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Abstract. A Multi-Agent Problem (MAP) may be
seen as a class of planning and scheduling problems
with multiple interacting intelligent agants. These
problems may be naturally expressible and solveable
by means of solvers of such programming languages
as PROLOG. MAP is sometimes fuzzified because of a
vagueness of information, for example – about abilities
and preferences of interacting agents. Simoultane-
ously, MAP naturally stems from different variants of
Constraints Satisfaction Problems (CSP). This property
should be preserved in each fuzzy extension of
this problem. According to these requirements and
expectations a Fuzzy Multi-Agent Problem (FMAP) as
referred to CSP and its PROLOG-based solutions are
considered in the paper. Finally, a brief discussion
of the achieved solutions is also carried out. An
effectiveness of this PROLOG-based approach exploits
a multi-valency-based approximation of fuzziness in
programming contexts.

Keywords. Multi-agent problem, fuzzy multi-agent
problem, logic programming, PROLOG, simple temporal
problem under uncertainty.

1 Introduction

AMulti-Agent Problem (MAP) is usually identified
with a class of different problems of in Artificial
Intelligence (see: [28]) involved in a multiple of
interacting and intelligent agents. Despite of some
particular differences between problems from this
class, at least one of the two following properties
may be asssociated to them. It is A) an inventing
of the action sequence in order to perform a goal

or B) associating actions to agents that could be
performed by them due to their skills.

Although a conceptual provenance of different
problems under the banner MAP should be found
in a class of different optimizations problems,
such as: the so-called Nurse Job Scheduling
Problem (NJSP)1 – intensively explored in such
works of Nottingham’s school as: [3, 1, 5, 23,
21] – MAP remains close-related to Constraints
Satisfaction Problems (CSP). One can venture
to fomulate the thesis that MAP forms a unique
correlate of a simplified temporal variant of CSP
– the so-called Simple Temporal Problem (STP)
– introduced and broadly discussed together with
its extensions (STPU and STPP2) in such works of
Dechter-Khatib’s school as: [4, 15, 26, 18, 16, 29,
24, 11].

In practice, different combinations of MAP
with CSPs have been elaborated under the
banner of ’Multi-Agent Approaches to CSP’ – as
described in [19, 22, 20, 30]. These (usually
sophisticated) synergic combinations have either
a nature of asychronous solvers, such as: Asyn-
chronous Backtracking (ABT) or Asynchronous
Weak-Commitment Search (AWCS) – due to [30]
or a character of distributed local search methods,
such as: Distributed Brekout Algorithm (see: [30])

1This problem is also called Nurse Rostering Problem. NSP
constitutes a classical optimization problem. Its objective is
to determine the rotating shifts of the nursing shifts over a
scheduled period (weekly or monthly)- see:[6].

2STPU forms an abbreviation from ’Simple Temporal
Problem under Uncertainty’ and STPP – from ’Simple Temporal
Problem with Preferences’.
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or Environment, Reactive rules and Agents (ERA)
approach (see: [19]). It appears that MAP in
the context of CST forces some new special
requirements imposed both on agents activity and
for their mutual interaction. For example, in ABT
– each agent performs a distributed version of of
the backtracking in asynchronous way and a total
order among agents is required. In contrast –
in ERA, agents move synchronously and cannot
operate in the domain of other agents, etc. (see:
[19].) Finally, an idea of the combination of
MAP with CSP found its reflection in a synergic
definition of Distributed Constraint Satisfaction
Problem (DisCSP) as an algebraic foundation of
the Multi-Agent CSP approach.

MAP sucessfully finds its programming-wise
reflection in such languages of a declarative
paradigm as PROLOG, Answer Set Programming
(ASP) or – recently – in Bousi-PROLOG, which
integrates fuzzy logic and logic programming for a
use of dealing with approximate reasoning – due to
ideas from [7, 8].

Meanwhile, an inherent nature of NJSP – as
a conceptual foundation of MAS – sometimes
required a piece of fuzziness because of a
need to grasp vaguenees of information (for
example, about the hospital objectives or personal
preferences). Thus, a kind of a fuzzified MAP
(FMAP) seems to be expected in order to provide
a high quality scheduling tasks. A new step
towards a fuzzification of NJSP involved in fuzzy
goal programming (GP) models has recently been
proposed in [2, 25].

Anyhow, it seems that fuzziness may be
introduced in different manner to the optimization
problems. In the context of MAS, it may
be naturally introduced by different (sometimes
unknown) degrees of ability of agents to perform
their tasks. A similar comprehension of FMAP is
just proposed in this paper.

1.1 The Paper Motivation

Independently of a visible success of the Multi-
Agent Approaches to CSP and of a still increasing
effectiveness of different specified algorithms,
solvers and variants of dynamic programming,

some difficultes of the proposed approches may be
easily detected.

A Nurse Scheduling Problem – as a basis
of Multi-Agent Problem should be rather
seen a basis reservoir of possible, more
specified formulations and it still waits for a
more advanced fuzzy complementation. In
particular:

— Admittedly, Ernst’s approach in [5] is
mathematically general, but it refers to
some simplified situations.

— In contrast, Lepegue’s approach from
[17] is pretty detailed, but formalization
of possible temporal constraints in it
seems to be too excessive and it is
counterintuitive.

— Finally, a fuzzification from [25] more
predicts some results than puts forward
them in detail.

B It is not completely clear how to relate MAP to
the simplified temporal CSP in terms of STP
and its different extensions – as defined in [4,
15, 29, 24].

C It seems that a fuzzy and multi-valued
logic-based approach to combining CSP with
other ’entities’ of fuzzy temporal-reasoning,
such as preferences – due to [13, 12, 11,
10, 14] – does not indicate any appropriate
method to grasp MAP in their contexts.

D It also seems – due to author’s best knowledge
– that no explicit approach to fuzziness has
been proposed in the contaxt of MAP on the
conceptual level.

E Finally, an expressive power of PROLOG and
its solvers has not yet been completely
explored with respect to any fuzzified version
of MAP – independently of a variety of modern
alternative tools (such as GP, ADOPT) used
for a fuzzified NJP or Multi-Agent Constraints
Satisfaction (see:[25, 19, 2].)

Meanwhile, the choice of the PROLOG-solvers in
the context of FMAP requires a brief justification
in the light of the fact that Bousi-PROLOG is
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just addressed to model vague knowledge and
approximate reasoning. The solution is dictated by
two facts. At first, development of Bousi-PROLOG
still remains in progress, so it is relatively difficult to
evaluate its expressive power. Secondly, exploting
of PROLOG itself allows us to deeply recognize an
expressive power and some adequacy of PROLOG
for representation of FMAP and its workable
subcases. Investigations of the paper partially
stem from research presented in [9].

1.2 The Objectives of the Paper and its
Organization

According to the requirements and needs, just
formulated, and slightly against the tendency of
the technology-oriented research on Multi-Agent
Constraints Satisfaction – the paper forms a
unique return to the conceptual foundation of
the considered issues. In fact, this paper will
be devoted to a new formulation of Multi-Agent
Problem (MAP) and its fuzzy extension (FMAP).
The newly introduced FMAP and DisCSP will
be also referred to STPU as their conceptual
correlates in order to detect some important
similarities and discrepancies between them.
Finally, some workable subcases of FMAP will
be solved by means of PROLOG machinary. In
addition, complexity of these solutions will be
briefly discussed.

Novelty of the paper with respect to earlier
approaches consists in:

N1 proposing a fuzzy modification of MAP – both
in a practical and in a slightly genral depiction,

N2 describing both MAP and FMAP as a
synergy syntesis of planning and scheduling
components in a referrence to both STPU
and DisCSP,

N3 detecting both similarities and discrepancies
between FMAP and STPU and DisCSP.

N3 considering the PROLOG-solvers for some
workable fuzzy cubcases of FMAP.

The rest of the paper is organized as
follows.Section 2 introduces a terminological
background of the paper analysis. Section 3
contains both the (more) practical depiction of
MAP, its generalization and FMAP. Finally, a brief
taxonomy of different constraints imposed on these
problems is also put forward here. Section 4
is devoted to the programming-wise aspects of
FMAP. Section 5 contains closing remarks.

2 Terminological Background

Before we move to the main body of the paper, we
preface our analysis by introducing the concepts
of STP and STPU as further extension of STP.
The terminological framework determined by these
concepts allows us to better grasp a conceptual
specificity of both MAP and FMAP, introduced in
detail in Section 3.

Simple Temporal Problem3 forms such a simple
subproblem of TCSP that all constraints are
specified by a single interval. More formally, STP
constitutes the kind of the Constraints Satisfaction
Problem, where a constraint between time-points
Xi and Xj is represented in the constraint graph
as an edge Xi → Xj , labeled by a single interval
[a, b] that represents the constraint:

a ≤ (Xj −Xi) ≤ b. (1)

Solving STP – due to [24] – means to find an
assignment of values to variables such that all
temporal constraints are satisfied. It appears that
STPs can be solved in polynomial time, whereas
the complexity of a general TCSP belongs to a
class of NP-problems4.

In [29] STP was extended by considering
contingent events, whose occurrence is somehow
controlled by exogenous factors sometimes re-
ferred to ’Nature’. In this way we introduce Simple
Temporal Problem under Uncertainty (STPU)
as a further specification of STP, which still

3The conceptual basis of this chapter presentation makes
use the following works [4, 15, 29, 24].

4STP may be also associated to the so-called distance edge-
weighted graphG = 〈V ,E〉 with V is a set of vertices andE – a
set of edges between them, where each edge i → j (between
vertices i, j) is labeled by a weight a, representing the linear
constrain (Xj −Xi) ≤ a
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Requirement constraints:          Finish of delivering  
              

Contingent constraints:  

            [20,30] 

Executable and contingent                

Begin of delivering  

         Time points:                 documents 

 

          [0,10]  

   

Begin of preparing documents [40,50]                                                          

Finish of 

delivering 

documents 

Finish of 

preparing 

documents 

Fig. 1. An example of STPU

preserves some important point of the STP-based
conceptualization (such as a controllability of start
points of an agent activity).

Nevertheless, the end times (end time points)
are divided into two classes: required (require-
ments) (’free’ in [29]) and the contingent ones.
It immediately introduces a distinction between
STPU-variables for the executable, required and
contingent time points. The first ones – are
associated to performing agents, the second ones
– are assigned by ’external’ worlds (factors).

Definition 1. (STPU.) A Simple Temporal Problem
with Uncertainty (STPU) is such a 4-tuple N =
〈Xexec,Xcont,Reqr,Rcont〉 that:

Xexec = 〈e1 . . . , ek〉: is the set of executable time-
points,

Xcont = 〈c1 . . . , ck〉: is the set of contingent time-
points,

Rreq - set of required constraints ,

Rcont - set of contingent requirements .

Example. Consider the following scenario
connected to the following two activities:
preparing a documentation and
delivering this documentation to the
office. Assume that you can control their star

points, but you cannot completely control their
finishing. Assume also that you want to deliver
a documentation relatively immediately after its
preparing. Again, you can control a beginning of its
delivering to the office, but you do not know where
it will be finished. The contingent and required time
points and possible constraints of this scenario are
depicted in Fig.1.

On a base of a general definition of CSP, the
following definition of DisCSP has been elaborated
in [30].

Definition 2. (DisCSP forms a 5-tuple
〈A,X,D,C,φ〉, where 〈X,D,C〉 is CSP, A is
a set of agents and φ : X → A forms a function
assigning variables from X to agents from A.

This generic formulation that combines a
multi-agent problem with CSP may be specified
towards some additional requirements imposed on
agent interaction and capabilities.

3 Multi-Agent Problem and Fuzzy
Multi-Agent Problem

In this chapter, our initial depiction of MAP will
be put forward, but its formulation is motivated by
Nurse Rostering Problem. This solution allows us
to grasp many intuitions that find their reflection in
a definition of FMAP and in the appplication-based
part of the paper. In order to make it, let us
note that each well-founded depiction of MAP must
satisfy the following general criteria.

C1 A finite (non-empty) of agants schould
be given,

C2 Agents should be involved in some activities
in some time periods and subperiods (for
examples: days and shifts),

C3 There are some hard constraints imposed
on agant activities thatm must be absolutely
satisfied to perform the task,

C4 There are some soft constraints imposed on
agent activities that may be satisfied.
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Taking into account these general criteria, one
can formulate the following generic Multi-Agent
Problem as follows:

Multi-Agent Problem (MAP). Consider a factory
with n-agents working in a rhythm of the day-night
shifts: D–the day shift and N–the night shift.
Generally – each day at least one person must
work at the day shift and at least one – at the
night one. Each agent has "working shifts" and
"free shifts". These general rules of scheduling is
constraints in the following way.

HC1 The charm of the shift organization should be
fair: each agent must to have equally: 2 day-
shifts and 2 night-shifts.

HC2 Each agent can be associated to at most one
shift,

HC3 Some shifts are prohibited for agents,

HC4 Length of the shifts sequences associated to
each agent is restricted,

HC5 Quantity of the shifts in a scheduling period
is restricted,

HC6 Quantity of the shifts per a day is restricted.

The MAP consists in a construction of a scheduling
diagram, which respects all these constraints.

The constraints HC1-HC6 form an exempli-
fication of the so-called hard constraints as
these constraints, which should be satisfied in a
scheduling task. They ensure a feasibility of the
scheduling task. The soft constraints may not be
satisfied, but a degree of their satisfaction is a
measure how good is a performed plan. In order
to make the requirements with respect to the hard
constraints more liberal, the so-called relaxation,
i.e. a weakening of the strong constraints will be
used. We often use this solution, when satisfaction
of all hard constraints leads to an inconsistency.

A further relaxaction of requirements or expecta-
tions allows us to consider other entities, such as
preferences or fuzzy requirements. Only the last
ones will concern us is this paper. In general, the
fuzzy constraints might be the entities of a nature,
which introduces a kind of fuzzines to MAP.

The fuzziness may be determined by uncer-
tainty, partial observability, a lack of a complete
knowledge, etc. In this paper, a meaning of
’fuzziness’ is restricted to an existence of different
(usually unknown) degrees of agent ability to
perform their tasks in the context of MAP. All these
degrees determines a [0,1]-continuum with 0 as a
complete lack of such a disposition and with 1 as a
full disposition to perform the appropriate tasks.

In such a conceptual framework, Fuzzy
Multi-Agent Problem (FMAP) may be viewed as
Multi-Agent Problem equipped with additional
fuzzy requirements imposed on the task
performing. An exemplary, paradigmatic
formulation of FMAP is given as follows.

Fuzzy Multi-Agent Problem (FMAP). Consider
a factory with n-agents working in a rhythm of the
day-night shifts: D–the day shift and N–the night
shift. Generally – each day at least one person
must work at the day shift and at least one – at
the night one. Each agent has "working shifts" and
"free shifts". These general rules of scheduling is
constrained in the following way.

HC1 The charm of the shift organization should be
fair: each agent must to have equally: 2 day-
shifts and 2 night-shifts.

HC2 Each agent can be associated to at most
one shift,

HC3 Some shifts are prohibited for agents,

HC4 Length of the shifts sequences associated to
each agent is restricted,

HC5 Quantity of the shifts in a scheduling period
is restricted,

HC6 Quantity of the shifts per a day is restricted.

Assuming also an agent nk ∈ N and the
chosen (real) parametersm,M and α Different soft
constraints and preferences of a general form are
also considered in the scheduling procedure.

SC7 A quantity of shifts in a scheduling period
is established,

SC8 A scheduling charm’s covering by shifts in a
scheduling period is established,
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SC9 A length of the shifts sequence associated to
an agent is fixed,

Fuzz1 A number of degrees of agent ability to
perform actions is a natural number from the
set 1, 2 . . . ,m,

Fuzz2 An agent nk prefers to perform an action a
with a degree α ∈ 1, . . .M .

The FMAP consists in a construction of a
scheduling diagram, which respects all these hard
and soft constraints and the fuzzy requirements.

Although the list of possible fuzzy requirements
might be enlarged, let us underline that both
Fuzz1 and Fuzz2 rather constitute a scheme
or a class name for different particular fuzzy
constraints: Fuzz2 – for the constraints introduced
by preferences, but Fuzz1 – for fuzzy constraints
defined without them. Thus, both classes have a
whiff of a paradigmatic generality.

3.1 Types of Constraints of FMAS and their
Arithmetic Representation

Different approaches to a representation of both
hard and soft constraints and preferences has
been proposed. Majority of them grasps an
arithmetic represnetation based on a calculus of
characteristic functions – due: [17, 2, 25], but a
multitude of different additional indexed parameters
(c.a. 20) in their arithmetic depiction often makes
an idea of representation only partially elusive.

Thus, a restricted set of parameters is introduced
for a mathematical representation of temporal
constraints imposed on (F)MAP. Instead of agent
skills we will consider agent roles (contracts)5:

— N = {n1,n2 . . . ,nk} as set of agents (agents),

— R = {r1, r2, . . . , rk} as a set of roles
(contracts)

— D = {d1, d2, . . . , dk} as a set of days in a week,

— Z = {z1, z2} as a set of admissible shifts
during days from D,

— A = {a1, a2, . . . , ak} as a set of actions.

5All of these constraints are typical for scheduling problems
of this type to be known as (usually) NP-hard – see: [3].

It enables of representing MAP by its formal
instances in the form of the triple

(N ,D,Z,A,HC,SC), (2)

where N ,D,Z are given as above and HC denotes
a set of hard constraints imposed on actions from
A and their performing. Similarly, FMAP may be
given by the n-tuple of the form:

(N ,D,Z,A,HC,Fuzz), (3)

where N ,D,Z and HC are given as above and
SC and Fuzz denote a set of soft constraints
and fuzzy requirements (resp.) Introducing SC to
the n-tuple (1) follows from the adopted hierarchy
of constraints. The hard constraints cannot be
violated, the soft ones may be violated, but they
should be satisfied before fuzzy constraints.

This notation allows us to elaborate the following
representation of hard and soft constraints. Since
their list is not exhaustive6, it might be relatively
naturally extended. A formal representation of
each constrain is based on a characteristic function
Xn,d,z defined as follows7:

Xn,d,z =

{
1 if an agent n works a shift z in a day d,
0 otherwise.

HC 1: The charm of the shift organization
should be fair: each agent must to have equally
2–day shifts and 2–night shifts. Assume that
Zday denotes a set of day-shifts and Znight – a
set of night-shifts. It enables the following formal
representation:∑

z∈Zday

Xn,d,z = 2 ∧
∑

z∈Znight

Xn,d,z = 2. (4)

HC 2: Each agent can be associated to at most
one shift. ∑

z∈Z

Xn,d,z = 1. (5)

6This fact plays no important role as the main objective
of this juxtaposition consists in the quantitative representation
alone, which will be later combined with qualitative temporal
constraints (of Allen’s sort) for a use of further investigations.

7This binary representation can be also exchanged by a
classical one: Xn,d = z as presented in [3].
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HC 3: Some shifts are prohibited for an agent n.
If Zn denotes a set of shifts prohibited for a agent
n ∈ {N1,N2 . . . ,Nk}, then this constraint may be
mathematically depicted as follows:∑

z∈Zn

Xn,d,z = 0. (6)

HC4: Length of the shifts sequence associated
to an agent. This constraint defines a restriction
for a sequence of shifts associated to an agent n.
If we denote the minimal and the maximal number
of shifts for an agent n by m and M (resp.), then
HC4 may be depicted as follows:

m ≤
mz+d∑

d

Xn,d,z ≤M . (7)

HC 5: Quantity of shifts in a scheduling period.
It defines the minimal and the maximal quantity
of shifts during a given scheduling period (day) –
associated to a single agent n.) If s is the minimal
and S– the maximal quantity of shifts possibly
associated to the agent in the scheduling period,
then we get:

s ≤
∑
d∈D

Xn,d,z ≤ S , (8)

where Xn,d,z is defined as above.

Obviously, all the constraints listed above are not
exhaustive and their list may be naturally enlarged.
However, we interrupt their presentation in this
point for a cost of a new presentation of FMAP in a
more general depiction.

4 General Formulation of a Multi-Agent
Problem

In this section a kind of a generalization of
MAP and FMAP is put forward in order to
provide a formal distinction criterion between MAP
and FMAP. The conceptual framework of this
generalization is determined by a set of agents,
each of them possessing specific skills, a set
of some temporal tasks to be completed and
associated to agents.

Each agent can accept only tasks consistent with
its skills8. Below, a generic, simple formalization of
this problem is proposed.

Consider a set A = {A1,A2, . . . An} of n
agents. Each agent can possess one or more
skills. Let S = {S1,S2, . . . Sk} denote the set of
predefined skills. Assume σ is the function defining
a two-valued measure for all the skills of any agent;
so σ is defined as:

σ : (A, 2S) 7→ {0, 1}.

For practical reasons, it is convenient to
represent this function in a tabular (matrix) form
as follows:

S1 S2 . . . Sk,
A1 σ1,1 σ1,2 . . . σ1,k,
A2 σ2,1 σ2,2 . . . σ2,k ,
...

...
...

. . .
... ,

An σn,1 σn,2 . . . σn,k.

where σi,j =

{
1, if Sj ∈ σ(Ai)

9,

0, otherwise.

Similarly, consider a set T = {T1,T2, . . . ,Tm}
of tasks to be executed. Each tasks, in order to
be executable by an agent, requires some specific
skills. Assume θ is the function defining all the
skills required to execute a specific task; so θ is
defined as:

θ : (T , 2S) 7→ {0, 1}.

Again, for practical reasons it is convenient to
represent this function in a tabular (matrix) form
as follows:

S1 S2 . . . Sk,
T1 θ1,1 θ1,2 . . . θ1,k,
T2 θ2,1 θ2,2 . . . θ2,k,
...

...
...

. . .
...,

Tm θm,1 θm,2 . . . θm,k.

8Further auxiliary constraints (e.g. Allen’s type constraints
for execution periods of certain actions) or extensions (e.g.
parallel execution of actions by a single agent) are possible
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where θi,j={
1, if Sj ∈ θ(Ti)10,

0, otherwise.

For simplicity, it is assumed that a single task
can be executed by a single agent, one task at a
time. Task Tj can be executed by agent Ai if and
only if the agent possesses all the required skills.
Formally, skills associated to tasks (obtained by the
projection π on 2S in a domain of θ) should be
contained in skills (obtained by the projection on
2S in a domain of σ) associated to agents from A.
Symbolically:

π2S
(
dom{θ(Tl,Sj)}

)
⊆ π2S

(
dom{σ(Ai,Sj)}

)
,

and the execution can start whenever the agent
is free; this holds for all i ∈ {1, 2, . . . n}, j ∈
{1, 2, . . . k} and l ∈ {1, 2 . . . ,m}. Now, MAP
consists in efficient assignment of all the tasks to
given agents, so that the tasks can be executed, all
the constraints are satisfied.

In this depiction, a distinction between MAP and
FMAP reflects itself in another way of defining of
functions σ and θ, which can take values from
the whole interval [0,1]. Formally, each ρij (for
i = 1, . . . , k, j = 1, 2, . . . ,n) from the definiting
table:

S1 S2 . . . Sk,
A1 σ1,1 σ1,2 . . . σ1,k,
A2 σ2,1 σ2,2 . . . σ2,k,
...

...
...

. . .
...

An σn,1 σn,2 . . . σn,k

satisfies the condition: ρij ∈ [0, 1]11.

5 FMAP versus STPU versus DisCSP

Fuzzy Multi-Agent Problem has already been
introduced not only in a practical NJSP-based
depiction, but also – in a more general formulation.
This two-side presentation allows us to propose
an outline of a comparative analysis between
FMAP,STPU and DisCSP.

11Necessarily, the two-valued ’membership’ ∈-relation is
exchanged for a fuzzy ’membership’-relation in the condition
Sj ∈ σ(Ai).

5.1 FMAP versus STPU

It is not difficult to detect both a couple
of similarities between FMAP and STPU, and
some discrepancies. On one hand, constraint
satisfaction plays an important role in both classes
of problems. In addition, a similar taxonomy of
constraints – divided (at least) into two groups:
hand and soft constraints – is usualy considered
in both cases. Nevertheless, the role of the
constraints and their satisfaction seem to be a little
bit different. In fact, the problem forms a consitutive
components of STPU, its real conceptual ’core’.

This conviction may be easily verified in the light
of STPU-definition as an extension of STP that
forms a simplified TCSP – due to [29] repeated in
Section 2. Meanwhile, different types of constraints
constitute only an additional component of FMAP
– as imposed on performing the appropriate
scheduling tasks. Conversely – agents, their
mutual iteraction and their capabilities constitute
FMAP as such a one, whereas these componants
may be radically restricted or even omitted in the
generic formulation of STPU.

Some further observable discrepancy between
STPU and FMAP stems from a semantic
discrepancy between fuzziness and uncertainty as
their founding concepts. Although fuzziness (in
particular – in a sense given by fuzzy logic) may
be exploited to represent and model uncertainty,
the fuzziness seems to rather refer to a vague,
imprecise nature of different modeled entities or
states(such as as: ’small’ disposition of an agent
to work). In contrast – uncertainty seems to
rather refer to some epistemic unclarity in acting
and reasoning (such as: partial observability, a
lack of some premises in reasoning). This fact
may be rendered in alternative way as follows:
uncertainty refers more to epistemic capabilities or
skills of agents or an external observer, meanwhile
fuzziness grasps more an ontological side of the
systems/problems.

Finally, some interesting aspects of STPU
and FMAP are ellucidated by the category
theory-based concepts of graphs and monoids.
MAS may be viewed as the organizing thoughs
about agants acting on objects.
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This property due to [27], p. 115 – may be
algebraically rendered by monoids. In contrast,
STPU materializes an idea of information flow
(between nodes), that – due to Spivak’s conviction
from [27], p. 115 – may be naturally represented
by systems of nodes and arrows (vertices). It
explained why STPU is naturally associated to
graphs and different methods of the graph search
may find an application in STPU-solutions.

5.2 FMAP versus DisCSP

Let us recall that FMAP is defined as the tuple
(N ,D,Z,A,HC,SC,Fuzz), where where N ,D,Z
and HC are the set of agents, D and Z are sets of
days and shifts (resp.) and SC and Fuzz denotes
a set of soft constraints and fuzzy requirements
(resp.) In other words, FMAP may be viewed as a
triple (N ,CSP ,A) – as both HC,SC and SC may
be commonly considered as CSP-components.
Meanwhile, DisCSP that may be identified with the
tuple: 〈N ,CSP ,φ〉, where N is as earlier is CSP
and φ forms a function assigning variables from
CSP to agents from N . This new depiction of
both FMAP and DisCSP explaines a conceptual
referrences between them: DisCSP may be seen
as a (slightly modified) reduct of FMAP. Conversely,
FMAP may be seen as DisCSP equipped with an
explicitly given set of actions to be associated to
agents during the scheduling task. The role of this
component allows us to see DisCSP rather in a
perspective of scheduling task, meanwhile FMAP
may be also seen in a perspctive of planning.

6 Programming-wise Aspects of Fuzzy
Multi-Agent Problem

In this section, we intend to face the Multi-Agent
Problem in order to illustrate how to solve some of
its workable subcases by means of SWI-PROLOG-
solvers. Earlier arrangements from Section 3 and
Section 4 allow us to formulate a couple of general
guidelines of the solver construction. In particular,
the proposed representation method for hard and
soft constraints in Section 3 suggests a choice of
their arithmetic, summeric depiction in PROLOG.

Meanwhile, the proposed general depiction of
FMAP from Section 4 suggests to associate agents
to their skills or degrees of their abilities (to work).

6.1 A More Detailed Specification of
Requirements

In order to illustrate this method of the solver
construction, let us assume that a non-empty set
N = {X,Y . . .} of agents and a non-empty set
D = {1, 2, 3, 4, 5} of working days (for simplicity we
omit shifts during a day) are given.

In such a framework, the PROLOG-solver task
is to give a schedule respecting the temporal
constrains imposed on a task performing and
the corresponding agent activity. The achieved
solutions will be represented by lists of the form:

X = [X1,X2,X3, . . . ,Xk], (9)
Y = [Y 1,Y 2,Y 3, . . . ,Y l], (10)

where X(i),Y (j) are characteristic functions
representing activity of agents X and Y during
i-day and j-day (resp.) for k, l ∈ {1, 2 . . . , 7}.

In general, two following types of situations may
be considered:

crisp-type situations, when X(i) and Y (j) take
only two values: 0 or 1 for i, j ∈ {1, 2, . . . , 7}
or

fuzzy12-type situations, when X(i) and Y (j)
take more than two values for i, j ∈
{1, 2, . . . , 7}, for example: 0,1,2,3,4. We
adopt natural numbers because of restrictions
of PROLOG-syntax, which is not capable of
representing values from [0, 1]. Nevertheless,
we intend to think about these values as about
normalized values. Namely, we will interpret 1
– taken from a sequence 1, 2 . . . , k – as 1

k , 2
as 2

k , k as k
k = 1, etc.

12More precisely: multi-valued situations.
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6.2 General Specification of the PROLOG Code

SWI-PROLOG solvers will be exploited to find so-
lutions for scheduling tasks of FMAP. As mentioned
above, each admissible solution will have a form of
the appropriate list of natural numbers.

The required constraints imposed on the given
scheduling tasks will define the appropriate
2- argument predicate schedule(X,Y), where
variables X,Y represents a pair of operating
agents. The propoer body of the predicate
definition will contain the following components:

1. a general specification of each agent as a list
of its working days in a scheduling period, for
example, X = [X1, X2, X3, X4],
Y = [Y1, Y2, ..., Y10], etc.

2. an association the admissible degrees of
ability to agents – introduced by the code of
the form: X ins 0...1, X ins 0,. . . , 5, etc.

3. an arithmetic restrictions on agent during
a scheduling period, for example, sum(X,
#<, 3),

4. a logical restriction on the agents interaction,
for example: X1#/Y 1,Y 1#/Y 1 (the first
working day of X is not a working day for Y
and conversely).

The expected solutions in a form of lists (9)-(10)
have just been specified.

6.3 Crisp Cases

We will consider 3 subcases of MAP dependently
on the problem complexity. In all the cases: 1 – in
solution-lists – represents a state when an agent ni
occurs in a work and 0 – otherwise.

As the first one, a case of 2 agents working 5
days in a week (with a week restriction for each
of them equal to 4) will be considered. It will be
shortly denoted as MAP(2, 5, 4). It is assumed that
a maximal sum of working days of each of them
does not exceed 5.
Case 1 – MAP(2, 5, 4). In this case, we consider
the following situation:

— 2 agents operating during a 5-day schedul-
ing period,

— only two degrees of ability to work are
associated to the agents,

— a restriction imposed on number of activities
(shifts) is smaller than 4,

— each day (1-5), a working activity of the
first agent excludes a working activity of the
second agent and conversaly.

The requirements may be represented by the
following code (The sense of lines of the
PROLOG-code is explained on the right side):
schedule(X,Y):=
X = [X1,X2,X3,X4,X5],
- /*list of days of agent
X*/
Y = [Y1,Y2,Y3,Y4,Y5],
- /*list of days of agent
Y*/
X ins 0..1,
-/*Fuzzy degrees of X-disposition*/
Y ins 0..1,
-/*Fuzzy degrees of Y-disposition */
sum(X, #<, 4), /*Restriction
- on X-activity during a week*/
sum(Y, #<, 4), /*Restriction
- on Y-activity during a
week*/
X1 # / Y1,# (X1 #/ Y1),
/*Conditions
- on activity of agents each
day*/
X2 # / Y2,# (X2 #/ Y2),
X3 # / Y3,# (X3 #/ Y3),
X4 # / Y4,# (X4 #/ Y4),
X5 # / Y5,# (X5 #/ Y5),
label([X1,X2,X3,X4,X5,Y1,Y2,Y3,Y4,Y5]).

In result, the following list of solutions is
obtained:
X = [0, 0, 1, 0, 1],
Y = [1, 1, 0, 1, 0] ;
X = [0, 0, 1, 1, 0],
Y = [1, 1, 0, 0, 1] ;
X = [0, 0, 1, 1, 1],
Y = [1, 1, 0, 0, 0] ;
X = [0, 1, 0, 1, 0],
Y = [1, 0, 1, 0, 1];

Computación y Sistemas, Vol. 24, No. 2, 2020, pp. 453–467
doi: 10.13053/CyS-24-2-3371

Krystian Jobczyk, Patryk Gałczyński, Antoni Ligęza462

ISSN 2007-9737



X = [0, 1, 0, 1, 1],
Y = [1, 0, 1, 0, 0];
X = [0, 1, 1, 0, 0],
Y = [1, 0, 0, 1, 1];;
X = [0, 1, 1, 0, 1]
Y = [1, 0, 0, 1, 0];
X = [0, 1, 1, 1, 0],
Y = [1, 0, 0, 0, 1] ;
X = [1, 0, 0, 0, 1],
Y = [0, 1, 1, 1, 0] ;
X = [1, 0, 0, 1, 0],
Y = [0, 1, 1, 0, 1] ;
X = [1, 0, 1, 0, 0],
Y = [0, 1, 0, 1, 1] ;
X = [1, 0, 1, 1, 0],
Y = [0, 1, 0, 0, 1] ;

It is not difficult to observe that each pair of the
achieved solutions respect all the requirements (1
for X admints 0 for Y and conversly).

Case 2 – MAP(2, 6, 4). In this situation, all the
earlier requirements remain without changes with
exception of the length of a working period for both
agents (6 instead of 5) and the admitted number
of acitivities during a week (we exchange an upper
bound equal to 5 for 4). In this framework, the
appropriate PROLOG-schedule is given by the
code clauses:

schedule(X,Y):=
X = [X1,X2,X3,X4,X5,X6],
Y=[Y1,Y2,Y3,Y4,Y5, Y6],
X ins 0..1,
Y ins 0..1,
sum(X, <, 5),
sum(Y, <, 5),
X1 # / Y1, # (X1 #/ Y1),
X2 # / Y2, # (X2 #/ Y2),
X3 # / Y3, # (X3 #/ Y3),
X4 # / Y4, # (X4 #/ Y4),
X5 # / Y5, # (X5 #/ Y5),
X6 # / Y6, # (X6 #/ Y6),
label([X1,X2,X3,X4,X5, X6, Y1, Y2,
Y3, Y4, Y5, Y6]).

In result, we obtain 19 pairs of lists for X and Y .
Some of the admitted solutions are listed here:

X = [0, 0, 0, 1, 1, 1],
Y = [1, 1, 1, 0, 0, 0] ;
X = [0, 0, 1, 0, 1, 1],
Y = [1, 1, 0, 1, 0, 0] ;
X = [0, 0, 1, 1, 0, 1],
Y = [1, 1, 0, 0, 1, 0] ;
X = [0, 0, 1, 1, 1, 0],
Y = [1, 1, 0, 0, 0, 1] ;
X = [0, 1, 0, 0, 1, 1],
Y = [1, 0, 1, 1, 0, 0].

6.4 Fuzzy Cases

In order to exchange the crisp cases for the fuzzy
ones it is enough to admit some new degrees
of agent dispositions In the current cases, the
following list of values is admitted:

0 – to represent the fact that an agent A is absent
(on a shift),

1 – to represent a physical absence of the agent
A, but a real disposition to be present.

2 – to represent a physical presence of A, which
is only in a partial disposition to work.

3 – to represent a full disposition of A to work13.

Let us begin with an exemplary case of two agents:
A1 and A2 working 5 days in a week and having
four degrees of disposition denoted by 0,1,2 and 3
as above.

MAP(2,5,4)Fuzz. This situation is defined by the
following requirements:

— 2 agents: A1, A2 operating during a 5-day
scheduling period,

— 4 degrees of ability to work are associated to
the agents: 0, 1, 2, 3.

13As mentioned, we rather prefer to think about these values
as normalized to [0,1] – as 1

3
, 2
3

etc. instead of 1, 2, or 3.
We use values 0, 1, 2, 3 because of restrictions imposed on
PROLOG-syntax.
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— a summaric number of admissible degrees of
A1-disposition is smaller than 12,

— a summaric number of admissible degrees of
A2-disposition is smaller than 9,

— a summaric restriction on the admissible
number of the disposition degrees for both A1
and A2 (together) in the first day is smaller
than 4, for A1 (alone) is greather than 1,
what excludes a degree of A2-activity greather
than 2,

— a summaric restriction on the admissible
number of the disposition degrees for both A1
and A2 (together) in the second, the third, the
4th and in the 5th day (D1, D2, D3, D2, D5)
is smaller than 4, for A1 (alone) – is greather
than 2, what excludes a degree of A2-activity
greather than 2,

— a summaric activity of A1 in the day triples:
(D1, D2, D3) and (D3,D4,D5) is smaller than 6,

— a summaric activity of A2 in the day triples:
(D1, D2, D3) and (D3,D4,D5) is smaller than 7,

— a summaric activity of A1 in a day triple (D2,
D2, D4) is smaller than 7,

— a summaric activity of A2 in a day triple (D2,
D3, D4) is smaller than 5.

This situation may be reflected in the following
PROLOG-program (As earlier, the sense of lines
of the PROLOG-code is explained on the right side
of the programm):

schedule2(A1,A2) :- A1
= [A1D1,A1D2,A1D3,A1D4,A1D5],
- /* Days of agent A1*/
A2 = [A2D1,A2D2,A2D3,A2D4,A2D5],
- /* list of days of agant A2 */
A1 ins 0..3,
/* Fuzzy degrees of A1-disposition */
A2 ins 0..3,
/* Fuzzy degrees of A2-disposition */
sum(A1, #<, 12),
- /* Restriction on a week
activity of A1 */
sum(A2, #<, 9),

- /* Restriction on a week
activity of A2 */
sum([A1D1, A2D1], #<, 4), (A1D1 #> 1)
# / (A2D1 #> 2),
- /* Restriction on D1 */
sum([A1D2, A2D2], #<, 4), (A1D2 #> 2)
# / (A2D2 #> 2),
- /* Restriction on D2 */
sum([A1D3, A2D3], #<, 4), (A1D3 #> 2)
# / (A2D3 #> 2),
- /* Restriction on D3 */
sum([A1D4, A2D4], #<, 4), (A1D4 #> 2)
# / (A2D4 #> 2),
- /* Restriction on D4 */
sum([A1D5, A2D5], #<, 4), (A1D5 #> 2)
# / (A2D5 #> 2),
- /* Restriction on D5 */
sum([A1D1, A1D2, A1D3], #<, 6),
sum([A1D2, A1D3, A1D4], #<, 7),
sum([A1D3, A1D4, A1D5], #<, 6),
sum([A2D1, A2D2, A2D3], #<, 7),
sum([A2D2, A2D3, A2D4], #<, 5),
sum([A2D3, A2D4, A2D5], #<, 7),
- /* Restrictions on the next 3
days*/
label([A1D1,A1D2,A1D3,A1D4,A1D5,
A2D1,A2D2,A2D3,A2D4,A2D5]).

In this case, the PROLOG-solver returns us the
following solution-lists:

A1 = [2,3,0,3,0]
A2 = [0,0,3,0,3] and
A1 = [2,3,0,3,0]
A2 = [1,0,3,0,3].

MAP(2,5,5)Fuzz. Let us slightly modify temporal
conditions imposed on work conditions of agents
A1 and A2 as follows:

• instead of 0,1,2,3 we consider five values:
0,1,2,3,4 as admissible fuzzy disposition
degrees of A1 and A2,

• restriction on A2-activity during a week is relaxed
– instead of sum(A2, #<, 9) we adopt a
condition sum(A2, #<, 10).
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Taking into account these requirements, one
achieves the following program:
schedule2(A1,A2) :-
A1 = [A1D1,A1D2,A1D3,A1D4,A1D5],
- /* list of days of agent A1*/
A2 = [A2D1,A2D2,A2D3,A2D4,A2D5],
- /* list of days of agent A2

*/
A1 ins 0..4,
/* Fuzzy degrees of A1-disposition */
A2 ins 0..4,
/* Fuzzy degrees of A2-disposition */
sum(A1, #<, 12),
- /* Restriction on A1-activity
during a week */
sum(A2, #<, 10),
- /* Restriction on A2-activity
during a week */
sum([A1D1, A2D1], #<, 4), (A1D1 #> 1)
# / (A2D1 #> 2),
- /* Restriction on D1 */
sum([A1D2, A2D2], #<, 4), (A1D2 #> 2)
# / (A2D2 #> 2),
- /* Restriction on D2 */
sum([A1D3, A2D3], #<, 4), (A1D3 #> 2)
# / (A2D3 #> 2),
- /* Restriction on D3 */
sum([A1D4, A2D4], #<, 4), (A1D4 #> 2)
# / (A2D4 #> 2),
- /* Restriction on D4 */
sum([A1D5, A2D5], #<, 4), (A1D5 #> 2)
# / (A2D5 #> 2),
- /* Restriction on D5 */
sum([A1D1, A1D2, A1D3], #<, 6),
sum([A1D2, A1D3, A1D4], #<, 7),
sum([A1D3, A1D4, A1D5], #<, 6),
sum([A2D1, A2D2, A2D3], #<, 7),
sum([A2D2, A2D3, A2D4], #<, 5),
sum([A2D3, A2D4, A2D5], #<, 7),
label([A1D1,A1D2,A1D3,A1D4,A1D5,
- /* Restrictions on the next 3
days*/
A2D1,A2D2,A2D3,A2D4,A2D5]).

In this situation, the PROLOG-solver returns us
the following (slightly longer) list of solutions:

A1 = [0, 3, 0, 3, 0],
A2 = [3, 0, 3, 0, 3] ;

A1 = [2, 3, 0, 3, 0],
A2 = [0, 0, 3, 0, 3] ;
A1 = [2, 3, 0, 3, 0],
A2 = [1, 0, 3, 0, 3].

6.5 A Brief Discussion of the Results:
Diagnosis and Prediction

It easy to see that a number of solutions S linearly
depends on a number of admitted working days in
the considered crisp cases. In fact, 5 working days
(with 2 agents) gives us 15 solutions (pairs). It may
be surprising that extending a scheduling period to
6 working days gives 19 solutions (by no further
changes). It means that S ∼ 3N , where N denotes
a number of working days.

It may be an intriguing fact that exchanging
a number of admissible degrees of agent ability
(4 for 5) only slightly exchanges the number of
solutions – (2 for 3). In fact, we only get 2
solutions (pairs) for MAP (2, 5, 4)Fuzz and 3 for
MAP (2, 5, 5)Fuzz. Obviously, a similar linear
relationship holds between each of the input
parameters and the number of solutions.

Simoultaneously, if we admit 6 degrees instead
of 5 and exchange 4 for 5 in each place of the
program for MAPFuzz(2,5,5) – (without any further
modification) the number of solutions radicaly
increses – as 16 new solutions are returned.
Meanwhile, a slight relaxation of the conditions:
sum(A1, #<, 10) for sum(A1, #<, 13) and
sum(A2, #<, 10) for sum(A2, #<, 13) –
preserves the same number of solutions (16).

Further relaxation of temporal constrains usually
changes a combinatorial explosion of the algorithm
relatively quickly. For example, if exchange also a
requirement sum([A1D1, A1D2, A1D3], #<,
6) for sum([A1D1, A1D2, A1D3], #<, 13),
one gets more than 60 solutions.
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7 Conclusion

It has already been shown how FMAP may be
put forward in two depictions. The first depiction
enables an arithmetic representation of different
constraints imposed on FMAP, whereas the second
general depiction ellucidates a disctinction criterion
between FMAP and the original MAP. Finally,
some workable subsaces of FMAP were solved by
means of SWI-PROLOG solvers.

Nevertheless, it appears that PROLOG only
approximates a kind of fuzziness in the context
of MAP. In fact, considering different degrees of
agant ability introduces a kind of a multi-valency
to different workable subcases of FMAP. In this
perspective, Bousi-PROLOG could lay claim to
the role of the more adequate language to grasp
different FMAP.
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