no 
common concepts among different maps, the 

Computación y Sistemas, Vol. 24, No. 2, 2020, pp. 539–551
doi: 10.13053/CyS-24-2-3378

Blanca Estela Pedroza Méndez, Juan Manuel González Calleros, Carlos Alberto Reyes García, et al.542

ISSN 2007-9737



combined matrix E is constructed according to the 
equation (4) and the dimension of the matrix E is 
the total number of distinct concepts in all the 
FCMs [18]: 

𝐸 = [

𝐸1  0 … 0 

0 𝐸2    … 0
0 0    … 0
0 0    … 𝐸𝑛

] . (4) 

2.1.2. Fuzzy Cognitive Maps in Education 

The areas and applications in which cognitive 
maps can be used are diverse. Even though the 
number of projects conducted in the field of 
education is still reduced, cognitive maps are a 
very useful tool, for they represent a kind of 
distributed intelligence since they can be seen as 
artifacts constructed to download complex tasks, 
structure activities, save mental work, and 
avoid mistakes. 

When a graphical representation of a domain is 
created, cognitive maps release the user from 
having to keep such representation within his 
working memory, thus, freeing cognitive resources 
so they can be used for content interpretation and 
analysis [15], and for generating a structure that 
CLT denominates Cognitive Learning Schema. 
This schema will be useful for the tutor for the 
creation of the structure of the dependencies 
between the key knowledge concepts of 
the domain. 

This is the main objective of this paper, where 
the domain is the comprehension of algebra topics 
for problem solving. The fuzzy part is made up from 
opinions from teachers with experience in the 
teaching of algebra, thus, transforming the 
cognitive graph into a fuzzy cognitive map and, at 
the same time, fulfilling the requisite of 
representing the knowledge of the experts.  

However, when working with the causal 
dependency between the knowledge levels that a 
student possesses on a particular domain subject, 
a situation may arise in which the increase in the 
concept of any of the nodes of the fuzzy cognitive 
map may not be total, as represented in equations 
1 and 2. Because of this, in these cases we should 
use a model that helps determine the causality 
between the nodes based on the dependency of 
the knowledge domain of the learning material. 

Chrisafiady et al. [4] define such model as a tuple 
(C, W, KL, f), where: 

1. C= {C1,C2, .. . Cn} is the set of concepts of the 
domain knowledge. 

2.  W: (Ci,Cj) →wij is a connection matrix, where 

wij is a weight of the directed ard from Ci to Cj, 
which denotes that the knowledge level of the 
concept Ci affects that of concept Cj. 

3. KL is a function that at each concept Ci 
associates the sequence of its activation 
degree. In other worlds, KLi(t) indicates the 
value of a concept’s knowledge level at the 
moment t. 

4. f is a transformation function. For the definition 
of the transformation function, the following 
limitation has to be taken into account. The 
knowledge level of a domain concept is 
affected, each time, only by the knowledge 
level of the most recently read concept. The 
reason for this is the fact that the learner’s 
knowledge level is affected either by the new 
knowledge that s/he has obtained, or by the 
knowledge that s/he has forgotten, each time. 
Consequently, the KL value of a concept is 
affected only by the KL value of the most 
recently read concept, regarding the weight of 
the directed arc that connects them. 
Therefore, the transformation function for a 
FCM, which is used to represent the domain 
knowledge of the learning material, is 
defined as: 

KLi(t+1)=f(KLi(t)±wji*pj*KLi(t)/100), (5) 

where pj is the percentage of the difference on the 
value of the knowledge level of the most recently 
read concept Cj, with pi = (KLj(t + 1)-
KLj(t))*100/KLj(t). Also, the + is used in case of 
increase and the – is used in case of decrease. 

2.1.3 Fuzzy Inference System 

Fuzzy inference system (FIS) is a popular 
computing framework based on the concepts of 
fuzzy set theory, fuzzy if-then rules, and fuzzy 
reasoning. It has found successful applications in 
a wide variety of fields, such as automatic control, 
data classification, decision analysis, expert 
systems, time series prediction, robotics, and 
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pattern recognition. The basic structure of a fuzzy 
inference system consists of three conceptual 
components: a rule base, which contains a 
selection of fuzzy rules; a database (or dictionary), 
which defines the memberships functions used in 
the fuzzy rules; and a reasoning mechanism, which 
performs the inference procedure upon the rules 
and given facts to derive a reasonable output or 
conclusion [21]. 

2.2 Tangible Interfaces 

Others elements that we can include in a ITS are 
the tangible user interface (TUI), an “interface that 
is concerned with providing tangible 
representations of digital information and controls, 
allowing users to quite literally to grasp data with 
their hands”. The original motivation behind TUIs 
was indeed to connect the physical world with the 
digital one by using physical artifacts, therefore 
keeping the richness of physical interactions. This 
was novel and contrary to the main trend that 
focused on forcing the user into a virtual world [22]. 
Rather than make pixels melt into an interface, 
TUIs use physical forms that fit seamlessly into a 
user’s physical environment. 

TUIs aim to take advantage of these haptic 
interaction skills, an approach significantly different 
from graphical user interfaces (GUIs). The key TUI 
idea remains: give physical form to digital 
information, letting it serve as the representation 
and controls for its digital counterparts. TUIs make 
digital information directly manipulatable with our 
hands and perceptible through our peripheral 
senses through its physical embodiment [23]. An 
example of a project that considers the 
management of tangible interfaces in virtual worlds 
is presented by Guerrero et all [24]. The main 
objective of this project was to do a study to assess 
whether the use of virtual worlds and tangible 
interfaces is beneficial for student learning when 
compared to more traditional forms of learning. 

2.3 Model for Evaluation of Learning 

Cognitive ability is closely related to learning 
acquisition and is the basis for developing 
instructional strategies, and their preferences are 
the basis for developing the type of mentoring [25]. 

For this reason, if we want to implement a 
strategy for the automatic detection of cognitive 
ability, we need an analytical model, which, 
through the management of instruments or rubrics, 
can in some way measure or assign a value to the 
cognitive ability. So that in this way a strategy can 
be implemented that can propose instructional 
designs according to these measurements. 

Rongmei propose an analytical model, 
combined with fuzzy logic to categorize somehow 
students based on their cognitive ability and 
propose a model that is able to make the 
appropriate instructional design decision to the 
student, based on their progress. This model is the 
one that is being implemented in the part of the 
detection of the student´s cognitive ability in 
problem solve, of the proposal of this paper. The 
evaluation model can be expressed via a triple, 
such as formula 6 [25]: 

M=（U, V, A), (6) 

where, U = (u1, u2, u3, u4, u5, u6), each element 
is respectively considered as the weight of one of 
the six evaluation indexes in this meta knowledge 
points, which is given by the experts. V= (v1, v2, 
v3, v4, v5), these elements respectively stand for 
five reviews: excellent, good, medium, passed and 
fail, which is based on both the results of cognitive 
ability synthetic evaluation and the test. 

A is a matrix where each line has the 
following form: 

𝐴𝑖 = (𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5, 𝑎6) , (7) 

where 𝑎𝑖 are values between 0 and 1 and are 
define as: 

𝑎𝑖 =
𝑟𝑖𝑗(1)

𝑟𝑖𝑗(1) + 𝑟𝑖𝑗(0) + 𝑟𝑖𝑗(−1)
, (8) 

rij(1) is defined as the number of correct answers 
of the student in each of the cognitive abilities, rij 
(0) is the number of unanswered questions and rij 

(-1) is the number of incorrect answers in each of 
the cognitive skills. 

Computación y Sistemas, Vol. 24, No. 2, 2020, pp. 539–551
doi: 10.13053/CyS-24-2-3378

Blanca Estela Pedroza Méndez, Juan Manuel González Calleros, Carlos Alberto Reyes García, et al.544

ISSN 2007-9737



Finally, M is defined as: 

𝑀 = ∑ 𝑔𝑖 ∗ 𝑢𝑖

6

𝑖=1

 , (9) 

where: 

𝐺 = 𝑊 ∙ 𝐴 = (𝑔1, 𝑔2, 𝑔3, 𝑔4, 𝑔5, 𝑔6) , (10) 

and W defines the weight of each rubric, this is: 

𝑊 = (𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤5, … 𝑤𝑛) . (11) 

2.4 State of Art of Works on FCM in Education 

In the educational context, models related to 
cognitive maps are used to generate tools related 
to the teaching - learning process, due to their 
ability to simulate and predict causal behaviors 
related to students' learning behavior. In this way, 
in [3], the authors propose some new dimensions 
of adaptively like automatic and dynamic detection 
of learning styles and provides 
personalization accordingly.  

It has advantages in terms of precision and time 
spent. It is a literature-based approach, in which a 
personalized adaptive learner model (PALM) was 
constructed. Fuzzy cognitive maps and fuzzy 

inference system a soft computing techniques 
were introduced to implement PALM. 

For its part in [26] a learning assessment 
system that uses multivariate analysis based on 
structural equation modeling and fuzzy cognitive 
maps as a tool. The main aim of the proposed 
system is to facilitate assessment of learning on 
interactive environments. 

An adaptive and/or personalized tutoring 
system is an approach in which the domain 
knowledge should be represented in a more 
realistic way in order to allow the adaptive and/or 
personalized tutoring system to deliver the learning 
material to each individual learner dynamically 
taking into account her/his learning needs and 
her/his different learning pace. Peña and Sosa [27] 
use Rules-based Fuzzy cognitive maps so that 
through a decision-making approach they offer 
decision-making services to the sequencing 
module of an intelligent and adaptive web-based 
educational system (AIWBES). 

Student-centered education aims at tailoring 
educational curricula, lectures and evaluation to 
satisfy students’ needs. In this way, an AIWBES is 
able to adapt intelligently interfaces, content, tests, 
support, and assessments according students’ 
likings and constraints with the purpose of 
enhancing their learning. In [4] the authors make 

 

Fig. 2. Iterative process with fuzzy models 
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use of fuzzy cognitive maps for representing 
graphically the information of domain concepts that 
constitute the learning material, as well as the 
knowledge representation approach has to allow 
the system to recognize either the domain 
concepts that are already partly or completely 
known for a learner, or the domain concepts that 
s/he has forgotten. 

3 Description of the Models 

The process that should be followed in the domain 
module is shown in figure 2 [28]. It is an iterative 
process consisting of three main processes for 
enhancing knowledge of topics of interest: 1) 
evaluation (“expertise reversal” effect); 2) cognitive 
map modeling; and, 3) assignment of different 
types of problems (“worked examples” effect). 

3.1 Evaluation Process  

For the evaluation process the fuzzy model, based 
on Bloom’s taxonomy, has already been published 
[29]; however, in this paper, the objective is 
focused to how obtain, automatically, input data for 
the fuzzy model. Is in this stage that we propose 
the use of networked tangible interfaces. Interfaces 
that, through game management, challenges or 
the physical representation of basic concepts of 
algebra and differential calculus, can obtain 
evidence of the student's progress in each subject. 
The first prototype, focused to evaluation of topic 
of algebra, is an interface that simulate a 
memorama game. 

The prototype is connected to an electronic 
card, which stores game information, and by using 
electronic radio frequency cards; the association of 
algebra concepts can be simulated. In figure 3, the 
memorama prototype is showed. Another 
prototype for algebra issues is the one shown in 
figure 4, which helps evaluate the management of 
addition and subtraction with positive and negative 
numbers. In addition, for differential calculus 
issues, a prototype was implemented to help 
assess the student's abilities in identifying points 
on the Cartesian axes (figure 4). 

The objective of this project is to have a model 
to evaluate automatically the student with the data 
that is stored in the prototypes of tangible 

interfaces. Likewise, prototypes can also be used 
to help students reinforce various concepts, both of 
algebra and differential calculus, in a more 
interactive, graphic and tangible way. 

Currently we are working on the reproduction 
and improvement of prototypes, so that, with the 
interconnection of prototypes through a Wi-Fi 
module, a local network can be designed, in which 
the teacher's personal computer functions as 
a server. Therefore, it will be on the teacher's 

 

Fig. 3. Prototype for memorama game 

 

Fig. 4. Prototype for operations with positive and 

negative numbers 

 

Fig. 5. Prototype to locate coordinates in the 
Cartesian axes 
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computer where the database of Figure 2 and the 
fuzzy models proposed as part of this research 
are stored. 

3.2. Fuzzy Cognitive Maps for the Second 
Process 

For the second process, modeling cognitive maps, 
two maps are proposed, one for the management 
of algebra issues and another for the management 
of differential calculus issues. For algebra, 5 topics 
are considered and for differential calculus, 4 
topics are considered, which are shown in figures 
6 and 7, as part of the fuzzy cognitive maps that 
are proposed, indicating the values of the edges, 
obtained from the opinion of teachers who they 
teach these subjects. 

Formally, using the elements described in 
section 2.1.2 of this paper, the set C for the 
cognitive map of algebra, which we denote by Ca 
is defined as: 

Ca = { Ca1:Identify algebraic language;  

Ca2: Notation and classification of algebraic 
expressions; 

Ca3: Algebraic representation of expressions in 
common language; 

Ca4: Interpretation of algebraic expressions; 

Ca5: Numerical evaluation of algebraic 
expressions}. 

And for the cognitive map of differential 
calculus, which we denote by Cd is composed of: 

Cd = {Cd1: function handling in Cartesian axes; 

Cd2: Linear and quadratic functions; 

Cd3: Pending of a line; 

Cd4: Obtaining the formula of derivative by 
means of the formula of pending of the tangent}. 

In this way, the matrix of weights for each 
cognitive map is defined as shown in Table 1 and 
2 respectively. The number of rows of this matrix is 
equal to the number of columns, and it is equal to 
the number of the nodes (domain concepts) that 
are depicted to the FCM. The values of the directed 
arcs of the FCM are written into the cells of 
the matrix. 

The matrix is completed row by row. The value 
of the “strength of impact” of the domain concept 
that corresponds to the matrix’s row i on the 
domain concept that corresponds to the matrix’s 
column j is written into the matrix's cell (i, j). 

For example, the value of the “strength of impact” 
of the domain concept C1 on the domain concept 
C3, which are depicted in figure 6 or figure 7, is 
written in the corresponding matrix's cell (1, 3) 
(Table 1 or Table 2). The values of the matrix’s 
main diagonal are zero, since changes on the 
knowledge of a domain concept cannot affect the 
domain concept itself [4]. If a row of the matrix is 
read, then information about the domain concepts 
that are affected by the concepts which 
corresponds to the particular row, as well as about 
its “strength of impact” on them, will be extracted.  

For example, if the second row of the matrix that 
is depicted in Table 1 is read, then information 
about the fact that changes on the knowledge level 
of the domain concept C2 affects at 93% the 
knowledge level of the domain concept C1 and at 
40% the knowledge level of the domain concept 
C3, will be extracted. If a column of the matrix is 
read, then information about the domain concepts 
that affect the concept, which corresponds to the 
particular column, as well as about the “strength of 
impact” of them on it will be obtained. 

According to the matrix that is depicted in Table 
1, if the knowledge level of the domain concept 
Ca4 is increased, then the knowledge level of the 
domain concepts Ca1, Ca2, Ca3 and Ca5 will be 
increased also, but not in the same degree. 
According to the transformation function of the 
FCM (Equation 5, section 2.1.2) the following will 
be happened: 

KL1(t+1) = KL1(t) + 0.55*p4*KL1(t)/100, 

KL2(t+1) = KL2(t)+0.29*p4*KL2(t)/100, 

KL3(t+1) = KL3(t)+0.51*p4*KL3(t)/100, 

and KL5(t+1) = KL5(t)+0.4*p4*KL5(t)/100. 

4 Discussion and Results 

In general, the alterations of the knowledge level 
value of a concept causes change on the 
knowledge level value of its related concepts. In- 
crease of the value of a concept causes increase 
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of the value of its related concepts or decrease of 
the value of a concept causes decrease on the 
value of its related concepts. These alterations are 
conducted according to the transformation function 
of the FCM, and indicate the progress or no-
progress of the learner.  

For example, if the knowledge level of the 
domain concept “Identify algebraic language” for a 
learner is increased at x%, then her/ his knowledge 
level of all the related concepts. With this, it will be 
increased as it is presented in first column of Table 
3, for  x=55%, then the knowledge level of the 

Table 1. W-matrix with knowledge dependencies among algebra topics 

 Ca1 Ca2 Ca3 Ca4 Ca5 

Ca1 0 0.8 0.3 0.7 0.36 

Ca2 0.93 0 0.4 0.5 0.25 

Ca3 0.61 0.6 0 0.5 0.31 

Ca4 0.55 0.29 0.51 0 0.4 

Ca5 0.31 0.24 0.3 0.4 0 

Table 2. W-matrix with knowledge dependencies among differential calculus topics 

 Cd1 Cd2 Cd3 Cd4 

Cd1 0 0.2 0.2 0.15 

Cd2 1 0 0.5 0.45 

Cd3 1 0.7 0 0.8 

Cd4 1 1 1 0 

Table 3. Behavior of knowledge level of the depend concepts, from increase of 55 % of Ca1 

Domain concept Increase 

Wij * pi 

Knowledge Level 

(moment t) 

Knowledge Level 

(moment t) 

Ca2 0.8*0.55 0.68 0.97→97% 

Ca3 0.3*0.55 0.76 0.88→88% 

Ca4 0.7*0.55 0.42 0.58→58% 

Ca5 0.36*0.55 0.35 0.41→41% 

Table 4. Behavior of knowledge level of the depend concepts, from decrease of 30 % of Ca5 

Domain concept Decrease 

Wij * pi 

Knowledge Level 

(moment t) 

Knowledge Level 

(moment t) 

Ca1 0.31*0.30 0.75 0.65→65% 

Ca2 0.24*0.30 0.64 0.59→59% 

Ca3 0.3*0.30 0.55 0.50→50% 

Ca4 0.4*0.30 0.47 0.41→41% 
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related concepts will become as it is depicted in the 
others columns of Table 3. Here we assume that 
at the moment t (column 2), the student has a 
mastery of 68% for topic 2, 76% for topic 3, 42% 
for topic 4 and 35% for topic 5 of the map in Figure 
6. Column 2 is the one that represents the initial 
vector S0, which is discussed in section 2.1.1 of 
this paper. 

In the same way, just as the increase in the 
level of knowledge can be modeled, the fuzzy 
cognitive map model can model the situation of a 
decrease, which, we would expect it not to happen, 
however, this can simulate the situation in which, a 
student forgets some concepts or processes. For 
example, Table 4 shows the case in which there is 
a decrease of the 30%, in the subject related to the 
“numerical evaluation of algebraic 
expressions” (Ca5). 

5 Conclusions 

The dependency between several algebra topics 
and differential calculus, as well as the relationship 

with problem solving, was modeled through a 
series of cognitive maps. It can be observed from 
the results shown that applying a variant of the 
original model proposed by Kosko a model that 
converges into an optimal vector using several 
incremental factors for each of the concepts 
related to the different subjects of algebra 
is obtained. 

This allows us to simulate the dynamic behavior 
of the students’ learning process (“expertise 
reversal” effect), and to determine the kind of 
problems that should be offered to them as 
exercises to enhance their learning (“worked 
examples” effect). The latter is a process in which 
work is beginning. 

The execution of the cognitive map 
convergence process has only been conducted to 
analyze the diverse combinations of input 
parameters. 

However, the goal is to obtain real data from 
several students that may serve as an input vector 
for map modelling and, thus, obtain the parameters 
that will help in the training of the model that will 
assign the problems and topics in which the 

 

Fig. 6. Fuzzy Cognitive Map for algebra topics 

 

Fig. 7. Fuzzy Cognitive Map for differential topics 

Table 5. Behavior of knowledge level of the depend concepts, from increase of 68 % of Ca5 

Domain concept Decrease 

Wij * pi 

Knowledge Level 

(moment t) 

Knowledge Level 

(moment t) 

Ca1 0.31*0.30 0.75 0.65→65% 

Ca2 0.24*0.30 0.64 0.59→59% 

Ca3 0.3*0.30 0.55 0.50→50% 

Ca4 0.4*0.30 0.47 0.41→41% 
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student should work in. All this, in order to achieve 
the final objective, which is to solve completely and 
autonomously every problem in each module, 
which will occur when the vectors associated to 
evaluation contain values that represent a total 
comprehension of every one of the concepts. This 
will be the vector, to which all fuzzy cognitive maps 
should converge. This way, the efficiency of the 

domain module could be evaluated. 
For the FCM of Figure 7, an example with an 

increase of x= 68%, for the concept “Pending of a 
line” with the initial vector of the column 2, is 
showed in Table 5, and an example with a 
decrease of x= 46%, for the concept “Linear and 
quadratic functions” is showed in Table 6.  

Acknowledgements  

This work has been funded by Tecnoógico 
Nacional de México / Instituto Tecnológico de 
Apizaco and Benemérita Universidad Autónoma 
de Puebla. 

References 

1. Kosko, B. (1986). Fuzzy cognitive maps. 
International Journal of Man Machine Studies, Vol. 

24, No. 1. pp. 65–75. DOI: 0.1016/S0020-7373 
(86)80040-2. 

2. Papageorgiou, E.I. & Salmeron, J.L. (2013). A 

review of fuzzy cognitive maps research during the 
last decade. IEEE Transactions on Fuzzy Systems, 
Vol. 21, No. 1, pp. 66–79. DOI: 10.1109/TFUZZ. 
2012.2201727. 

3. Sweta, S. & Lal. K. (2017). Personalized Adaptive 

Learner Model in E-Learning System Using FCM 
and Fuzzy Inference System. International Journal 
of Fuzzy Systems, Vol. 19, pp. 1249–1260. DOI: 
10.1007/s40815-017-0309-y. 

4. Chrysafiadi, K. & Virvou, M. (2013). A knowledge 

representation approach using fuzzy cognitive 
maps for better navigation support in an adaptive 
learning system. Springerplus, Vol. 2, pp. 81. DOI: 

10.1186/2193-1801-2-81. 

5. Papageorgiou, E.I. & Salmeron, J.L.  (2014). 

Methods and algorithms for fuzzy cognitive map-
based modeling. Fuzzy Cognitive Maps for Applied 
Sciences and Engineering, pp. 1–28. DOI: 10.1007/ 
978-3-642-39739-4_1. 

6. González, C., Mora, A., & Toledo, P. (2014). 

Gamification in intelligent tutoring systems. 
Proceedings of the Second International 
Conference on Technological Ecosystems for 
Enhancing Multiculturality, TEEM’14, pp. 221–225. 
DOI: 10.1145/2669711.2669903. 

7. Salden, R.J.C.M., Aleven, V., Schwonke, R., & 
Renkl, A. (2010). The expertise reversal effect and 

worked examples in tutored problem solving. 
Instructional Science, Vol. 38, pp. 289–307. DOI: 

10.1007/s11251-009-9107-8. 

8. Salden, R.J.C.M., Koedinger, K.R., Renkl, A., 
Aleven, V., & McLaren, B.M. (2010). Accounting 

for beneficial effects of worked examples in tutored 
problem solving.  Educational Psychology Review, 
Vol. 22, pp. 379–392. DOI: 10.1007/ s10648-010-
9143-6. 

9. Carvalho, J.P. & Tomé, J.A.B. (1999). Rule based 

fuzzy cognitive maps and fuzzy cognitive maps–a 
comparative study. 18th International Conference of 
the North American Fuzzy Information Processing 
Society – NAFIPS. DOI: 10.1109/NAFIPS.1999. 

781665. 

10. Kalyuga, S. (2011). Cognitive load theory: how 
many types of load does it really need?. Educational 
Psychology Review, Vol. 23, pp. 1–19. DOI: 
10.1007/s10648-010-9150-7. 

11. Paas, F. & Ayres, P. (2014). Cognitive load theory: 

a broader view on the role of memory in learning 
and education. Educ. Psychol. Rev., Vol. 26, pp. 
191–195, DOI: 10.1007/s10648-014-9263-5. 

12. Kalyuga, S. & Sweller, J. (2004). Measuring 

knowledge to optimize cognitive load factors during 
instruction. Journal of Educational Psychology, 
Vol. 96, No. 3, pp. 558–568. DOI: 10.1037/0022-
0663.96.3.558. 

13. Kalyuga, S. (2006). Assessment of learners’ 

organised knowledge structures in adaptive 
learning environments. Applied Cognitive 
Psychology, Vol. 20, No. 3, pp. 333–342. DOI: 
10.1002/acp.1249. 

14. Laureano-Cruces, A.L., Ramirez-Rodríguez, J., 
& Teran-Gilmore, A. (2004). Evaluation of the 

teaching-learning process with fuzzy cognitive 
maps. Advances in Artificial Intelligence-
IBERAMIA´04, Vol. 3315, pp. 922–931. DOI: 
10.1007/978-3-540-30498-2_92. 

15. Cole, J.R. & Persichitte, K.A. (2000). Fuzzy 

cognitive mapping: applications in education. 
International Journal of Intelligent Systems, Vol. 15, 
No. 1b, pp. 1–25. DOI: 10.1002/(SICI)1098-
111X(200001)15:1<1::AID-INT1>3.0.CO;2-V. 

16. Gray, S.A., Sanre, E., & Gray, S.R.J. (2014). Fuzzy 

cognitive maps as representations of mental models 

Computación y Sistemas, Vol. 24, No. 2, 2020, pp. 539–551
doi: 10.13053/CyS-24-2-3378

Blanca Estela Pedroza Méndez, Juan Manuel González Calleros, Carlos Alberto Reyes García, et al.550

ISSN 2007-9737

https://doi.org/10.1037/0022-0663.96.3.558
https://doi.org/10.1037/0022-0663.96.3.558


and group beliefs. Fuzzy Cognitive Maps for Applied 
Sciences and Engineering, Vol. 54. DOI: 

0.1007/978-3-642-39739-4_2. 

17. Groumpos, P.P. (2010). Fuzzy cognitive maps: 

basic theories and their application to complex 
systems. Fuzzy Cognitive Maps, Vol. 247, pp. 1–22. 
DOI: 0.1007/978-3-642-03220-2_1. 

18. Aguilar, J. (2005). A survey about fuzzy cognitive 
maps papers. International Journal of 
Computational Cognition, Vol. 3, No. 2, pp. 27–33. 

19. Dickerson, J.A. & Kosko, B. (1993). Virtual worlds 
as fuzzy cognitive maps. Presence: Virtual and 
Augmented Reality, Vol. 3, No. 2, pp. 173–189. DOI: 
10.1162/pres.1994.3.2.173. 

20. Kreinovich, V. & Stylios, C.D. (2015). Why fuzzy 
cognitive maps are efficient. Computer Sciences 
Commons, Vol. 10, No. 6, pp. 825–833. 

21. Jang, J.S.R., Sun, C.T., & Mizutani, E. (1997). 

Neuro-fuzzy and soft computing. A computational 
approach to learning and machine intelligence. 
IEEE Transactions on Automatic Control, Vol. 42, 

No. 10, pp. 1482–1484. 

22. Cuendet, S., Dehler-Zufferey, J., Ortoleva, G., & 
Dillenbourg, P. (2015). An integrated way of using 

a tangible user interface in a classroom. 
International Journal of Computer-Supported 
Collaborative Learning, Vol. 10, No. 2, pp. 183–208. 

DOI: 10.1007/s11412-015-9213-3. 

23. Ishii, H. (2008). The tangible user interface and its 
evolution. Communications of the ACM, Vol. 51, 
No. 6, pp. 32–36. 

24. Guerrero, G., Ayala, A., Mateu, J., Casades, L., & 
Alamán, X. (2016). Integrating virtual worlds with 

tangible user interfaces for teaching mathematics: a 
pilot study. Sensors, Vol. 16, No. 11, pp. 1775. DOI: 
10.3390/s16111775. 

25. Rongmei, Z. & Lingling, L. (2009). Research on 

internet intelligent tutoring system based on MAS 
and CBR. International Forum on Information 
Technology and Applications, Vol. 3, pp. 681–684. 
DOI: 10.1109/IFITA.2009.511. 

26. Barón, H.B., Crespo, R.G., & Pascual-Espada, J. 
(2015). Assessment of learning in environments 
interactive through fuzzy cognitive maps. Soft 
Computing, Vol. 19, pp.1037–1050. DOI: 10.1007/ 
s00500-014-1313-x. 

27. Peña-Ayala, A. & Sossa-Azuela, J.H. (2014). 

Decision making by rule-based fuzzy cognitive 
maps: an approach to implement student-centered 
education. Intelligent Systems Reference Library, 

Vol. 54, pp. 107–120. DOI: 10.1007/978-3-642-
39739-4_6. 

28. Pedroza-Méndez, B.E., Reyes-García, C.A., 
González-Calleros, J.M., & Guerrero-García, J. 
(2018). Fuzzy system inference and fuzzy cognitive 

maps for a cognitive tutor of algebra. pp. 1–8. 

29. Pedroza-Méndez, B.E., González-Calleros, J.M., 
& Juárez-Ruiz, E.L. (2016). Un modelo difuso para 
determinar el nivel cognitivo, usando la taxonomía 
de Bloom. pp. 2–5. 

Article received on 29/10/2019; accepted on 09/03/2020. 
Corresponding author is Blanca Estela Pedroza Méndez.

 

Computación y Sistemas, Vol. 24, No. 2, 2020, pp. 539–551
doi: 10.13053/CyS-24-2-3378

Fuzzy Models for Implement of the Decision-Making Module in Networked Didactic Prototypes 551

ISSN 2007-9737


