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Abstract. Knowledge extraction and structuring is 

attaining importance in real world applications such as 
e-commerce, decision support, problem solving and 
semantic web. Extraction of knowledge from collection 
of text documents is based upon identification of 
semantic content. Ontology plays an important role in 
accessing and structuring information. Developing an 
ontology are at the core of new strategies which requires 
accurate domain knowledge. Identification of structural 
and logical concepts is a time-consuming process. This 
work presents an ontology-based retrieval approach, 
that visualizes and structure the data of software bug 
reports domain. It exploits formal concept analysis (FCA) 
to elicit conceptualizations from bug reports datasets 
and a hierarchical taxonomy is generated of extracted 
knowledge. A lattice diagram of concepts and 
relationships is constructed from concept-relationship 
matrix created by FCA. Ontology is constructed on fluent 
editor tool and knowledge is extracted with the help of 
small queries executed on a reasoner window. The 
proposed approach is evaluated on 21 bug reports of 
apache projects of jira repository. It can be concluded 
that information can be retrieved easily from ontology as 
compared to manual extraction of data. 

Keywords. Knowledge extraction, formal concept 

analysis, ontology, software bug reports, concept-lattice. 

1 Introduction 

In recent years, semantic web relies on ontologies 
as a means for data sharing and communication. 
Semantic web was introduced by Gruber [1], which 
converts the unstructured data into structured data 
that is easily processed by machines without 
human intervention. It enables the users to search 
questions, retrieval of information and knowledge 
extraction with minimum effort. 

Conceptualizations of underlying knowledge 
and shared understanding of domains is provided 
by ontologies. Ontology is considered as a tool for 
modelling an abstract view of contextual semantic 
analysis of documents. 

Ontology is defined as formal representation of 
knowledge within a domain by a set of concepts 
and relationship between these concepts [2]. 
Ontology is a feasible solution for accessing data, 
modelling complex domain and interoperability 
through standard languages Ontology Web 
Language (OWL) and Resource Description 
Framework (RDF). 

Domain knowledge can be restored in ontology 
[3], but identification of concepts and their 
relationship is still an obstacle in many domains [4, 
5]. Ontology is an instrument for knowledge 
structuring and yielding controlled vocabulary for 
content classification is an information domain [6].  

In software engineering, software bug reports 
are the most valuable aspect in software 
development and maintenance process. 

They depict numerous information of software 
bug in the form of metadata (containing BugId, 
project name, component name, release version, 
one-line description and others), long description 
and comments made by various contributors made 
to resolve a bug. 

Several researchers have worked in literature 
on unstructured data of bug reports in various 
fields such as bug triaging [7, 8], severity prediction 
of bug reports [9–12], defect prediction [13], 
classification of bug reports [14, 15] and many 
others. Among various applications of bug reports, 
complete semantic knowledge about bug has not 
been addressed so far. 
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For example, if we want to retrieve all the 
contributors of a bug Id# Hdfs-7707.It should fetch 
all the contributors who were involved in the 
resolution process of #Hdfs-7707 as compared to 
retrieving only the name of the developer to whom 
it is assigned. The semantic confides to formal 
ontology’s that structures the data extensively for 
machine understanding. To extract knowledge 
from a large corpus of bug reports, bug ontology is 
needed. Although developing an ontology from 
scrape is a labor intensive, time-consuming tasks 
and requires precise and detailed understanding of 
any domain. 

Few researchers had worked on ontology of 
software bugs, defects [16–18]. As per the 
literature, none of the research work focused on 
extracting knowledge using ontology automatically 
form the content analysis of bug reports. The 
proposed approach exploits Formal Concept 
analysis (FCA) as a mathematical model to 
construct an ontology. This work extracts important 
and beneficial information from the metadata, long 
description and comments of software bug reports 
of Apache projects of jira repository. Text mining is 
performed on unstructured data and features are 
extracted. Unigrams, bi-grams and trigrams are 
extracted as features. Based on analysis, tri-grams 
were discarded and it does not significantly 
contribute in information extraction. 

Concepts and attributes are identified based on 
unigrams and bi-grams and the relationship 
between them are mapped into concept lattice 
structure using Formal Concept Analysis (FCA). 
FCA is used for information and knowledge 
representation and analysis of data [19]. It 
visualizes all concepts and their relationships in 
tabular form resulting in a concept lattice. 

For ontology construction, to link and connect 
concepts, relationships such as ‘is-a’, ‘has-a’ and 
user defined relationships such as ‘contributors-in’, 
‘is-not’, ‘has-critical’ etc. is considered, An ontology 
of 21 bug reports of apache projects namely: 
Hadoop-HDFS, Hadoop-Common, Hive, Hbase 
and Groovy. Based on ontology, the knowledge is 
extracted using several small queries written in 
common natural language (CNL) using fluent 
editor tool. Fluent editor tool is used for developing 
and reasoning ontology. It is used in this work as 
compared to other tools such as Protégé as it used 

controlled natural language (cnl) which is easy to 
understand by any user [20]. 

Ontology is published on web using ontology 
web language(owl). Thus, domain ontology of 
software bug reports is valuable for developers and 
researchers as it contains the knowledge of all bug 
reports, which can be extracted using ontology 
supporting languages. 

The rest of the paper is organized as follows: 
section 2 reviews the previous work done in the 
area of ontology and ontology of software bug 
reports. The research methodology is explained in 
section 3 followed by Implementation and results 
in section 4. 

2 Related Work 

This section reviews the work done in construction 
of ontology based on learning from text and in the 
field of software engineering and software bug 
reports. It also includes the work of authors such 
as Philipp Cimiano, Alexander Maedche and 
Stefan Staab. 

2.1 Ontology from Texts and Software 
Engineering 

Ontology is a crucial part while developing 
semantic applications. Several researchers have 
worked in the area of semantic web and ontology 
construction. V. Uren et al. [21] presents a survey 
of general-purpose tools that are used for 
annotation of semantic web, they have further 
examined these tools based on manual annotation, 
automatic annotation, integrated annotation or on-
demand annotation. Manual annotation tools are 
compared based on different requirements such as 
standard formats, user-centered design, ontology 
support, document formats, document evolution 
and annotation storage. 

The survey indicates that WickOffice and 
ActiveDoc are two examples of integrated 
authoring environment tools but still are limited to 
their degree of automation and variety of covered 
documents. There is a lot of scope of improvement 
in other existing automation system to provide full 
automatic annotation on wide range of documents 
and platforms. 
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G. Stumme et al. proposed a novel method for 
merging ontologies with bottom up approaches 
named as FCA-merge. 

The approach consists of three steps: 
extraction of instances and computing two formal 
contexts namely K1 and K2; application of FCA-
merge algorithm to derive common context and 
generate a concept lattice; based on concept 
lattice, fine merged ontology is generated. The 
approach is evaluated on tourism domain [22]. A 
Hotho et. al. employed a simple, core ontology to 
generate disparate representations of a particular 
document set which are a result of multiple 
clustering algorithms like k-means. 

Then based on the results if different clustering 
algorithm and actual concepts, user can conclude 
the results. The author had proposed a new 
approach namely. COSA (Concept Selection and 
Aggregation) which has been evaluated on 
customer database of telecommunication domain 
[23]. The work done on ontology creation in the 
field of software engineering is focused here. E. 
Blomqvist [24] proposed a pattern-based ontology 
construction, ontocase based on case-based 
reasoning. An automatic approach for pattern 
matching and selection is proposed influenced by 
ontology ranking to bridge the gap between 
patterns and specific features extracted from texts. 
The approach is evaluated and the results signify 
that proposed approach performs significantly 
better on small and abstract patterns. P.E. Khoury 
et al. proposed an ontology-based approach to 
identify various security patterns needed by 
software developers. 

The description of security properties are used 
for ontology [25]. An ontological mapping is 
proposed to map requirements from one side to 
other side of contexts such as threat models, 
security bags and security errors. In another 
research work, software product line engineering 
(SPLE) paradigm is considered which is based on 
reusing artefacts and knowledge from similar 
software products. I.R. Berger et al. proposed an 
automated extraction method, CoreReq. 

The main task is to generate core and reusable 
requirements from existing product requirements 
that can be used by distinct members of software 
product line to generate requirements of a 
new product. 

The approach is based on ontological 
framework with two dimensions: elements 
and product. 

CoreReq analyzes the product requirements 
through natural language processing and 
compares those using semantic measures such as 
latent semantic analysis and ontological 
variability analysis. 

Based on similarity measures, similar 
requirements are categorized according to the 
dimensions of the framework. The approach is 
evaluated on four software products namely: Hotel, 
Library, Car rental and Second hand book shop as 
all deal with check-in check-out operation. The 
core requirements are gathered and were reused 
to generate the requirement of fifth product i.e 
medical equipment rental system[26]. Apart from 
these several artefacts of software, work has also 
been done on ontology of software bug reports as 
discussed in section 2.2. 

2.2 Ontology on Software Bug Reports 

In software engineering, every reference model of 
each organization employs its own vocabulary to 
explain failures, errors and defects that occur. This 
leads to deficiency in understanding these 
concepts of different software during product 
interoperability and other tasks. To reduce this 
problem of common conceptualization, domain 
ontology of software defects, error and failures 
(OSDEF) is proposed by B. Duarte et al. The 
ontology is developed using Systematic Approach 
for Building Ontologies (SABiO) and grounded on 
Unified Foundation Ontology (UFO). 

Main features of OSDEF are: providing 
conceptual analysis of nature of distinct anomalies 
such that notions like failure, fault, defect and error 
refers to different types of phenomena. It is used 
for developing issue trackers and configuration 
management tools. It establishes a common 
vocabulary for better communication among 
software engineers and stakeholders. Thus, 
OSDEF is domain ontology to provide a common 
conceptual structure to different types of anomalies 
and vocabulary for better communication in 
software engineering [18]. 

In [16], authors have extracted numerous bug 
reports from several open source bug tracking 
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systems such as Bugzilla, Trac, Mantis and Debian 
using APIs and Buglook (web crawler). 

To store such large amount of data, a unified 
bug data model is built that captured the most 
important aspects of version tracking system. 

To perform semantic search of bug reports on 
unified bug dataset, two methods are used: MVR 
(Multi-vector representation) and RDF (Resource 
Description Framework). 

The MVR method was executed on semi-
structured data (full text and metadata) of bug 
reports to search similar bugs with salient features. 
While RDF method used bug correlation, 
symptom-based classification and package 
dependency. The results proved that semi-
structured search outperforms other consolidation 
of search methods. It also proved that there exists 
a smaller number of similar bugs in bug 
tracking system. 

In their consecutive study [17], authors 
proposed to find similar bug reports using semantic 
bug search system on Peer to peer network. A 
unified bug schema is created, which stores 
several types of bug reports from various bug 
tracking systems. It also has several properties 
such as dependencies, packages, symptoms, 
categories based on concepts that help in bug 
classification and relationships for semantic 
search. Further, Gnutella P2P protocol is used that 
uses super peers for query routing and processing, 
to improve the performance of the system. The 
proposed system is evaluated on EMANICSLAB 
on three issues: feasibility, scalability, and 
efficiency. 

P. Schueger et al. used semantic web 
technology to compute the quality of bug reports 
and in turn to enrich existing software engineering 
ontology. In this work, existing quality attributes are 
refined, and new quality attributes are proposed to 
intensify the quality of bug reports. New quality 
attributes such as certainty, focus, reproducibility, 
and observability are identified from keywords and 
key expressions embedded in description of bugs. 
The proposed technique is evaluated on dataset of 
AgroUML and quality of bug reports was used to 
extract knowledge from software engineering 
ontology [27]. Evoont is a collection of software 
ontology, bug and version ontologies which is used 
for software analysis, design and bug tracking 
purpose [39]. 

Two ontology such as Baetle (Bug and 
enhancement tracking language) [40] and Helios 
[41] are under development towards a unified 
ontology of software bugs. 

In literature, an ontology is constructed to 
perform semantic search to find similar bugs in bug 
tracking systems or quality attributes are defined to 
enrich software engineering ontology, but none of 
the work focused on ontology construction that 
extract knowledge from metadata, long description 
and comments of bug reports. 

To help software developers to extract 
knowledge of semantically related bugs based on 
several attributes, ontology is created. As most of 
the knowledge is enclosed in corpus of 
unstructured bug reports, ontology assures 
efficiency, accuracy and effectiveness in 
information retrieval process. The approach is 
implemented on bug reports of apache projects of 
jira repository. Text mining is performed on long 
description and comments and features (unigrams 
and bi-grams) are extracted using term frequency-
inverse document frequency (tf-idf). 

Concepts and several attributes such as type of 
error, major contributors, severity, and resolution 
are identified using extracted features. 
Relationship between concepts and attributes are 
mapped to form concept-lattice matrix using 
Formal concept analysis. Based on identified 
relationships, ontology is constructed and 
knowledge is extracted using queries executed on 
a reasoner tool. The created ontology is also 
published on web using ontology web language. 
Thus, use of ontologies in the domain of bug 
reports is indispensable. 

3 Research Methodology 

This section explains the various concepts used in 
this research work in section 3.1. The process flow 
diagram of the proposed work is illustrated and 
explained in section 3.2. 

3.1 Preliminary Concepts 

Ontology construction and visualization require 
preliminary activities, which forms the part of 
execution process of the system. It includes text 
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pre-processing, formal concept analysis and fluent 
editor tool. 

3.1.1 Text Pre-Processing 

Text pre-processing includes standard pre-
processing steps i.e. tokenization of text data, 
removal of punctuations and numbers, stop word 
removal and stemming. Tokenization is 
segmentation of text into substantial elements 
such as words, symbols, phrases called as tokens. 
Tokenization is followed by removal of 
punctuations and numbers. In next step, stop 
words are removed. 

Stop words are common words such as the, 
and, this, these etc., which do no convey any 
significant information. Stemming is performed at 
the last, which reduces the words to their root 
forms. For example, likes, liked, likely are reduced 
to word ‘like’ as their base form. After pre-
processing the textual data, document term matrix 
(DTM) is created [12]. 

3.1.2 Formal Concept Analysis 

Formal concept analysis (FCA) is a conceptual 
clustering technique with mathematical foundation, 
which formalizes concepts as basic unit and 
analyses data in object-attribute form. It is used as 
a tool for knowledge representation, information 
retrieval and analysis of data. It is a contrasting 
approach as compared to traditional and statistical 
means of knowledge retrieval and data analysis 
techniques as it focusses on human centered 
approaches [28]. It has been used in several 
applications such as psychology, medicine, 
ecology and software engineering [29]. FCA is 
used over other methods like pattern-based 
approach and frame-based system due to 
several issues. 

These issues are described as: objects that are 
used to create hierarchies are not clearly distinct in 
terms of attributes, which raises a concern in 
knowledge sharing; change of classes and its 
attributes is not easy once they are defined. To 
overcome these difficulties of several existing 
methods FCA is used as: it identifies concepts that 
are distinctly described by properties; hierarchy is 
built based on the identified concepts not by 
explicit designers [28]. Other main advantages of 
exploiting FCA is that i) it is suitable for 
collaborative environment with distinct designers 

working on a single ontology. ii) sets of formal 
concepts and Galois connections can be 
graphically visualized. FCA identifies conceptual 
structures, which are graphically represented as 
concept lattice. Concept lattice is represented by a 
binary matrix called as formal context. 

Formal context is a triple of 𝑂, 𝐴, 𝐼 where 𝑂 is a 

set of objects, 𝐴 is a set of attributes and I is the 
relation between 𝑂 𝑎𝑛𝑑 𝐴  such that 𝑜, 𝑎 ∈ 𝐼 means 

that object  has attribute 𝑎. The context is 

represented as a cross table where rows 
represents the formal objects or concepts and 
column represents formal attributes and crosses 
represents the relation between them as depicted 
in table 1 [6-19]. 

Formal concept is based on two properties: 
extensions and Intentions. Formal concept is a pair 
of (𝐸, 𝐼) where, 𝐸 is a set of objects called the 

extent of concept and 𝐼 is set of attributes called as 
intent of concept, such that 𝐸′ =  𝐼 & 𝐼′ = 𝐴 

Formal concept analysis is used in numerous 
applications in various fields of software 
engineering [30, 31], data mining [19] and 
development of ontology [32, 33]. 

3.1.3 Fluent Editor Tool 

Fluent editor tool is used for construction, editing, 
manipulating and reasoning complex ontology. It is 
developed by cognitum and uses controlled natural 
language (cnl) for developing and reasoning 
ontologies as compared to other ontology tools 
such as Protégé [20]. It has several tools that are 
used to manage complex ontologies such as: a 
reasoned window, SPARQL window, xml preview 
window and taxonomy. Through a reasoned 
window, knowledge can be extracted by asking 
queries, SPARQL window executes SPARQL 
queries and xml wile is generated using xml 
preview window, similar to ontology web language 
(owl) for any domain. Fluent editor tool is used in 
several domains for ontology construction. 

Table 1. formal concept matrix 

Concepts/attributes Attribute 1 Attribute 2 

Concept 1 ×  

Concept 2 × × 

Concept 3  × 
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3.2 Process Flow Diagram 

Figure 1 depicts the general idea of process flow of 
the proposed approach through main phases. 

3.2.1 Corpus Creation and Text 
Pre- Processing 

A corpus of Apache projects Bug Report Corpus 
(APBRC) is established, which contains the 
metadata (BugId, Priority, Severity, Project Name, 
Component, Name, Release Version, One-line 
Description etc.), long description and comments 
made by various contributors. 

The textual data is then processed using 
standard pre-processing steps namely, 
Tokenization, removal of numbers and 
punctuations, removal of stop words and 
stemming. After text pre-processing, document 
term matrix is created. Sparsity is removed to 
create a dense vector. Text pre-processing is 
performed using R language including various 
packages such as ‘tm’ and ‘NLP’. 

3.2.2 Feature Extraction 

Humans can understand the linguistic structures 
and its meaning from texts. But to train machines 
on linguistic structure and their meaning, there is a 
need to extract features from the text data. Text 
consists of sentences and sentence consists of 
words. In context of text-corpus, sequence of 
words is called n-grams. 

N-grams are set of co-occurring words within a 
given window (N). If N=1, it is called as unigram, if 
N-2, it is known as bi-grams, N=3 is called as tri-
grams and so on. 

To construct concept-relationship matrix, 
unigrams and bi-grams are extracted from 
document term matrix(dtm) using 
NGramTokenizer() and BiGramTokenizer() 
function. 

Tri-grams were also extracted, but it made no 
significant contribution in identification of concepts 
and relationships, so was discarded. 

After extracting unigrams and bi-grams for each 
bug report, the relationship among concepts and 
attributes are identified. 

3.2.3 Creation of Concept-Relationship Lattice 

In this step, bugId’s are considered as concepts 
and several attributes are identifies based on 
metadata of bug reports and extracted features 
(unigram and bi-grams). After the identification of 
concepts and attributes, relationship between them 
is identified. In this work, 21 concepts are identified 
as BugId and several attributes such as Resolved, 
Severe, Non-severe, Major contributors, network 
error, Edit log error, Namenode Error, 
Authentication error, File Permission error, 
Input/Output error, Application-consistency error, 
Bytebuffer error, configuration error and Java error 
were identified and relationship between each 
concept and attribute is found using FindAssoc() 
function and are mapped. 

 

Fig. 1. Process flow diagram of proposed approach 
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Formal concept analysis is used to represent 
binary relationship among two concepts. For 
illustration, to extract which bug has severity as 
severe and edit log error from concept-relationship 
matrix, it is easily possible to extract data as bugId 
HDFS-7707 and HDFS-13112 as depicted in table 
2. After mapping the concept and relationships, a 
lattice diagram is constructed to depict the extent 
and intent among different concepts. 

3.2.4 Ontology Development and Evaluation 

After construction of concept-relationship matrix, 
the concept –relationship data is fed in the form of 
Controlled Natural Language (CNL) in Fluent editor 
tool. The ontology of software bug reports is 
developed to discover different aspects of bug 
reports. The knowledge is extracted with the help 
of queries through reasoned. To extract knowledge 
from bug report ontology, several questions are 
formed such as: 

− What is a bug? 

− What are different bugs? 

− What is different bug-id numbers? 

− Who contributes in which type of bug? 

− What are different types of bugs? 

− Who contributes-in Hdfs-7707? 

− What is blocker-severity bugs? 

− What are critical severity bugs? 

− Who has-major-severity? 

− Who has a network-error? 

− Who has authentication error? 

Similarly, more knowledge can be extracted 
through several more queries illustrated in section 
4 on a reasoner.  The ontology can also be 
published on web through Ontology Web 
Language (OWL). The ontology is evaluated on the 
basis of two perspective: - Ontology Quality and 
Ontology Correctness [34]. In order to evaluate 
ontology, ontology is classified into three 
categories. First category is based on the definition 
of ontology evaluation , second is based on layered 
approach to ontology evaluation and last is based 
on comparison against a gold standard/ application 
or task-based/user-based or data driven evaluation 
[35]. In our work, the proposed approach is an 
example of application-based ontology evaluation. 
In this type of evaluation, ontology is just plugged 

in into an application and results are evaluated 
which is relatively straightforward and 
unambiguous. It also describes with relations (is-a, 
has-a and others) are used to induce the clones 
among two concepts in terms of their meaning. 

4 Implementation and Results 

In this section, the process of data collection and 
several steps such as feature extraction, 
generation of concept-lattice and ontology 
development is illustrated. 

4.1 Data Collection 

To train the model and build ontology, a corpus of 
bug reports is required. Bug reports of five projects 
of Apache software foundations are extracted in 
time duration of 2015-2018. The bug reports are 
extracted using the tool named Bug Report 
Collection System (BRCS) [36] for five projects 
namely, Hadoop-common, Hadoop-hdfs, Hive, 
Hbase and Groovy. Long description, comments 
made by several contributors and metadata 
information (bugId, Resolution, Priority, status, 
one-line description, assigned to, component, 
date, version etc.) of about twenty thousand bug 
reports are extracted. From this large pool of data, 
21 bug reports are selected to construct ontology 
of bugs’ domain and knowledge extraction. 

4.2 Process Illustration 

Step 1: Feature Extraction 

To train machines on linguistic structures and 
predict natural language accurately, features are 
extracted. Bug reports are pre-processed using 
text mining techniques and document term 
matrix(dtm) is created. Unigrams are extracted 
using findfrequentterm() function. 
NGramTokenizer function is applied on dtm and 
bigrams are extracted. Unigrams and bi-grams are 
extracted as features. Significant unigrams and bi-
grams with frequency above than 10 for each bug 
report are selected and depicted in table 2. 

Step 2: Creation of Concept-Lattice 

A conceptual framework is created using formal 
concept analysis to structure, analyze and 
visualize data to make it more understandable. 
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Table 2. Feature set of bugs 

Bug Id# Unigrams Bi-grams 

Hdfs-7707 
Block, check, delayed, edit, log, hdfs, new, removal, file, 
kihwal, deleted, test 

Edit log, block removal, delayed block, applied patch, due delayed, 
log corruption, total number, corruption due, creation time 

Hdfs-8312 Branch, check, delete, permission, files, fix, trash, rename 
Ecn flags, permission error, separate ecn, status 
datatransferpipelineack, datatransferpipelineack contributed 

Hdfs-13112 
Edit, edits, expiration, expired, lock, secret, threads, token, 
tokens 

Expired tokens, edit logging, secret keys, token expiration, write 
lock, edit log, old tokens, read lock, secondary namenode, 
namenode may, retain node, secret manager 

Hadoop-
13155 

Added, config, delegation, hadoop, token, new, renewer 
Delegation token, config key, request header, accessing required, 
create new, delegation tokens, dt request, hdfs encryption, looks like 

Hadoop-
13890 

Can, code, failed, fix, kerberosname, server, spn, spnego, 
unit, like, principal, realm 

Kerberosname parsing, like httphost, spnego spn, unit tests, local 
realm 

Hadoop-
14146 

branch, hadoop, http, keytab, realm, principal, spn, 
spnego, server, support, work 

Internal spnego, support multiple, local realm, host header, service 
principal, conf key, hadoop spnego, principals specified 

Hadoop-
11802 

Add, applied, block, datanode, deadlock, 
domainsocketwatcher, exception, failure, fail, fix, issue, log, 
logging, slot, socket 

Domainsocketwatcher thread, deadlock domainsocketwatcher, fix 
deadlock, domainsocketwatcher notification, pipe full 

Hadoop-
15273 

Checksum, blocksizes, datacorruption, remote 

Different checksum, stores different, blocksizes copy, checksum 
mismatch, checksumchecks altogether, differ blocksize, handle 
remote, hdfs webhdfs, masking datacorruption, preserve blocksizes, 
remote stores, risk masking 

Hbase-
13229 

Cell, column, grant, groups, hbase, level, specific 
Work groups, grant specific, specific column, column level, hbase 
grant, level work, cell level, grant cell 

Hbase-
13732 

Does, fails, intermittently, number, tests, 
testhbasefsckparallelwithretrieshbck,  

Does not, fails intermittently, testhbasefsckparallelwithretrieshbck 
fails, hbase13732 testhbasefsckparallelwithretrieshbck 

Hbase-
15638 

Can, classes, hbase, hbaseprotocol, module, protobuf, 
references, shaded, version  

Hbaseprotocol module, pb references, shade plugin, shaded 
protobuf, module relocated, coprocessor endpoints, use protobuf, 
protobuf version, final artefact 

Hbase-
19496 

Bbpool, bytebuffer, branch, code, data, clone, layer, 
methods, rpc, server, serverload, regionload, pool 

Pb object, rpc layer, min size, cloneing request, data rpc, call done, 
build hbasetrunkmatrix 

Hbase-
20004 

Api, browser, client, rest, security, server, release 
Rest server, rest api, rest queries, allow options, based query, 
browser based, clients expect, config knob, disallow default, firefox 
browser 

Hbase-
20201 

Can, commonscli,  hadoop, hbasethirdparty, roll 
Hadoop jar, new hbasethirdparty, looks like, back commonscli, broke 
hadoop, commonscli  dependencies, due jobs, depends commonscli 

Hive-12538 
Conf, hive, issparkconfigupdated, multiple, operation, 
queries, operation, session, spark 

Session level, level conf, spark session, operation level, 
issparkconfigupdated false, concurrent queries, conf object, hs 
session, multiple concurrent, one session 

Hive-10428 Executed, failed, least,noformat Due failederrored, failed tests 

Hive-13369 Automatically, failed, executed, noformat, open, modified Precommithivemasterbuild, open txns, failed tests 

Hive-11112 Case, fix, hive, method, noformat, test, texts Test case, hive duplicate 

Hive-15827 
Exception, instances, hive, llap, mode, registry, root, 
running, service, watch 

Root path, watch mode, live instances, registry service, llap registry, 
connects llap, id precommithivebuild 

Groovy-
7535 

Atomicinteger, categoryinuse, fix, issue, category, thread 
Race condition, another thread, github user, int counter, read 
hascategoryincurrentthread, using atomicinteger, fgit closed, closed 
pull, fix issue, int field 

Groovy-
8483 

Gradle, groovy, issue, jar, missing, pom, time Artefact now, fat jar, packaging looks, release process, also synced 
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Concepts and attributes are identified and the 
relationship among them are mapped in the cross-
table form depicted in table 3. Figure 2 depicts the 
snapshot of concept-relationship matrix created 
through concept explorer tool. The extensions and 
intentions of concepts are depicted in the lattice 
diagram in figure 3. Here, only subconcepts is 
depicted and to extract more relationship between 
concepts and attributes, an ontology is constructed 
using Fluent Editor tool as explained in step 3. 

Step 3: Development of Ontology 

After the construction of lattice diagram, the 
concepts and its relationship are fed as an input to 
fluent editor tool in controlled natural language. 

To build an ontology many relationships are 
considered such as ‘is-a’, ‘has-a’, ‘is-not 
a’ relationship. 

Along with these predefined relations, several 
user-defined relations are also considered such as 
‘contributors-in’, ‘has-major’, ‘has-critical’, ‘has-
blocker’ are used. 

As per the literature, the proposed approach 
and constructed ontology is application-based 
ontology [34, 35] That is, it is constructed form the 
datasets of a particular domain. It is not compared 
with any gold standard ontology. thus, it is not 
possible to evaluate the ontology through metrics 
such as precision, recall or f-measure [37]. 

Based on further research, the approach can be 
evaluated using data quality dimensions. Data 

Table 3 Concept-relationship matrix 

Attributes 
Res S NS MC NNE ELE NE AE FPE I/O E ACE BBE CE JE 

Concepts 

Hdfs-7707  × ×   ×   ×  ×   ×      

Hdfs-8312  × ×   ×     ×  ×      

Hdfs-13112  × ×   ×  ×  ×   ×       

Hadoop-13155  × ×   ×  ×    ×       

Hadoop-13890  × ×   ×  ×    ×       

Hadoop-14146  × ×   ×  ×    ×       

Hadoop-11802  × ×   ×       ×     

Hadoop-15273  × ×   ×  ×          

Hbase-13229  ×  ×  ×     ×  ×      

Hbase-13732  ×  ×  ×      ×   ×    

Hbase-15638  × ×   ×     ×     ×   

Hbase-19496  × ×   ×        ×  ×   

Hbase-20004  ×  ×  ×  ×    ×       

Hbase-20201  × ×   ×  ×     ×      

Hive-12538  × ×   ×        ×   ×  

Hive-10428  × ×   ×        ×    

Hive-13369  × ×   ×      ×   ×    × 

Hive-11112  × ×   ×  ×      ×     × 

Hive-15827  × ×   ×  ×    ×    ×    × 

Groovy-7535  × ×   ×      ×   ×    × 

Groovy-8483  × ×   ×       ×  ×    × 
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quality dimensions are accepted universally and 
are used to measure the quality of data [38]. The 
ontology of bug reports is evaluated using several 
dimensions such as completeness, consistency, 
uniqueness, validity and accuracy. Various metrics 
are defined in table 4. Thus, use of ontologies in 
the domain of bug reports is indispensable. 

Res-Resolution, S-severe, NS-Non-severe, 
MC-Major contributors, NNE- NameNode error, 
ELE-Edit log error, NE- Network error, AE- 
Authentication error, FPE-File Permission error, 
I/OE-Input/Output Error, ACE-Application-
consistency error, BBE- Bytebuffer error, CE- 
Configuration error, JE-Java error. 

 

Fig. 2. Output of concept-relationship matrix 

 

Fig. 3. Concept-relationship lattice 
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To evaluate our constructed ontology, the 
metrics defined in table are evaluated using 3 
annotators working in the same domain of software 
bug reports. The results of three annotators are 
then averaged to achieve final results in table 5. 

A taxonomy tree and ontology are developed. 
To extract knowledge from an ontology, several 
queries are formed which are executed on a 

reasoner. The queries generated and knowledge 
extracted is tabulated in table 6. 

The output of fluent editor tool and taxonomy 
tree is depicted in figure 4. The complete 
generated ontology has been illustrated in figure 5. 

The knowledge extracted through a reasoner is 
depicted in figure 6. 

  

Fig.4. Ontology creation and taxonomy tree 

 

Fig. 5. Ontology on software bug reports 

 

Fig. 6. Knowledge extraction using Reasoner 
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Fig. 7. Published ontology on web using OWL 

Table 4. Definition of metrics 

Metrics Definition 

Completeness 
It is defined as the proportion of data stored in contrast to “100% complete” and focusses 
on measuring critical data. 

Uniqueness It is defined as everything that is identified is recorded only once. 

Validity It is defined as data is valid if it conforms to the syntax. 

Accuracy It is defined as degree to which data describes the “real world” object correctly. 

Consistency 
It is defined as how consistent the data is when compared with two or more 
representations. 

Table 5. Evaluation of ontology by annotators 

Metrics Annotator 1 Annotator 2 Annotator 3 Final Results 

Completeness 90% 85% 95% 90% 

Uniqueness 95% 80% 90% 88.3% 

Validity 90% 85% 80% 85% 

Accuracy 85% 90% 85% 86.6% 

Consistency 90% 90% 90% 90% 
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The ontology is published on web using 
Ontology Web Language (OWL) as depicted in 
figure 7. 

5 Threats to Validity 

Threats to internal validity refer to whether 
conducted experiment deals with the causes and 

effects in specific domain ontology. Different 
concepts were identified by manual study and then 
compared with the concepts identified by the 
proposed techniques. It was reported that there 
was no significant difference in concepts 
identification between manual and proposed 
techniques. 

Threats to external validity refer to the capability 
to generalize the results. The main threat is due to 

Table 6. Knowledge extraction through query retrieval 

Queries executed Information Extracted 
Additional 
results 

What is a bug-id? 

Hdfs-7707, Hdfs-8312, Hdfs-13112, hadoop-13155, hadoop-13890, 
hadoop-14146, hadoop-11802, hadoop-15273, hbase-13229, 
hbase-13732, hbase-15638, hbase-19496, hbase-20004, hbase-
20201, hive-12538, hive-10428, hive-13369, hive-11112, hive-
15827, groovy-7535, groovy-8483 

21 instances, 5 
subconcepts 

What is a bug? 
Byte-buffer-error, name-node-error, java-error, log-edit-error, file-
permission-error, application-consistency-error, configuration-error, 
input-output-error, network-error, authentication-error 

11 subconcepts, 
1 superconcept 

Who contributors –in? 
Yongzhichen, andrewpurtell, stack, ericyang, Hudson,khilwallee, 
seanbusbey, henrik, siddharthseth, many others 

78 instances 

Who contributors-in 
Hdfs-7707? 

Hudson, brahmareddy, haddopqa, yongjunzhang, 
vinodkumarvavillapalli, kilwallee 

6 instances 

Who has-blocker-
severity? 

Hive-13369, hbase-20201, hbase-19496, grrovy-8483 4 instances 

Who has-critical-
severity? 

Hbase-15638, Hadoop-15273, Hdfs-8312, hdfs-13112 4 instances 

Who has-major-
severity? 

Hive-10428, hadoop-13890, Hive-11112, Hadoop-13155, Hdfs-
7707, Hive-12538, hadoop-14146, groovy-7535 

8 instances 

Who has a network-
error? 

Hdfs-13112, Hadoop-13890, Hive-11112, Hadoop-15273, Hadoop-
13155, Hbase-20201, Hbase-20004, Hive-15827, hadoop-14146 

9 instances 

Who has 
authentication-error? 

Hdfs-8312, Hdfs-13112, hbase-15638, hadoop-13890, Hadoop-
13155, Hbase-20004, Hive-15827, hbase-13229, hadoop-14146 

9 instances 

Who has a log-edit-
error? 

Hdfs-13112, Hdfs-7707 2 instances 

Who has a file-
permission-error? 

Hdfs-8312, Hbase-13732, Hive-13369, Hdfs-7707, Hbase-20201, 
hbase-13229, Groovy-7535 

7 instances 

Who has a name-node-
error? 

Hdfs-7707 1 instance 

Who has application-
consistency-error? 

Hive-10428, Hbase-13732, Hive-13369, Hbase-19496, Hive-15827, 
groovy-8483, Hive-12538, groovy-7535 

8 instances 

Who has a byte-
buffers-error? 

Hbase-15638, hbase-19496 2 instances 

Who has a severity? 
Bug, Byte-buffer-error, name-node-error, java-error, log-edit-error, 
file-permission-error, application-consistency-error, configuration-
error, input-output-error, network-error, authentication-error 

12 subconcepts 

Who has a contributor? 
Bug, Byte-buffer-error, name-node-error, java-error, log-edit-error, 
file-permission-error, application-consistency-error, configuration-
error, input-output-error, network-error, authentication-error 

12 subconcepts 

What is a network-
error? 

Bug, issue 2 superconcepts 
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the specific domain and tasks used in this work. As 
there is no ontology on software bugs, the data is 
collected is very small and concrete (about 21 bug 
reports of 5 different apache projects). 

However, it includes various types of bugs 
based on classification of error such as network 
error, file permission error etc. In future, the 
proposed approach will be implemented on large 
number of bug reports of several distinct projects 
of apache software and with other techniques. 

6 Conclusion and Future Work 

In this research, an approach is proposed that uses 
Formal Concept Analysis to extract an ontology 
from the content analysis of bug reports. The main 
focus has been with software bugs domain and 
extracting knowledge from the bug reports 
reported in bug tracking systems. 

The proposed approach extracts features 
(unigrams and bi-grams) and identifies various 
concepts and attributes. The concept lattice is 
created using formal concept analysis, which maps 
the relationship between concepts and attributes. 
This is further converted to ontology of bug reports 
through which knowledge is extracted using 
several small queries. 

Several queries have been executed for 
information extraction and found 100% results on 
all the queries retrieval. It is concluded that 
proposed approach is feasible and useful in 
software bug domain.  

It is due to the fact that frameworks with 
diagrams can be used for formal reasoning and 
yields in improved visualizations through concept-
lattice. In software bug domain, the information is 
reported in the form of bug reports, which are large 
textual documents that are difficult to read and 
comprehend. With exploitation of FCA, large 
textual documents have been converted to a 
mathematical theory and are visualized through 
diagrams such as concept lattice. Further, 
concepts are arranged in hierarchical form, which 
are easy to interpret and retrieval of knowledge. 
Thus, proposed approach is feasible and useful in 
software bug domain [28].Thus, use of ontologies 
in the domain of bug reports is indispensable. 

The work can be extended in future in many 
directions. First, several bug reports of distinct 

projects of various bug tracking systems can be 
used to construct a global ontology of software 
bugs. Second, along with formal concept analysis, 
fuzzy techniques can be integrated to create more 
complex ontology, which can be used to extract 
more knowledge through complex queries.  
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