
Information Retrieval from Software Bug Ontology
Exploiting Formal Concept Analysis

Shubhra Goyal Jindal, Arvinder Kaur

University School of Information and Communication Technology,
Guru Gobind Singh Indraprastha University,

India

{shubhra.phd, arvinder} @ipu.ac.in

Abstract. Knowledge extraction and structuring is

attaining importance in real world applications such as
e-commerce, decision support, problem solving and
semantic web. Extraction of knowledge from collection
of text documents is based upon identification of
semantic content. Ontology plays an important role in
accessing and structuring information. Developing an
ontology are at the core of new strategies which requires
accurate domain knowledge. Identification of structural
and logical concepts is a time-consuming process. This
work presents an ontology-based retrieval approach,
that visualizes and structure the data of software bug
reports domain. It exploits formal concept analysis (FCA)
to elicit conceptualizations from bug reports datasets
and a hierarchical taxonomy is generated of extracted
knowledge. A lattice diagram of concepts and
relationships is constructed from concept-relationship
matrix created by FCA. Ontology is constructed on fluent
editor tool and knowledge is extracted with the help of
small queries executed on a reasoner window. The
proposed approach is evaluated on 21 bug reports of
apache projects of jira repository. It can be concluded
that information can be retrieved easily from ontology as
compared to manual extraction of data.

Keywords. Knowledge extraction, formal concept

analysis, ontology, software bug reports, concept-lattice.

1 Introduction

In recent years, semantic web relies on ontologies
as a means for data sharing and communication.
Semantic web was introduced by Gruber [1], which
converts the unstructured data into structured data
that is easily processed by machines without
human intervention. It enables the users to search
questions, retrieval of information and knowledge
extraction with minimum effort.

Conceptualizations of underlying knowledge
and shared understanding of domains is provided
by ontologies. Ontology is considered as a tool for
modelling an abstract view of contextual semantic
analysis of documents.

Ontology is defined as formal representation of
knowledge within a domain by a set of concepts
and relationship between these concepts [2].
Ontology is a feasible solution for accessing data,
modelling complex domain and interoperability
through standard languages Ontology Web
Language (OWL) and Resource Description
Framework (RDF).

Domain knowledge can be restored in ontology
[3], but identification of concepts and their
relationship is still an obstacle in many domains [4,
5]. Ontology is an instrument for knowledge
structuring and yielding controlled vocabulary for
content classification is an information domain [6].

In software engineering, software bug reports
are the most valuable aspect in software
development and maintenance process.

They depict numerous information of software
bug in the form of metadata (containing BugId,
project name, component name, release version,
one-line description and others), long description
and comments made by various contributors made
to resolve a bug.

Several researchers have worked in literature
on unstructured data of bug reports in various
fields such as bug triaging [7, 8], severity prediction
of bug reports [9–12], defect prediction [13],
classification of bug reports [14, 15] and many
others. Among various applications of bug reports,
complete semantic knowledge about bug has not
been addressed so far.

Computación y Sistemas, Vol. 24, No. 2, 2020, pp. 413–428
doi: 10.13053/CyS-24-2-3368

ISSN 2007-9737

For example, if we want to retrieve all the
contributors of a bug Id# Hdfs-7707.It should fetch
all the contributors who were involved in the
resolution process of #Hdfs-7707 as compared to
retrieving only the name of the developer to whom
it is assigned. The semantic confides to formal
ontology’s that structures the data extensively for
machine understanding. To extract knowledge
from a large corpus of bug reports, bug ontology is
needed. Although developing an ontology from
scrape is a labor intensive, time-consuming tasks
and requires precise and detailed understanding of
any domain.

Few researchers had worked on ontology of
software bugs, defects [16–18]. As per the
literature, none of the research work focused on
extracting knowledge using ontology automatically
form the content analysis of bug reports. The
proposed approach exploits Formal Concept
analysis (FCA) as a mathematical model to
construct an ontology. This work extracts important
and beneficial information from the metadata, long
description and comments of software bug reports
of Apache projects of jira repository. Text mining is
performed on unstructured data and features are
extracted. Unigrams, bi-grams and trigrams are
extracted as features. Based on analysis, tri-grams
were discarded and it does not significantly
contribute in information extraction.

Concepts and attributes are identified based on
unigrams and bi-grams and the relationship
between them are mapped into concept lattice
structure using Formal Concept Analysis (FCA).
FCA is used for information and knowledge
representation and analysis of data [19]. It
visualizes all concepts and their relationships in
tabular form resulting in a concept lattice.

For ontology construction, to link and connect
concepts, relationships such as ‘is-a’, ‘has-a’ and
user defined relationships such as ‘contributors-in’,
‘is-not’, ‘has-critical’ etc. is considered, An ontology
of 21 bug reports of apache projects namely:
Hadoop-HDFS, Hadoop-Common, Hive, Hbase
and Groovy. Based on ontology, the knowledge is
extracted using several small queries written in
common natural language (CNL) using fluent
editor tool. Fluent editor tool is used for developing
and reasoning ontology. It is used in this work as
compared to other tools such as Protégé as it used

controlled natural language (cnl) which is easy to
understand by any user [20].

Ontology is published on web using ontology
web language(owl). Thus, domain ontology of
software bug reports is valuable for developers and
researchers as it contains the knowledge of all bug
reports, which can be extracted using ontology
supporting languages.

The rest of the paper is organized as follows:
section 2 reviews the previous work done in the
area of ontology and ontology of software bug
reports. The research methodology is explained in
section 3 followed by Implementation and results
in section 4.

2 Related Work

This section reviews the work done in construction
of ontology based on learning from text and in the
field of software engineering and software bug
reports. It also includes the work of authors such
as Philipp Cimiano, Alexander Maedche and
Stefan Staab.

2.1 Ontology from Texts and Software
Engineering

Ontology is a crucial part while developing
semantic applications. Several researchers have
worked in the area of semantic web and ontology
construction. V. Uren et al. [21] presents a survey
of general-purpose tools that are used for
annotation of semantic web, they have further
examined these tools based on manual annotation,
automatic annotation, integrated annotation or on-
demand annotation. Manual annotation tools are
compared based on different requirements such as
standard formats, user-centered design, ontology
support, document formats, document evolution
and annotation storage.

The survey indicates that WickOffice and
ActiveDoc are two examples of integrated
authoring environment tools but still are limited to
their degree of automation and variety of covered
documents. There is a lot of scope of improvement
in other existing automation system to provide full
automatic annotation on wide range of documents
and platforms.

Computación y Sistemas, Vol. 24, No. 2, 2020, pp. 413–428
doi: 10.13053/CyS-24-2-3368

Shubhra Goyal Jindal, Arvinder Kaur414

ISSN 2007-9737

G. Stumme et al. proposed a novel method for
merging ontologies with bottom up approaches
named as FCA-merge.

The approach consists of three steps:
extraction of instances and computing two formal
contexts namely K1 and K2; application of FCA-
merge algorithm to derive common context and
generate a concept lattice; based on concept
lattice, fine merged ontology is generated. The
approach is evaluated on tourism domain [22]. A
Hotho et. al. employed a simple, core ontology to
generate disparate representations of a particular
document set which are a result of multiple
clustering algorithms like k-means.

Then based on the results if different clustering
algorithm and actual concepts, user can conclude
the results. The author had proposed a new
approach namely. COSA (Concept Selection and
Aggregation) which has been evaluated on
customer database of telecommunication domain
[23]. The work done on ontology creation in the
field of software engineering is focused here. E.
Blomqvist [24] proposed a pattern-based ontology
construction, ontocase based on case-based
reasoning. An automatic approach for pattern
matching and selection is proposed influenced by
ontology ranking to bridge the gap between
patterns and specific features extracted from texts.
The approach is evaluated and the results signify
that proposed approach performs significantly
better on small and abstract patterns. P.E. Khoury
et al. proposed an ontology-based approach to
identify various security patterns needed by
software developers.

The description of security properties are used
for ontology [25]. An ontological mapping is
proposed to map requirements from one side to
other side of contexts such as threat models,
security bags and security errors. In another
research work, software product line engineering
(SPLE) paradigm is considered which is based on
reusing artefacts and knowledge from similar
software products. I.R. Berger et al. proposed an
automated extraction method, CoreReq.

The main task is to generate core and reusable
requirements from existing product requirements
that can be used by distinct members of software
product line to generate requirements of a
new product.

The approach is based on ontological
framework with two dimensions: elements
and product.

CoreReq analyzes the product requirements
through natural language processing and
compares those using semantic measures such as
latent semantic analysis and ontological
variability analysis.

Based on similarity measures, similar
requirements are categorized according to the
dimensions of the framework. The approach is
evaluated on four software products namely: Hotel,
Library, Car rental and Second hand book shop as
all deal with check-in check-out operation. The
core requirements are gathered and were reused
to generate the requirement of fifth product i.e
medical equipment rental system[26]. Apart from
these several artefacts of software, work has also
been done on ontology of software bug reports as
discussed in section 2.2.

2.2 Ontology on Software Bug Reports

In software engineering, every reference model of
each organization employs its own vocabulary to
explain failures, errors and defects that occur. This
leads to deficiency in understanding these
concepts of different software during product
interoperability and other tasks. To reduce this
problem of common conceptualization, domain
ontology of software defects, error and failures
(OSDEF) is proposed by B. Duarte et al. The
ontology is developed using Systematic Approach
for Building Ontologies (SABiO) and grounded on
Unified Foundation Ontology (UFO).

Main features of OSDEF are: providing
conceptual analysis of nature of distinct anomalies
such that notions like failure, fault, defect and error
refers to different types of phenomena. It is used
for developing issue trackers and configuration
management tools. It establishes a common
vocabulary for better communication among
software engineers and stakeholders. Thus,
OSDEF is domain ontology to provide a common
conceptual structure to different types of anomalies
and vocabulary for better communication in
software engineering [18].

In [16], authors have extracted numerous bug
reports from several open source bug tracking

Computación y Sistemas, Vol. 24, No. 2, 2020, pp. 413–428
doi: 10.13053/CyS-24-2-3368

Information Retrieval from Software Bug Ontology Exploiting Formal Concept Analysis 415

ISSN 2007-9737

systems such as Bugzilla, Trac, Mantis and Debian
using APIs and Buglook (web crawler).

To store such large amount of data, a unified
bug data model is built that captured the most
important aspects of version tracking system.

To perform semantic search of bug reports on
unified bug dataset, two methods are used: MVR
(Multi-vector representation) and RDF (Resource
Description Framework).

The MVR method was executed on semi-
structured data (full text and metadata) of bug
reports to search similar bugs with salient features.
While RDF method used bug correlation,
symptom-based classification and package
dependency. The results proved that semi-
structured search outperforms other consolidation
of search methods. It also proved that there exists
a smaller number of similar bugs in bug
tracking system.

In their consecutive study [17], authors
proposed to find similar bug reports using semantic
bug search system on Peer to peer network. A
unified bug schema is created, which stores
several types of bug reports from various bug
tracking systems. It also has several properties
such as dependencies, packages, symptoms,
categories based on concepts that help in bug
classification and relationships for semantic
search. Further, Gnutella P2P protocol is used that
uses super peers for query routing and processing,
to improve the performance of the system. The
proposed system is evaluated on EMANICSLAB
on three issues: feasibility, scalability, and
efficiency.

P. Schueger et al. used semantic web
technology to compute the quality of bug reports
and in turn to enrich existing software engineering
ontology. In this work, existing quality attributes are
refined, and new quality attributes are proposed to
intensify the quality of bug reports. New quality
attributes such as certainty, focus, reproducibility,
and observability are identified from keywords and
key expressions embedded in description of bugs.
The proposed technique is evaluated on dataset of
AgroUML and quality of bug reports was used to
extract knowledge from software engineering
ontology [27]. Evoont is a collection of software
ontology, bug and version ontologies which is used
for software analysis, design and bug tracking
purpose [39].

Two ontology such as Baetle (Bug and
enhancement tracking language) [40] and Helios
[41] are under development towards a unified
ontology of software bugs.

In literature, an ontology is constructed to
perform semantic search to find similar bugs in bug
tracking systems or quality attributes are defined to
enrich software engineering ontology, but none of
the work focused on ontology construction that
extract knowledge from metadata, long description
and comments of bug reports.

To help software developers to extract
knowledge of semantically related bugs based on
several attributes, ontology is created. As most of
the knowledge is enclosed in corpus of
unstructured bug reports, ontology assures
efficiency, accuracy and effectiveness in
information retrieval process. The approach is
implemented on bug reports of apache projects of
jira repository. Text mining is performed on long
description and comments and features (unigrams
and bi-grams) are extracted using term frequency-
inverse document frequency (tf-idf).

Concepts and several attributes such as type of
error, major contributors, severity, and resolution
are identified using extracted features.
Relationship between concepts and attributes are
mapped to form concept-lattice matrix using
Formal concept analysis. Based on identified
relationships, ontology is constructed and
knowledge is extracted using queries executed on
a reasoner tool. The created ontology is also
published on web using ontology web language.
Thus, use of ontologies in the domain of bug
reports is indispensable.

3 Research Methodology

This section explains the various concepts used in
this research work in section 3.1. The process flow
diagram of the proposed work is illustrated and
explained in section 3.2.

3.1 Preliminary Concepts

Ontology construction and visualization require
preliminary activities, which forms the part of
execution process of the system. It includes text

Computación y Sistemas, Vol. 24, No. 2, 2020, pp. 413–428
doi: 10.13053/CyS-24-2-3368

Shubhra Goyal Jindal, Arvinder Kaur416

ISSN 2007-9737

pre-processing, formal concept analysis and fluent
editor tool.

3.1.1 Text Pre-Processing

Text pre-processing includes standard pre-
processing steps i.e. tokenization of text data,
removal of punctuations and numbers, stop word
removal and stemming. Tokenization is
segmentation of text into substantial elements
such as words, symbols, phrases called as tokens.
Tokenization is followed by removal of
punctuations and numbers. In next step, stop
words are removed.

Stop words are common words such as the,
and, this, these etc., which do no convey any
significant information. Stemming is performed at
the last, which reduces the words to their root
forms. For example, likes, liked, likely are reduced
to word ‘like’ as their base form. After pre-
processing the textual data, document term matrix
(DTM) is created [12].

3.1.2 Formal Concept Analysis

Formal concept analysis (FCA) is a conceptual
clustering technique with mathematical foundation,
which formalizes concepts as basic unit and
analyses data in object-attribute form. It is used as
a tool for knowledge representation, information
retrieval and analysis of data. It is a contrasting
approach as compared to traditional and statistical
means of knowledge retrieval and data analysis
techniques as it focusses on human centered
approaches [28]. It has been used in several
applications such as psychology, medicine,
ecology and software engineering [29]. FCA is
used over other methods like pattern-based
approach and frame-based system due to
several issues.

These issues are described as: objects that are
used to create hierarchies are not clearly distinct in
terms of attributes, which raises a concern in
knowledge sharing; change of classes and its
attributes is not easy once they are defined. To
overcome these difficulties of several existing
methods FCA is used as: it identifies concepts that
are distinctly described by properties; hierarchy is
built based on the identified concepts not by
explicit designers [28]. Other main advantages of
exploiting FCA is that i) it is suitable for
collaborative environment with distinct designers

working on a single ontology. ii) sets of formal
concepts and Galois connections can be
graphically visualized. FCA identifies conceptual
structures, which are graphically represented as
concept lattice. Concept lattice is represented by a
binary matrix called as formal context.

Formal context is a triple of 𝑂, 𝐴, 𝐼 where 𝑂 is a

set of objects, 𝐴 is a set of attributes and I is the
relation between 𝑂 𝑎𝑛𝑑 𝐴 such that 𝑜, 𝑎 ∈ 𝐼 means

that object has attribute 𝑎. The context is

represented as a cross table where rows
represents the formal objects or concepts and
column represents formal attributes and crosses
represents the relation between them as depicted
in table 1 [6-19].

Formal concept is based on two properties:
extensions and Intentions. Formal concept is a pair
of (𝐸, 𝐼) where, 𝐸 is a set of objects called the

extent of concept and 𝐼 is set of attributes called as
intent of concept, such that 𝐸′ = 𝐼 & 𝐼′ = 𝐴

Formal concept analysis is used in numerous
applications in various fields of software
engineering [30, 31], data mining [19] and
development of ontology [32, 33].

3.1.3 Fluent Editor Tool

Fluent editor tool is used for construction, editing,
manipulating and reasoning complex ontology. It is
developed by cognitum and uses controlled natural
language (cnl) for developing and reasoning
ontologies as compared to other ontology tools
such as Protégé [20]. It has several tools that are
used to manage complex ontologies such as: a
reasoned window, SPARQL window, xml preview
window and taxonomy. Through a reasoned
window, knowledge can be extracted by asking
queries, SPARQL window executes SPARQL
queries and xml wile is generated using xml
preview window, similar to ontology web language
(owl) for any domain. Fluent editor tool is used in
several domains for ontology construction.

Table 1. formal concept matrix

Concepts/attributes Attribute 1 Attribute 2

Concept 1 ×

Concept 2 × ×

Concept 3 ×

Computación y Sistemas, Vol. 24, No. 2, 2020, pp. 413–428
doi: 10.13053/CyS-24-2-3368

Information Retrieval from Software Bug Ontology Exploiting Formal Concept Analysis 417

ISSN 2007-9737

3.2 Process Flow Diagram

Figure 1 depicts the general idea of process flow of
the proposed approach through main phases.

3.2.1 Corpus Creation and Text
Pre- Processing

A corpus of Apache projects Bug Report Corpus
(APBRC) is established, which contains the
metadata (BugId, Priority, Severity, Project Name,
Component, Name, Release Version, One-line
Description etc.), long description and comments
made by various contributors.

The textual data is then processed using
standard pre-processing steps namely,
Tokenization, removal of numbers and
punctuations, removal of stop words and
stemming. After text pre-processing, document
term matrix is created. Sparsity is removed to
create a dense vector. Text pre-processing is
performed using R language including various
packages such as ‘tm’ and ‘NLP’.

3.2.2 Feature Extraction

Humans can understand the linguistic structures
and its meaning from texts. But to train machines
on linguistic structure and their meaning, there is a
need to extract features from the text data. Text
consists of sentences and sentence consists of
words. In context of text-corpus, sequence of
words is called n-grams.

N-grams are set of co-occurring words within a
given window (N). If N=1, it is called as unigram, if
N-2, it is known as bi-grams, N=3 is called as tri-
grams and so on.

To construct concept-relationship matrix,
unigrams and bi-grams are extracted from
document term matrix(dtm) using
NGramTokenizer() and BiGramTokenizer()
function.

Tri-grams were also extracted, but it made no
significant contribution in identification of concepts
and relationships, so was discarded.

After extracting unigrams and bi-grams for each
bug report, the relationship among concepts and
attributes are identified.

3.2.3 Creation of Concept-Relationship Lattice

In this step, bugId’s are considered as concepts
and several attributes are identifies based on
metadata of bug reports and extracted features
(unigram and bi-grams). After the identification of
concepts and attributes, relationship between them
is identified. In this work, 21 concepts are identified
as BugId and several attributes such as Resolved,
Severe, Non-severe, Major contributors, network
error, Edit log error, Namenode Error,
Authentication error, File Permission error,
Input/Output error, Application-consistency error,
Bytebuffer error, configuration error and Java error
were identified and relationship between each
concept and attribute is found using FindAssoc()
function and are mapped.

Fig. 1. Process flow diagram of proposed approach

Computación y Sistemas, Vol. 24, No. 2, 2020, pp. 413–428
doi: 10.13053/CyS-24-2-3368

Shubhra Goyal Jindal, Arvinder Kaur418

ISSN 2007-9737

Formal concept analysis is used to represent
binary relationship among two concepts. For
illustration, to extract which bug has severity as
severe and edit log error from concept-relationship
matrix, it is easily possible to extract data as bugId
HDFS-7707 and HDFS-13112 as depicted in table
2. After mapping the concept and relationships, a
lattice diagram is constructed to depict the extent
and intent among different concepts.

3.2.4 Ontology Development and Evaluation

After construction of concept-relationship matrix,
the concept –relationship data is fed in the form of
Controlled Natural Language (CNL) in Fluent editor
tool. The ontology of software bug reports is
developed to discover different aspects of bug
reports. The knowledge is extracted with the help
of queries through reasoned. To extract knowledge
from bug report ontology, several questions are
formed such as:

− What is a bug?

− What are different bugs?

− What is different bug-id numbers?

− Who contributes in which type of bug?

− What are different types of bugs?

− Who contributes-in Hdfs-7707?

− What is blocker-severity bugs?

− What are critical severity bugs?

− Who has-major-severity?

− Who has a network-error?

− Who has authentication error?

Similarly, more knowledge can be extracted
through several more queries illustrated in section
4 on a reasoner. The ontology can also be
published on web through Ontology Web
Language (OWL). The ontology is evaluated on the
basis of two perspective: - Ontology Quality and
Ontology Correctness [34]. In order to evaluate
ontology, ontology is classified into three
categories. First category is based on the definition
of ontology evaluation , second is based on layered
approach to ontology evaluation and last is based
on comparison against a gold standard/ application
or task-based/user-based or data driven evaluation
[35]. In our work, the proposed approach is an
example of application-based ontology evaluation.
In this type of evaluation, ontology is just plugged

in into an application and results are evaluated
which is relatively straightforward and
unambiguous. It also describes with relations (is-a,
has-a and others) are used to induce the clones
among two concepts in terms of their meaning.

4 Implementation and Results

In this section, the process of data collection and
several steps such as feature extraction,
generation of concept-lattice and ontology
development is illustrated.

4.1 Data Collection

To train the model and build ontology, a corpus of
bug reports is required. Bug reports of five projects
of Apache software foundations are extracted in
time duration of 2015-2018. The bug reports are
extracted using the tool named Bug Report
Collection System (BRCS) [36] for five projects
namely, Hadoop-common, Hadoop-hdfs, Hive,
Hbase and Groovy. Long description, comments
made by several contributors and metadata
information (bugId, Resolution, Priority, status,
one-line description, assigned to, component,
date, version etc.) of about twenty thousand bug
reports are extracted. From this large pool of data,
21 bug reports are selected to construct ontology
of bugs’ domain and knowledge extraction.

4.2 Process Illustration

Step 1: Feature Extraction

To train machines on linguistic structures and
predict natural language accurately, features are
extracted. Bug reports are pre-processed using
text mining techniques and document term
matrix(dtm) is created. Unigrams are extracted
using findfrequentterm() function.
NGramTokenizer function is applied on dtm and
bigrams are extracted. Unigrams and bi-grams are
extracted as features. Significant unigrams and bi-
grams with frequency above than 10 for each bug
report are selected and depicted in table 2.

Step 2: Creation of Concept-Lattice

A conceptual framework is created using formal
concept analysis to structure, analyze and
visualize data to make it more understandable.

Computación y Sistemas, Vol. 24, No. 2, 2020, pp. 413–428
doi: 10.13053/CyS-24-2-3368

Information Retrieval from Software Bug Ontology Exploiting Formal Concept Analysis 419

ISSN 2007-9737

Table 2. Feature set of bugs

Bug Id# Unigrams Bi-grams

Hdfs-7707
Block, check, delayed, edit, log, hdfs, new, removal, file,
kihwal, deleted, test

Edit log, block removal, delayed block, applied patch, due delayed,
log corruption, total number, corruption due, creation time

Hdfs-8312 Branch, check, delete, permission, files, fix, trash, rename
Ecn flags, permission error, separate ecn, status
datatransferpipelineack, datatransferpipelineack contributed

Hdfs-13112
Edit, edits, expiration, expired, lock, secret, threads, token,
tokens

Expired tokens, edit logging, secret keys, token expiration, write
lock, edit log, old tokens, read lock, secondary namenode,
namenode may, retain node, secret manager

Hadoop-
13155

Added, config, delegation, hadoop, token, new, renewer
Delegation token, config key, request header, accessing required,
create new, delegation tokens, dt request, hdfs encryption, looks like

Hadoop-
13890

Can, code, failed, fix, kerberosname, server, spn, spnego,
unit, like, principal, realm

Kerberosname parsing, like httphost, spnego spn, unit tests, local
realm

Hadoop-
14146

branch, hadoop, http, keytab, realm, principal, spn,
spnego, server, support, work

Internal spnego, support multiple, local realm, host header, service
principal, conf key, hadoop spnego, principals specified

Hadoop-
11802

Add, applied, block, datanode, deadlock,
domainsocketwatcher, exception, failure, fail, fix, issue, log,
logging, slot, socket

Domainsocketwatcher thread, deadlock domainsocketwatcher, fix
deadlock, domainsocketwatcher notification, pipe full

Hadoop-
15273

Checksum, blocksizes, datacorruption, remote

Different checksum, stores different, blocksizes copy, checksum
mismatch, checksumchecks altogether, differ blocksize, handle
remote, hdfs webhdfs, masking datacorruption, preserve blocksizes,
remote stores, risk masking

Hbase-
13229

Cell, column, grant, groups, hbase, level, specific
Work groups, grant specific, specific column, column level, hbase
grant, level work, cell level, grant cell

Hbase-
13732

Does, fails, intermittently, number, tests,
testhbasefsckparallelwithretrieshbck,

Does not, fails intermittently, testhbasefsckparallelwithretrieshbck
fails, hbase13732 testhbasefsckparallelwithretrieshbck

Hbase-
15638

Can, classes, hbase, hbaseprotocol, module, protobuf,
references, shaded, version

Hbaseprotocol module, pb references, shade plugin, shaded
protobuf, module relocated, coprocessor endpoints, use protobuf,
protobuf version, final artefact

Hbase-
19496

Bbpool, bytebuffer, branch, code, data, clone, layer,
methods, rpc, server, serverload, regionload, pool

Pb object, rpc layer, min size, cloneing request, data rpc, call done,
build hbasetrunkmatrix

Hbase-
20004

Api, browser, client, rest, security, server, release
Rest server, rest api, rest queries, allow options, based query,
browser based, clients expect, config knob, disallow default, firefox
browser

Hbase-
20201

Can, commonscli, hadoop, hbasethirdparty, roll
Hadoop jar, new hbasethirdparty, looks like, back commonscli, broke
hadoop, commonscli dependencies, due jobs, depends commonscli

Hive-12538
Conf, hive, issparkconfigupdated, multiple, operation,
queries, operation, session, spark

Session level, level conf, spark session, operation level,
issparkconfigupdated false, concurrent queries, conf object, hs
session, multiple concurrent, one session

Hive-10428 Executed, failed, least,noformat Due failederrored, failed tests

Hive-13369 Automatically, failed, executed, noformat, open, modified Precommithivemasterbuild, open txns, failed tests

Hive-11112 Case, fix, hive, method, noformat, test, texts Test case, hive duplicate

Hive-15827
Exception, instances, hive, llap, mode, registry, root,
running, service, watch

Root path, watch mode, live instances, registry service, llap registry,
connects llap, id precommithivebuild

Groovy-
7535

Atomicinteger, categoryinuse, fix, issue, category, thread
Race condition, another thread, github user, int counter, read
hascategoryincurrentthread, using atomicinteger, fgit closed, closed
pull, fix issue, int field

Groovy-
8483

Gradle, groovy, issue, jar, missing, pom, time Artefact now, fat jar, packaging looks, release process, also synced

Computación y Sistemas, Vol. 24, No. 2, 2020, pp. 413–428
doi: 10.13053/CyS-24-2-3368

Shubhra Goyal Jindal, Arvinder Kaur420

ISSN 2007-9737

Concepts and attributes are identified and the
relationship among them are mapped in the cross-
table form depicted in table 3. Figure 2 depicts the
snapshot of concept-relationship matrix created
through concept explorer tool. The extensions and
intentions of concepts are depicted in the lattice
diagram in figure 3. Here, only subconcepts is
depicted and to extract more relationship between
concepts and attributes, an ontology is constructed
using Fluent Editor tool as explained in step 3.

Step 3: Development of Ontology

After the construction of lattice diagram, the
concepts and its relationship are fed as an input to
fluent editor tool in controlled natural language.

To build an ontology many relationships are
considered such as ‘is-a’, ‘has-a’, ‘is-not
a’ relationship.

Along with these predefined relations, several
user-defined relations are also considered such as
‘contributors-in’, ‘has-major’, ‘has-critical’, ‘has-
blocker’ are used.

As per the literature, the proposed approach
and constructed ontology is application-based
ontology [34, 35] That is, it is constructed form the
datasets of a particular domain. It is not compared
with any gold standard ontology. thus, it is not
possible to evaluate the ontology through metrics
such as precision, recall or f-measure [37].

Based on further research, the approach can be
evaluated using data quality dimensions. Data

Table 3 Concept-relationship matrix

Attributes
Res S NS MC NNE ELE NE AE FPE I/O E ACE BBE CE JE

Concepts

Hdfs-7707 × × × × × ×

Hdfs-8312 × × × × ×

Hdfs-13112 × × × × × ×

Hadoop-13155 × × × × ×

Hadoop-13890 × × × × ×

Hadoop-14146 × × × × ×

Hadoop-11802 × × × ×

Hadoop-15273 × × × ×

Hbase-13229 × × × × ×

Hbase-13732 × × × × ×

Hbase-15638 × × × × ×

Hbase-19496 × × × × ×

Hbase-20004 × × × × ×

Hbase-20201 × × × × ×

Hive-12538 × × × × ×

Hive-10428 × × × ×

Hive-13369 × × × × × ×

Hive-11112 × × × × × ×

Hive-15827 × × × × × × ×

Groovy-7535 × × × × × ×

Groovy-8483 × × × × × ×

Computación y Sistemas, Vol. 24, No. 2, 2020, pp. 413–428
doi: 10.13053/CyS-24-2-3368

Information Retrieval from Software Bug Ontology Exploiting Formal Concept Analysis 421

ISSN 2007-9737

quality dimensions are accepted universally and
are used to measure the quality of data [38]. The
ontology of bug reports is evaluated using several
dimensions such as completeness, consistency,
uniqueness, validity and accuracy. Various metrics
are defined in table 4. Thus, use of ontologies in
the domain of bug reports is indispensable.

Res-Resolution, S-severe, NS-Non-severe,
MC-Major contributors, NNE- NameNode error,
ELE-Edit log error, NE- Network error, AE-
Authentication error, FPE-File Permission error,
I/OE-Input/Output Error, ACE-Application-
consistency error, BBE- Bytebuffer error, CE-
Configuration error, JE-Java error.

Fig. 2. Output of concept-relationship matrix

Fig. 3. Concept-relationship lattice

Computación y Sistemas, Vol. 24, No. 2, 2020, pp. 413–428
doi: 10.13053/CyS-24-2-3368

Shubhra Goyal Jindal, Arvinder Kaur422

ISSN 2007-9737

To evaluate our constructed ontology, the
metrics defined in table are evaluated using 3
annotators working in the same domain of software
bug reports. The results of three annotators are
then averaged to achieve final results in table 5.

A taxonomy tree and ontology are developed.
To extract knowledge from an ontology, several
queries are formed which are executed on a

reasoner. The queries generated and knowledge
extracted is tabulated in table 6.

The output of fluent editor tool and taxonomy
tree is depicted in figure 4. The complete
generated ontology has been illustrated in figure 5.

The knowledge extracted through a reasoner is
depicted in figure 6.

Fig.4. Ontology creation and taxonomy tree

Fig. 5. Ontology on software bug reports

Fig. 6. Knowledge extraction using Reasoner

Computación y Sistemas, Vol. 24, No. 2, 2020, pp. 413–428
doi: 10.13053/CyS-24-2-3368

Information Retrieval from Software Bug Ontology Exploiting Formal Concept Analysis 423

ISSN 2007-9737

Fig. 7. Published ontology on web using OWL

Table 4. Definition of metrics

Metrics Definition

Completeness
It is defined as the proportion of data stored in contrast to “100% complete” and focusses
on measuring critical data.

Uniqueness It is defined as everything that is identified is recorded only once.

Validity It is defined as data is valid if it conforms to the syntax.

Accuracy It is defined as degree to which data describes the “real world” object correctly.

Consistency
It is defined as how consistent the data is when compared with two or more
representations.

Table 5. Evaluation of ontology by annotators

Metrics Annotator 1 Annotator 2 Annotator 3 Final Results

Completeness 90% 85% 95% 90%

Uniqueness 95% 80% 90% 88.3%

Validity 90% 85% 80% 85%

Accuracy 85% 90% 85% 86.6%

Consistency 90% 90% 90% 90%

Computación y Sistemas, Vol. 24, No. 2, 2020, pp. 413–428
doi: 10.13053/CyS-24-2-3368

Shubhra Goyal Jindal, Arvinder Kaur424

ISSN 2007-9737

The ontology is published on web using
Ontology Web Language (OWL) as depicted in
figure 7.

5 Threats to Validity

Threats to internal validity refer to whether
conducted experiment deals with the causes and

effects in specific domain ontology. Different
concepts were identified by manual study and then
compared with the concepts identified by the
proposed techniques. It was reported that there
was no significant difference in concepts
identification between manual and proposed
techniques.

Threats to external validity refer to the capability
to generalize the results. The main threat is due to

Table 6. Knowledge extraction through query retrieval

Queries executed Information Extracted
Additional
results

What is a bug-id?

Hdfs-7707, Hdfs-8312, Hdfs-13112, hadoop-13155, hadoop-13890,
hadoop-14146, hadoop-11802, hadoop-15273, hbase-13229,
hbase-13732, hbase-15638, hbase-19496, hbase-20004, hbase-
20201, hive-12538, hive-10428, hive-13369, hive-11112, hive-
15827, groovy-7535, groovy-8483

21 instances, 5
subconcepts

What is a bug?
Byte-buffer-error, name-node-error, java-error, log-edit-error, file-
permission-error, application-consistency-error, configuration-error,
input-output-error, network-error, authentication-error

11 subconcepts,
1 superconcept

Who contributors –in?
Yongzhichen, andrewpurtell, stack, ericyang, Hudson,khilwallee,
seanbusbey, henrik, siddharthseth, many others

78 instances

Who contributors-in
Hdfs-7707?

Hudson, brahmareddy, haddopqa, yongjunzhang,
vinodkumarvavillapalli, kilwallee

6 instances

Who has-blocker-
severity?

Hive-13369, hbase-20201, hbase-19496, grrovy-8483 4 instances

Who has-critical-
severity?

Hbase-15638, Hadoop-15273, Hdfs-8312, hdfs-13112 4 instances

Who has-major-
severity?

Hive-10428, hadoop-13890, Hive-11112, Hadoop-13155, Hdfs-
7707, Hive-12538, hadoop-14146, groovy-7535

8 instances

Who has a network-
error?

Hdfs-13112, Hadoop-13890, Hive-11112, Hadoop-15273, Hadoop-
13155, Hbase-20201, Hbase-20004, Hive-15827, hadoop-14146

9 instances

Who has
authentication-error?

Hdfs-8312, Hdfs-13112, hbase-15638, hadoop-13890, Hadoop-
13155, Hbase-20004, Hive-15827, hbase-13229, hadoop-14146

9 instances

Who has a log-edit-
error?

Hdfs-13112, Hdfs-7707 2 instances

Who has a file-
permission-error?

Hdfs-8312, Hbase-13732, Hive-13369, Hdfs-7707, Hbase-20201,
hbase-13229, Groovy-7535

7 instances

Who has a name-node-
error?

Hdfs-7707 1 instance

Who has application-
consistency-error?

Hive-10428, Hbase-13732, Hive-13369, Hbase-19496, Hive-15827,
groovy-8483, Hive-12538, groovy-7535

8 instances

Who has a byte-
buffers-error?

Hbase-15638, hbase-19496 2 instances

Who has a severity?
Bug, Byte-buffer-error, name-node-error, java-error, log-edit-error,
file-permission-error, application-consistency-error, configuration-
error, input-output-error, network-error, authentication-error

12 subconcepts

Who has a contributor?
Bug, Byte-buffer-error, name-node-error, java-error, log-edit-error,
file-permission-error, application-consistency-error, configuration-
error, input-output-error, network-error, authentication-error

12 subconcepts

What is a network-
error?

Bug, issue 2 superconcepts

Computación y Sistemas, Vol. 24, No. 2, 2020, pp. 413–428
doi: 10.13053/CyS-24-2-3368

Information Retrieval from Software Bug Ontology Exploiting Formal Concept Analysis 425

ISSN 2007-9737

the specific domain and tasks used in this work. As
there is no ontology on software bugs, the data is
collected is very small and concrete (about 21 bug
reports of 5 different apache projects).

However, it includes various types of bugs
based on classification of error such as network
error, file permission error etc. In future, the
proposed approach will be implemented on large
number of bug reports of several distinct projects
of apache software and with other techniques.

6 Conclusion and Future Work

In this research, an approach is proposed that uses
Formal Concept Analysis to extract an ontology
from the content analysis of bug reports. The main
focus has been with software bugs domain and
extracting knowledge from the bug reports
reported in bug tracking systems.

The proposed approach extracts features
(unigrams and bi-grams) and identifies various
concepts and attributes. The concept lattice is
created using formal concept analysis, which maps
the relationship between concepts and attributes.
This is further converted to ontology of bug reports
through which knowledge is extracted using
several small queries.

Several queries have been executed for
information extraction and found 100% results on
all the queries retrieval. It is concluded that
proposed approach is feasible and useful in
software bug domain.

It is due to the fact that frameworks with
diagrams can be used for formal reasoning and
yields in improved visualizations through concept-
lattice. In software bug domain, the information is
reported in the form of bug reports, which are large
textual documents that are difficult to read and
comprehend. With exploitation of FCA, large
textual documents have been converted to a
mathematical theory and are visualized through
diagrams such as concept lattice. Further,
concepts are arranged in hierarchical form, which
are easy to interpret and retrieval of knowledge.
Thus, proposed approach is feasible and useful in
software bug domain [28].Thus, use of ontologies
in the domain of bug reports is indispensable.

The work can be extended in future in many
directions. First, several bug reports of distinct

projects of various bug tracking systems can be
used to construct a global ontology of software
bugs. Second, along with formal concept analysis,
fuzzy techniques can be integrated to create more
complex ontology, which can be used to extract
more knowledge through complex queries.

References

1. Gruber, T.R. (1993). A translation approach to

portable ontology specifications by a translation
approach to portable ontology specifications.
Knowledge Acquisition, Vol. 5, No. 2, pp. 199–220.

2. Obitko, M. (2001). Ontologies description and
applications. Gerstner Laboratory for Intelligent
Decision Making and Control, pp. 1–35.

3. Spear, A.D. (2006). Ontology for the twenty first

century : An introduction with recommendations.
Institute for Formal Ontology and Medical
Information Science, pp. 1–37.

4. Garla, V.N. & Brandt, C. (2012). Ontology-guided

feature engineering for clinical text classification.
Journal of Biomedical Informatics, Vol. 45, No. 5,
pp. 992–998. DOI: 10.1016/j.jbi.2012.04.010.

5. Juckett, D.A., Kasten, E.P., Davis, F.N., &
Gostine, M. (2019). Concept detection using text
exemplars aligned with a specialized ontology. Data
& Knowledge Engineering Data, Vol. 119, pp. 22–
35. DOI: 10.1016/j.datak.2018.11.002.

6. De Maio, C., Fenza, G., Loia, V., & Senatore, S.
(2012). Hierarchical web resources retrieval by

exploiting fuzzy formal concept analysis.
Information Processing & Management, Vol. 48, No.

3, pp. 399–418. DOI: 10.1016/j.ipm.2011.04.003.

7. Yang, G., Zhang, T., & Lee, B. (2014). Towards

semi-automatic bug triage and severity prediction
based on topic model and multi-feature of bug
reports. IEEE 38th Annual Compute Software and
Applications Conference, pp. 97–106. DOI:
10.1109/COMPSAC.2014.16.

8. Kanwal, J. & Maqbool, O. (2012). Bug prioritization
to facilitate bug report triage. Journal of Computer
Science and Technology, Vol. 27, No. 2, pp. 397–
412. DOI: 10.1007/s11390-012-1230-3.

9. Jin, K., Dashbalbar, A., Yang, G., & Lee, J. (2016).

Improving predictions about bug severity by utilizing
bugs classified as normal 1. Contemporary
Engineering Sciences, Vol. 9, No. 19, pp. 933–942.
DOI: /10.12988/ces.2016.6695.

10. Sharma, G., Sharma, S., & Gujral, S. (2015). A

novel way of assessing software bug severity using
dictionary of critical terms. Proceedings of the 4th

Computación y Sistemas, Vol. 24, No. 2, 2020, pp. 413–428
doi: 10.13053/CyS-24-2-3368

Shubhra Goyal Jindal, Arvinder Kaur426

ISSN 2007-9737

International Conference on Eco-friendly
Computing and Communication Systems, Vol. 70,

pp. 632–639. DOI: 10.1016/j.procs.2015.10.059.

11. Lamkanfi, A., Demeyer, S., Giger, E., & Goethals,
B. (2010). Predicting the severity of a reported bug.
7th IEEE Working Conference on Mining Software
Repositories, pp. 1–10. DOI: 10.1109/ MSR.2010.
5463284.

12. Kaur, A. & Goyal, S. (2019). Text analytics based

severity prediction of software bugs for apache
projects. International Journal of System Assurance
Engineering and Management, Vol. 10, pp. 765–
782. DOI: 10.1007/s13198-019-00807-8.

13. Jindal, R., Malhotra, R., & Jain, A. (2016).

Prediction of defect severity by mining software
project reports. International Journal of System
Assurance Engineering and Management, Vol. 8,

pp. 334–351. DOI: 10.1007/s13198-016-0438-y.

14. Malhotra, R. (2013). Severity assessment of

software defect reports using text classification.
International Journal of Computer Applications, Vol.

83, No. 11, pp. 13–16.

15. Lessmann, S., Member, S., Baesens, B., Mues,
C., & Pietsch, S. (2008). Benchmarking

classification models for software defect prediction :
a proposed framework and novel findings. IEEE
Transactions on Software Engineering, Vol. 34, No.
4, pp. 485–496. DOI: 10.1109/TSE.2008.35.

16. Tran, H.M., Lange, C., & Chulkov, G. (2009).

Applying semantic techniques to search and
analyze bug tracking data. Journal of Network and
Systems Management, Vol. 17, pp. 285–308. DOI:

10.1007/s10922-009-9134-4.

17. Tran, H.M. & Le, S.T. (2014). Software bug

ontology supporting semantic bug search on peer to
peer networks. New Generation Computing, Vol. 32,

pp. 145–162. DOI: 10.1007/ s00354-014-0203-1.

18. Duarte, B.B., Falbo, R.A., Guizzardi, G.,
Guizzardi, R.S.S., & Souza, V.E.S. (2018).

Towards an ontology of software defects, errors and
failures. Conceptual Modeling (ER´18), Lecture
Notes in Computer Science, Vol. 11157. DOI:
10.1007/978-3-030-00847-5_25.

19. Škopljanac, F. & Blaškovi, B. (2014). Formal
concept analysis – overview and applications. 24th
DAAAM, International Symposium on Intelligent
Manufacturing and Automation, Vol. 69, pp. 1258–

1267. DOI: 10.1016/j.proeng.2014. 03.117.

20. Seganti, A.B. & Kapla, P. (2016). Collaborative

editing of ontologies using fluent editor and ontorion.
International Experiences and Directions Workshop
on OWL, Vol. 1, pp. 45–55. DOI: 10.1007/978-3-
319-33245-1_5.

21. Uren, V., Cimiano, P., Handschuh, S., Vargas-
Vera, M., Motta, E., & Ciravegna, F. (2006).

Annotation for knowledge management :
requirements and a survey of the state of the art.
Journal of Web Semantics, Vol. 4, No. 1, pp. 14–28.
DOI: 10.1016/j.websem. 2005.10.002.

22. Stumme, G. & Maedche, A. (2001). Bottom-up
merging of ontologies. Proceedings of the 17th
International Joint Conference on Artificial
Intelligence, Vol. 1, pp. 225–230.

23. Hotho, A., Maedche, A., & Staab, S. (1998).

Ontology-based text document clustering. pp.
1– 13.

24. Blomqvist, E. (2008). Pattern ranking for semi-
automatic ontology construction. Proceedings of the
ACM Symposium on Applied Computing March, pp.
2248–2255. DOI:10.1145/ 1363686.1364224.

25. Khoury, P.E., Coquery, E., & Hacid, M. (2008). An

ontological interface for software developers to
select security patterns. 19th International
Workshop on Database and Expert Systems
Applications, pp. 297–301. DOI: 10.1109/DEXA.
2008.110.

26. Reinhartz, I. & Mark, B. (2019). Extracting core

requirements for software product lines.
Requirements Engineering, Vol. 25, pp. 47–65. DOI:

10.1007/s00766-018-0307-0.

27. Schuegerl, P., Rilling, J., & Charland, P. (2008).

Enriching se ontologies with bug report quality. pp.
1–15.

28. Priss, U. (2006). Formal concept analysis in

information science. Annual Review of Information
Science and Technology, Vol. 40, No. 1, pp. 521–
543. DOI: 10.1002/aris.1440400120.

29. Guo, J. & Gibiec, M. (2016). Tackling the term-

mismatch problem in automated trace retrieval.
Empirical Software Engineering, Vol. 22, pp. 1103–

1142. DOI: 10.1007/s10664-016-9479-8.

30. Tilley, T., Cole, R., Becker, P., & Eklund, P.
(2005). A survey of formal concept analysis support
for software engineering activities. Formal Concept
Analysis, Lecture Notes in Computer Science, Vol.
3626, pp. 250–271. DOI: 10.1007/ 11528784_13.

31. Cleary, B., Exton, C., Buckley, J., & English, M.
(2009). An empirical analysis of information retrieval

based concept location techniques in software
comprehension. Empirical Software Engineering,
Vol. 14, pp. 93–130. DOI: 10.1007/s10664-008-
9095-3.

32. Cimiano, P., Hotho, A., Stumme, G., & Tane, J.
(2004). Conceptual knowledge processing with
formal concept analysis and ontologies. Eklund P.
(eds) Concept Lattices. ICFCA´04, Lecture Notes in

Computación y Sistemas, Vol. 24, No. 2, 2020, pp. 413–428
doi: 10.13053/CyS-24-2-3368

Information Retrieval from Software Bug Ontology Exploiting Formal Concept Analysis 427

ISSN 2007-9737

https://doi.org/10.1007/s00354-014-0203-1

Computer Science, Vol. 2961, pp. 189–207. DOI:
10.1007/978-3-540-24651-0_18.

33. Formica, A. (2006). Ontology-based concept
similarity in formal concept analysis. Information
Sciences, Vol. 176, No. 18, pp. 2624–2641. DOI:
10.1016/j.ins.2005.11.014.

34. Hlomani, H. & Stacey, D. (2014). Approaches,

methods, metrics, measures, and subjectivity in
ontology evaluation : A survey. School of Computer
Science, University of Guelph, Vol. 1, pp. 1–5.

35. Brewster, C., Alani, H., Dasmahapatra, S., Street,
P., & Wilks, C.B.Y. (2004). Data driven ontology
evaluation. International Conference on Language
Resources and Evaluation.

36. Kaur, A. & Jindal, S.G. (2017). Bug report
collection system. 7th International Conference on
Cloud Computing, Data Science & Engineering –
Confluence. DOI: 10.1109/CONFLUENCE.2017.
7943241.

37. Brank, J., Grobelnik, M., & Mladeni, D. (2005). A
survey of ontology evaluation techniques. Proc. of
8th Int. Multi-Conf. Information Society, pp.
166– 169.

38. Data & Dimensions. (2016). The six primary
dimensions for data.

39. Evo Ont-Software (2017). Evolution ontology.

40. IFI (2017). https://files.ifi.uzh.ch/ddis/oldweb/ddis/

research/evoont/.

41. Baetle Bug and Enhancement Tracking
Language (2017). http://code.google.com/p/

baetle/

42. Helios-Bug Ontology (2016). https://heliosplatform

.sourceforge.net/ ontologies/helios_bt.html.

Article received on 29/10/2019; accepted on 06/03/2020.
Corresponding author is Shubhra Goyal Jindal.

Computación y Sistemas, Vol. 24, No. 2, 2020, pp. 413–428
doi: 10.13053/CyS-24-2-3368

Shubhra Goyal Jindal, Arvinder Kaur428

ISSN 2007-9737

