
Algorithm for Processing Queries that Involve Boolean Columns for
a Natural Language Interface to Databases

Rodolfo A. Pazos R., José A. Martı́nez F., J. Javier. Gonzalez B., Andrés A. Verástegui O.

Tecnológico Nacional de México,
Instituto Tecnológico de Ciudad Madero,

Mexico

r pazos r@yahoo.com.mx, jose.mtz@gmail.com,
{jjgonzalezbarbosa, andres.verastegui}@hotmail.com

Abstract. In the last decades, the use of natural lan-
guage interfaces to databases (NLIDBs) has increased
exponentially; unfortunately, the complexity of natural
language has limited their effectiveness. The presence
of Boolean columns in databases increases the difficulty
for translating natural language queries to SQL. A
Boolean column is a column that can only store two
possible values: true/false, yes/no, 1/0. The problem for
processing queries that involve Boolean columns, is that
the search value for these columns (true/false, yes/no,
1/0) is not explicit in the queries. This problem makes
NLIDBs generate erroneous translations as shown in
experimental tests. A survey of the literature on NLIDBs
has shown that this problem has not been identified,
much less addressed. In this article, a new algorithm
for processing queries that involve Boolean columns is
presented. The algorithm uses syntactic and semantic
information that facilitates detecting Boolean columns
and their implicit values in a query. The experimental
tests show that it is highly effective for translating this
type of queries.

Keywords. Natural language interfaces to databases,
natural language processing, databases, SQL.

1 Introduction

Currently, the fast growth in the use and size
of databases (DBs) makes imperative to facilitate
access to information. For accessing database
information, different types of software tools
have been developed. One type of such
tools is DB query languages; for example SQL,
which is widely used by computer professionals,

but it is difficult to use by non-professionals.
Another type is natural language interfaces to
databases (NLIDBs), which originated in the
decade of the 60s; unfortunately, the complexity of
natural language (NL) and technological limitations
hindered the advancement of NLIDBs. Currently,
due to progress in computer and information
technology, there is a powerful technological base
for improving the performance of NLIDBs; however,
the difficulty of natural language remains a major
challenge. Treatment of search values in NLIDBs
is a fundamental part in the translation of NL to a
DB query language (such as SQL), since search
values allow to specify the information to be looked
for in the database. An important problem in
the treatment of search values is determining the
DB table and column where the value might be
stored. The search values dealt for in the NLIDB
described in this article can be classified in four
different types:

− Easily detectable values: those that have
particular characteristics that facilitate their
detection. For example, proper nouns, integer
and real numbers, codes, dates, and hours.

− Imprecise values: words that may refer to
ranges, such as morning, evening, night, etc.

− Alias values: words that are different to the
usual or formal term for referring to values.
For example, Philly can be used for referring
to Philadelphia.

Computación y Sistemas, Vol. 24, No. 1, 2020, pp. 61–74
doi: 10.13053/CyS-24-1-3313

ISSN 2007-9737

− Boolean column values: those that can only
have two values: true/false, yes/no, 1/0.

The problem posed by Boolean columns occurs
when the query has a word or phrase that refers
to a column of this type. In this case the query
does not specify the search value (true/false,
yes/no, 1/0). Therefore, the problem consists in
detecting the Boolean column and the implicit
search values, which are needed for generating
the adequate search condition for the SQL
statement. The following is an example of this
type of queries to the ATIS (Air Travel Information
Services) database [4]:

Which aircraft types are not wide body?

This query involves only table aircraft and a
Boolean column, wide body, which has two
possible values: YES and NO. Neither of these
values is present in the query; however, the
NO value is implicit. The translation to SQL is
the following:

SELECT aircraft.aircraft type, aircraft.wide body
FROM aircraft
WHERE aircraft.wide body LIKE ’NO’;

Additionally, more difficult cases are those where
the query involves two or more Boolean columns,
and the implicit search values might be positive
(true, yes, 1) for some columns and negative (false,
no, 0) for others. The previous version of the
NLIDB [6] only processed correctly queries that
included easily detectable, imprecise and alias
values. This was so because of limitations of
the syntactic parser of the previous version. This
article presents a new syntactic-semantic method
that allows to translate NL queries that involve
Boolean columns.

The NLIDB described in this article was
designed for answering queries in Spanish;
however, the proposed approach for treating
queries that involve Boolean columns is not
particular for Spanish, so it can be applied to
other languages: English, French, Italian and
Portuguese. Since, the NLIDB is for Spanish
many example queries will be written in Spanish
and English.

2 Related Work

Most of the literature on NLIDBs does not describe
how the interfaces deal with search values in
the process of translating a NL query to SQL.
Therefore, an exhaustive search of the literature
from 2010 was carried out in order to find all the
existing information on how NLIDBs are dealing
with search values. Though all the interfaces
have to deal with search values; unfortunately, only
a few describe this aspect. Table 1 shows the
NLIDBs, whose publications mention the treatment
of search values. The table shows the ability of the
interfaces for querying different databases (domain
independence) and the method used for dealing
with search values.

Table 1. Treatment of search values in NLIDBs

NLIDB Domain Treatment of

independence values

ELF 3 Dictionary

English 3 Lexicon

Query (automatically

adds values)

Precise 3 Lexicon

(automatically

adds values)

C-Phrase 3 Domain
dictionary

ELF (English Languaje Frontend) is a com-
mercial NLIDB for querying different relational
databases using natural language [3]. ELF
Sofware claims it is the commercial interface with
the best performance (recall). ELF provides
domain independence; i.e., once ELF is installed
on a computer, it can be used for any database, it
is only necessary to configure it for each database.

ELF can be automatically configured by obtain-
ing information from the DB schema; therefore,
its initial configuration is fast and simple. During
the translation process, ELF examines the terms
(words/phrases) used for defining DB tables and
columns, and it uses its dictionary for predicting
synonyms used in queries. English Query (EQ) is

Computación y Sistemas, Vol. 24, No. 1, 2020, pp. 61–74
doi: 10.13053/CyS-24-1-3313

Rodolfo A. Pazos R., José A. Martínez F., J. Javier González B., Andrés A. Verástegui O.62

ISSN 2007-9737

a commercial NLIDB that was a part of Microsoft
SQL Server 2000.

This application receives queries in English,
determines their meaning, and generates and
executes an SQL statement [1]. EQ has
a dictionary with thousands of usual words in
English. This dictionary provides the terminology
necessary for answering most of the queries
formulated in English. The dictionary can be
expanded by creating entities (with synonyms) and
relationships that provide specialized words for
a specific application. Words related to tables,
columns and values are automatically created in
the dictionary.

Precise is a NLIDB considered as one of the
most successful [8]. However, it can virtually
only answer queries considered ”tractable”, where
this term is defined as a query easy to
understand, where words or phrases correspond
to DB elements (tables, columns, relationships)
or constraints. Precise stores in the lexicon
values, column names and relationships from the
database. The lexicon can be manually augmented
by adding relevant synonyms, prepositions, etc.
The lexicon search is performed token by token
using the lemma of each token, this way it
retrieves the matches that probably refer to
database elements.

C-Phrase is a NLIDB that uses NL processing
techniques [5]. To this end, it uses the following
components: domain dictionary, formal semantic
language, and GUI-based authoring tool. For
validating the interpretation, it paraphrases
queries to clarify to users what the system
understood. C-Phrase uses synchronous context
free grammars for analyzing NL queries.

Three methods are mentioned for dealing
with search values by the NLIDBs in Table 1.
Each of these techniques has advantages and
disadvantages. The three basic methods for
dealing with search values are the following:

− They are included in the interface dictionary.

− They can be recognized by a pattern.

− They are searched for and located in the
database.

If search values are stored in the domain
dictionary, they are extracted automatically from
the database to be queried when the NLIDB is
initially configured. In this case, for each value the
dictionary stores the value, the table and column
where it is stored. The main advantage of this
technique is that it facilitates the identification of the
table and column where the value is stored.

The main disadvantage is that this approach
does not work well for dynamic databases (DBs
whose data is frequently modified), because the
dictionary is not automatically updated when DB
data is modified; therefore, the dictionary has
to be updated every now and then. Another
disadvantage is that the technique cannot be used
for large databases (tables with more than 100
thousand rows), because the dictionary size is
proportional to the DB size. Finally, when a search
value is stored in two or more columns, sometimes
the NLIDB gets confused and chooses the wrong
column for the translation to SQL.

Some search values (proper nouns, integer and
real numbers, codes, dates, and hours) in NL
queries can be recognized by a pattern. For
example, if dates are written in the query as
dd/mm/yyyy, they can easily be identified. The
main advantage of this approach is that value
detection is fast and effective, and there is no
need to store this type of values in the NLIDB
dictionary. A disadvantage is that it might be
difficult to determine the DB table and column
where the value might be stored.

Another method for detecting a value consists in
searching the value in the database. Like the first
technique, its main advantage is that it facilitates
the identification of the table and column where the
value is stored. Another advantage is that the size
of the dictionary is not proportional to the DB size.
Unlike the first approach, an advantage is that it
can be used for dynamic databases. The main
disadvantage is that this approach does not work
well for large DBs, because, the time for locating
a value is proportional to the DB size. Like the
first technique, a disadvantage is that the interface
might get confused when the search value is stored
in two or more columns.The problem in processing
queries that involve Boolean columns is that the
search value is not specified in the query.

Computación y Sistemas, Vol. 24, No. 1, 2020, pp. 61–74
doi: 10.13053/CyS-24-1-3313

Algorithm for Processing Queries that Involve Boolean Columns for a Natural Language Interface to Databases 63

ISSN 2007-9737

Therefore, from the analysis of the methods used
by NLIDBs for dealing with search values, it can be
concluded that they are not adequate for solving
this problem, because they need that the value be
specified in the query. This article proposes a new
approach for dealing with this problem.

3 Description of the NLIDB

The translation process of the NLIDB is based
on functionality layers for systematically solving
the problems found in the translation from NL to
SQL [6]. A main component of the interface is a
semantically enriched dictionary, which is used for
facilitating query interpretation.

The functionality layers of the interface are
shown in Fig. 1. Therefore, the process of a
query is carried out in a linear and systematic
way. The lexical analysis layer tags each token of
the NL query by finding the syntactic category (or
categories) of the token in the lexicon, which ideally
contains all the language words.

The syntactic parsing, in a previous version
of the NLIDB, performed a shallow parsing of
the tokens and assigned one syntactic category
to those tokens that have several categories;
for example, the word lista (list) that has three
categories in Spanish. Additionally, the parser
marked irrelevant words such as articles, verbs at
the beginning of the query and some prepositions,
so they were ignored in the semantic analysis.

The third layer, and the most important,
performs the semantic analysis. This layer
determines the meaning of the query by using the
semantic information dictionary (SID), described
in Subsection 3.1. More details of the translation
process can be found in [6].

3.1 Semantic Information Dictionary

One of the most important elements of the NLIDB
is the semantic information dictionary (SID), which
contains most of the relevant information for the
translation of queries. Initially, the information is
introduced in the SID by an automatic configuration
process of the interface, which extracts the
information from the schema of the DB to
be queried.

Fig. 1. Functionality layers of the translation process

Usually, this information allows the interface to
obtain a recall (percentage of correctly answered
queries) of just 17% [6].

In order to improve the recall, it is necessary
that the database administrator fine-tune the
configuration. The fine-tuning can be performed
using a configuration editor, which allows to
introduce in the SID linguistic terms (called
descriptors) used in the domain of the database to
be queried.

The SID contains descriptors (words and
phrases) that usually occur in NL queries for
referring to tables, columns and relationships
between tables. The quality of the information
stored in the SID influences directly on the recall
obtained by the NLIDB. The SID is implemented as
a relational database. Fig. 2 shows the schema of
SID, configured for the ATIS database [4]. A more
detailed description of the SID can be found in [6].

For processing queries that involve Boolean
columns, a new column (boolean column) was
included in table columns of the SID. The new
column is used for indicating if a column is Boolean
or not. Therefore, during the semantic analysis,
the SID can be searched for finding out whether
or not a column is Boolean. For a DB column that
is not Boolean, the value stored in boolean column
is null; otherwise, for a DB column that is Boolean,
boolean column stores the two possible values for
the Boolean column (Fig. 3).

Computación y Sistemas, Vol. 24, No. 1, 2020, pp. 61–74
doi: 10.13053/CyS-24-1-3313

Rodolfo A. Pazos R., José A. Martínez F., J. Javier González B., Andrés A. Verástegui O.64

ISSN 2007-9737

Fig. 2. Semantic information dictionary

Fig. 3. Information of Boolean columns in the SID

This allows to obtain from the SID the two
possible values for a Boolean column.

3.2 Semantic Analysis

The semantic analysis is the most important
part of the translation process, its function is to
understand what information from the database is
requested by the query.

The semantic analysis consists of algorithms
that detect what tokens refer to DB tables,
columns and search values. The detection is
performed using the SID, which stores the tokens
(descriptors) used for referring to DB tables,
columns and relationships between tables.

Fig. 4 shows the sublayers of the semantic
analysis. The Treatment of Imprecise and Alias
Values is a sublayer that detects imprecise values
in the NL query and retrieves from the SID the

Computación y Sistemas, Vol. 24, No. 1, 2020, pp. 61–74
doi: 10.13053/CyS-24-1-3313

Algorithm for Processing Queries that Involve Boolean Columns for a Natural Language Interface to Databases 65

ISSN 2007-9737

Fig. 4. Sublayers of the semantic analysis

corresponding value range, and performs a similar
process for alias values.

The Identification of Tables and Columns is the
sublayer that detects tokens that might refer to DB
tables and columns and retrieves their names from
the SID. Additionally, this layer tags each token with
the corresponding table and column name.

The Identification of the Select and Where
Phrases is a sublayer that uses a heuristics for
detecting the tokens that refer to DB columns
that must constitute the Select and Where clauses
of the SQL statement. In addition, this layer
attaches Select or Where tags to the tokens
identified. Finally, this sublayer relates columns
to their respective search values specified in the
NL query.

The Treatment of Boolean Columns is a sublayer
that uses the information collected in the previous
sublayers (Fig. 4) for detecting Boolean columns
using the algorithms described in Section 5.

At this point in the semantic analysis, almost all
the information has been collected for generating
the SQL statement. The Determination of Implicit
Joins sublayer is used when the tables (detected
in the preceding sublayers) and their relationships
with the other tables do not constitute a connected
graph. In this case, it is necessary to generate, by
using a heuristics, a connected graph by including
tables that are not mentioned in the NL query, but
are necessary for connecting the tables involved in

the query. More details of the semantic analysis
can be found in [6].

4 Syntactic Parser

In Spanish (like in English) a grammatical rule
allows to reduce a nominal phrase followed by
a prepositional phrase to a nominal phrase; for
example, for the query Which Delta flights depart to
Washington at night?, Washington and at night can
be reduced. This reduction, though syntactically
correct, is semantically incoherent, because at
night is not a modifier of Washington, but a modifier
of depart. This example shows that, for performing
an effective parsing, it is necessary that the parser
have rules that combine syntactic and semantic
information. The new version of the NLIDB has a
new parser, which includes syntactic and semantic
information in the design of the syntactic rules.

Table 2 shows a small sample of the reduction
rules. The second column of the table shows
the rules and the first shows rule identifiers. In
this table, NomP0 and NomP1 denote nominal
phrases. Additionally, nou denotes noun, and
adj cal, adj com, adj dem, adj ind, adj num,
adj pos, and adj sup denote respectively the
following types of adjectives: descriptive, com-
parative, demonstrative, indefinite, quantitative,
possessive, and superlative.

Table 2. Sample of reduction rules

ID Reduction rules

SN01 <NomP0> ::= <nou> [<adj cal> |
<adj dem> | <adj sup> | <adj pos>]

SN02 <NomP0> ::= [<adj com> | <adj cal>|
<adj sup> | <adj pos> | <adj dem> |
<adj num>] <nou>

SN03 <NomP1> ::= (<adj ind> <art> |
<art> | <adj ind>)

SV03 <SVer1> ::= [<adv>] <ver> [<adv>]

Note: the notation used for the rules is described in [9]

The new version of the parser generates
reductions that are semantically coherent.

Computación y Sistemas, Vol. 24, No. 1, 2020, pp. 61–74
doi: 10.13053/CyS-24-1-3313

Rodolfo A. Pazos R., José A. Martínez F., J. Javier González B., Andrés A. Verástegui O.66

ISSN 2007-9737

This makes the parser very efficient regarding
processing time (0.3 seconds on average for
parsing a query) and yields a large percentage of
correctly parsed queries (above 95%). Reductions
for phrases are crucial for dealing with Boolean
columns, since it is necessary to determine which
tokens are reduced to a nominal phrase whose
words refer to a Boolean column; for example
in the query Which aircraft types are not wide
body?, the nominal phrase wide body refers to a
Boolean column.

Additionally, there exist queries that involve two
or more Boolean columns, and the implicit search
values might be positive (true, yes, 1) for some
columns and negative (false, no, 0) for others. In
this case, it would be difficult to determine the
implicit values for the columns without an adequate
reduction of tokens into phrases.

The process for detecting search values was
modified in the new version of the syntactic parser.
In the previous version, each token was looked for
in the lexicon, and if it was not found, the token
was marked as a possible search value. This was
time consuming because the lexicon is stored in
hard disk. In the new version, value detection is
performed at the beginning. All the tokens of the
NL query are scanned in one pass, and regular
expressions are used for detecting codes, dates,
proper nouns, and numbers; tokens that are not
identified as values are looked for in the lexicon.

5 Syntactic-Semantic Method for
Boolean Columns

The main problem in queries that involve Boolean
columns occurs because this type of query does
not specify the search value, since it is implicit.
The usual way in which people request information
that involves a Boolean column does not include
explicitly the search value (true/false, yes/no or
1/0).

Normally, the search value is implicit in the
word/phrase that refers to the column. The
following example shows a NL query to the ATIS
database and its translation to SQL, where the
Boolean column dual carrier stores values Y or N
for indicating if the airline is dual or not:

¿Cuáles aerolı́neas no son una empresa dual?
Which Airlines are not a dual carrier?

SELECT airline.airline name, flight.dual carrier
FROM airline, flight
WHERE airline.airline code = flight.airline code
AND flight.dual carrier LIKE ’N’;

For this query, the presence of adverb no (not)
indicates that the implicit search value for column
dual carrier is N. However, this value cannot
be extracted from the query, because it is not
explicit. The new syntactic parser provides the
information necessary for processing queries that
involve Boolean columns, since the reductions
generated by the parser are used for detecting
possible Boolean columns and their implied values.

The first phase of the process is to obtain the
syntactic categories of the query tokens, which is
carried out by the lexical analyzer. The syntactic
categories are shown next, where adj int denotes
interrogative adjective, nou indicates noun, adv
stands for adverb, ver denotes verb, art indicates
article and adj cal indicates descriptive adjective.

¿Cuáles aerolı́neas no son una empresa dual?
[adj int, nou, adv, ver, art, nou, adj cal]

For the preceding query, the parser generates
the sequence of reductions shown in Table 3. In
the sequence, the symbols involved in the next
reduction are shown underlined. In this example,
the terminal symbols are the syntactic categories,
and the non-terminal symbols are NomP0 and
NomP1, which denote nominal phrases, and VerP1
for verbal phrase. Additionally, SN01, SN03
and SV03 denote identifiers for reduction rules
(Table 2).

Specifically, the process for a Boolean column
is performed as follows. All tokens of the query
(words in step 0, Table 3) are scanned for finding
in the SID if a word/phrase refers to a Boolean
column; in this example empresa dual. Next, it
is necessary to determine if the implicit value for
the Boolean column is positive or negative. This
process is carried out by algorithms 1 and 2, whose
pseudocodes are presented next.

Computación y Sistemas, Vol. 24, No. 1, 2020, pp. 61–74
doi: 10.13053/CyS-24-1-3313

Algorithm for Processing Queries that Involve Boolean Columns for a Natural Language Interface to Databases 67

ISSN 2007-9737

Table 3. Sequence of reductions

Step Symbols (terminal and non-terminal)
0: Cuáles aerolı́neas no son una empresa dual

[adj int, nou, adv, ver, art, nou, adj cal]
1: SN01

[adj int, NomP0, adv, ver, art, nou, adj cal]
2: SN01

[adj int, NomP0, adv, ver, art, NomP0]
3: SN03

[adj int, NomP0, adv, ver, NomP1]
4: SV03

[adj int, NomP0, VerP1, NomP1]

Algorithm 1: Pseudocode for Boolean columns

//Nt is the number of tokens (words/values in step 0)
//Qi is the i-th token
//Nk is the number of symbols in step k
//Reds is the set of symbols of all reduction steps
1: procedure booleanColumns(Q, Reds)
2: for i=0 to Nt-1 do
3: if isBoolean(Qi) then //Qi is a token that refers

to a Boolean column
4: QBC ← Qi //Save the token of Boolean column
5: pbool ← getSymbolPosition(QBC)

//Save position of symbol corresponding to QBC

6 typeVal ← determinePosNeg(Reds,pbool)
//Determine neg. or pos. value for QBC

7 setColumnAsBoolean(QBC) //Change phrase
type from Select to Where

8 addValueToken (QBC, typeVal) //Add a token
with positive/negative value for Bool. column

9 end if
10 end for

The processing of queries that involve Boolean
columns is a sublayer of the semantic analysis
(Fig. 4) and uses information obtained during the
syntactic parsing (sequence of reductions, Table 3)
and the semantic analysis.

Specifically, it uses information generated by the
Identification of Tables and Columns sublayer (Fig.
4), which detects tokens that might refer to DB
tables and columns and retrieves their names from
the SID.

Additionally, the Identification of the Select and
Where Phrases sublayer attaches a Select tag to
each of the tokens that refer to Boolean columns.
Since this sublayer does not find a value in the

Algorithm 2: Pseudocode for determining positive or
negative column values

//R is the number of reduction steps
//Ski is the i-th symbol of step k
1: procedure determinePosNeg(Reds, pbool)
2: for k = R-1 to 1 do

//Scan reduction steps starting from the last
3: for i = 0 to Nk-1 do //Scan reduction symbols
4: if isReductionOfBoolCol(Ski, pbool) then

//Symbol Ski is reduction of Boolean column
5: if Ski is prepositional phrase then

//Prepositional phrase includes Bool. col.
6: Qfirst ← getFirstToken(Ski) //Get 1st. token

of phrase
7: if Qfirst = ’sin’ then return ’neg’ //1st. token

of phrase is sin (without), return negative
8: end if
9: if Ski is nominal or adjectival phrase then

//nom./adj. phrase includes Bool. col.
10: if Sk,i-1 is verbal phrase then //nom./adj.

phrase is preceded by verbal phrase
11: Qadv ← findAdverb(Sk,i-1) //Look for

adverb in verbal phrase
12: if Qadv = ’no’ then return ’neg’

//Adverb in phrase is no (not), return
negative

13: end if
14: end if
15: if Sk,i is verbal phrase then //Verbal phrase

includes Bool. col.
16: Qadv ← findAdverb(Sk,i-1) //Look for adverb

in verbal phrase
17: if Qadv = ’no’ then return ’neg’ //Adverb in

phrase is no (not), return negative
18: end if
19: end if
20: end for
21: end for
22: return ’pos’ //Positive value for Bool. col.

query associated to a Boolean column, it assumes
that the column must be in the column list of the
Select clause of the SQL statement.

Algorithm 1 shows the pseudocode that de-
scribes the sublayer for the treatment of Boolean
columns (Fig. 4). In the pseudocode, Q denotes
the NL query introduced by the user, and Qi is a
token of query Q. For understanding algorithms 1
and 2, it is important to keep in mind that each

Computación y Sistemas, Vol. 24, No. 1, 2020, pp. 61–74
doi: 10.13053/CyS-24-1-3313

Rodolfo A. Pazos R., José A. Martínez F., J. Javier González B., Andrés A. Verástegui O.68

ISSN 2007-9737

token in step 0 (Table 3) has a corresponding
terminal symbol; i.e., a syntactic category. For
example, the terminal symbol for empresa (carrier)
is nou, and the terminal symbol for no (not)
is adv. Additionally, each non-terminal symbol
(steps 1, 2, etc.) keeps a list of the positions
of the terminal symbols that were reduced to the
non-terminal symbol. For example, in step 2,
the last non-terminal symbol (NomP0) keeps the
positions of nou and adj cal (positions 5 and 6 in
step 0). Also, in step 4, non-terminal symbol VerP1
keeps the positions of adv and ver (positions 2 and
3 in step 0).

In Algorithm 1, each token is scanned (line 2).
For each token of query Q, if Qi is a token that
refers to a Boolean column (identified in the SID),
then the symbol position of the token is obtained
(lines 4 and 5). At line 6, it is determined (Algorithm
2) if the implicit value for the Boolean column must
be positive or negative. At line 7 the phrase type of
the column is changed from Select to Where, which
means that the column must be considered for the
search condition of the SQL statement. At line
8, an extra token for the implicit value (true/false,
yes/no or 1/0) is added to the query, according to
the type (positive or negative) determined at line 6.
For the query of the example, the implicit value is
N, which is retrieved from the SID.

In Algorithm 2, each reduction step is scanned
(line 2) from the last one down to step 1.
Additionally, for a reduction step k, each symbol
is scanned (lines 3 and 4) for finding out the
non-terminal symbol Ski, which is a reduction
that includes the terminal symbol at position pbool
(corresponding to a Boolean column). Once the
non-terminal symbol has been identified, it is
convenient to determine first if the implicit value
for the Boolean column must be negative. To this
end, it is necessary to consider three cases for
non-terminal symbol Ski: prepositional phrase (line
5), nominal or adjectival phrase (line 9) and verbal
phrase (line 15).

If Ski is a prepositional phrase and the first token
of the phrase is preposition sin (without), then this
implies a negative value (lines 5 to 8). If Ski is a
nominal or adjectival phrase and it is preceded by a
verbal phrase (Sk,i-1) that includes adverb no (not),
then a negative value is implied (lines 9 to 14).

If Ski is a verbal phrase and it includes adverb
no (not), then this implies a negative value (lines
15 to 18). Finally, if none of the conditions for a
negative value is satisfied, then the implied value
for the Boolean column must be positive (line 22).

The query in Table 3 will be used for illustrating
the processing of Boolean columns. In Algorithm
1, the tokens are scanned, and it is determined
that the words empresa dual (dual carrier) refer
to a Boolean column, then the position (5 in step
0 of Table 3) of token empresa is saved in pbool
(lines 4 and 5). Next, Algorithm 2 is called,
which determines that the implicit value for the
Boolean column (whose token is at position pbool)
is negative (line 6), because of the presence of
adverb no (not). Additionally, the phrase type of the
Boolean column is changed from Select to Where,
and a new token is added to the NL query for the
implicit value, which is N for this example.

Given a Boolean column, Algorithm 2 finds out
if the implicit value for the column must be positive
or negative. To this end, the reduction steps (Table
3) are scanned from the last step down to step 1
(line 2), for finding a non-terminal symbol that is
a reduction of the terminal symbol corresponding
to the Boolean column. For this example, the
algorithm finds (at line 4) that at step 4 the symbol
Ski = NomP1 is a reduction of token empresa
(carrier) whose terminal symbol is at position pbool
= 5. Since Ski is a nominal phrase, then the
algorithm continues at line 9; next at line 10,
it detects that the preceding symbol is a verbal
phrase (VerP1), and at lines 11 and 12 it finds
that the verbal phrase contains adverb no (not).
Therefore, the implicit value for the Boolean column
must be negative, which is returned to Algorithm 1.

6 Experimental Results

Experimental tests were conducted using the ATIS
(Air Travel Information Services) database [4],
which has information on flights, flight fares,
aircrafts, airlines, airports and cities in USA. It was
decided to use ATIS, because its database has
several Boolean columns: 2 in table aircraft, 4 in
table compound class, 1 in table flight, and 1 in
table restriction.

Computación y Sistemas, Vol. 24, No. 1, 2020, pp. 61–74
doi: 10.13053/CyS-24-1-3313

Algorithm for Processing Queries that Involve Boolean Columns for a Natural Language Interface to Databases 69

ISSN 2007-9737

Table 4. Test results for the NLIDB

1
Cuáles vuelos son en aviones de cuerpo ancho
SELECT flight.flight number, aircraft.wide body FROM aircraft, flight WHERE aircraft.aircraft code =
flight.aircraft code AND aircraft.wide body LIKE ’YES’;

3

2 Dame los códigos de vuelo para vuelos con empresa dual
SELECT flight.flight code FROM flight WHERE flight.dual carrier LIKE ’Y’; 3

3
Muestra el número de motores para aeronaves que no tienen presurización
SELECT aircraft.engines, aircraft.aircraft type, aircraft.pressurized FROM aircraft WHERE aircraft.pressurized LIKE
’NO’;

3

4 Cuáles tipos de aeronave no son de cuerpo ancho
SELECT aircraft.aircraft type, aircraft.wide body FROM aircraft WHERE aircraft.wide body LIKE ’NO’; 3

5
Cuáles aerolı́neas no son empresa dual
SELECT airline.airline name, flight.dual carrier FROM airline, flight WHERE airline.airline code = flight.airline code
AND flight.dual carrier LIKE ’N’;

3

6

Dame la clase de servicio para vuelos con descuento
SELECT class of service.class description, flight.flight number, compound class.discounted FROM class of service,
flight, compound class, flight fare, fare WHERE flight.flight code = flight fare.flight code AND flight fare.fare code
= fare.fare code AND fare.fare class = compound class.fare class AND compound class.base class =
class of service.class code AND compound class.discounted LIKE ’YES’;

3

7
Dame las clases con descuento
SELECT compound class.class type, compound class.discounted FROM compound class WHERE
compound class.discounted LIKE ’YES’

3

8

Dame la clase de tarifa para vuelos de primera
SELECT fare.fare class, flight.flight number, compound class.premium FROM fare, flight, compound class, flight fare
WHERE flight.flight code = flight fare.flight code AND flight fare.fare = fare.fare code AND fare.fare class =
compound class.fare class AND compound class.fare class = fare.fare class AND compound class.premium LIKE
’YES’;

3

9
Cuáles aerolı́neas son empresa dual
SELECT airline.airline name, flight.dual carrier FROM airline, flight WHERE airline.airline code = flight.airline code
AND flight.dual carrier LIKE ’Y’;

3

10
Cuáles tipos de aeronave no son de cuerpo ancho y no tienen presurización
SELECT aircraft.aircraft type, aircraft.wide body, aircraft.pressurized FROM aircraft WHERE aircraft.pressurized
LIKE ’NO’ AND aircraft.wide body LIKE ’NO’;

3

11
Cuáles tipos de aeronave no son de cuerpo ancho y tienen presurización
SELECT aircraft.aircraft type, aircraft.wide body, aircraft.pressurized FROM aircraft WHERE aircraft.pressurized
LIKE ’YES’ AND aircraft.wide body LIKE ’NO’;

3

12
Cuáles tipos de aeronave son de cuerpo ancho y tienen presurización
SELECT aircraft.aircraft type, aircraft.wide body, aircraft.pressurized FROM aircraft WHERE aircraft.pressurized
LIKE ’YES’ AND aircraft.wide body LIKE ’YES’;

3

13

Dame la restricción para vuelos sin escala
SELECT restriction.restrict code, flight.flight number, restriction.stopovers FROM restriction, flight, fare,
flight fare WHERE restriction.restrict code = fare.restrict code AND fare.fare code = flight fare.fare code AND
flight fare.flight code = flight.flight code AND restriction.stopovers LIKE ’N’;

3

14

Dame la aplicación para vuelos con escalas
SELECT restriction.application, flight.flight number, restriction.stopovers FROM restriction, flight, fare,
flight fare WHERE restriction.restrict code = fare.restrict code AND fare.fare code = flight fare.fare code AND
flight fare.flight code = flight.flight code AND restriction.stopovers LIKE ’Y’;

3

15
Vuelos tarifa de primera desde ATL a PIT
SELECT flight.fligh number, fare.one way cost FROM flight, fare, compound class WHERE fare.fare class =
compound class.fare class AND flight.to airport LIKE ’PIT’ AND compound class.premium LIKE ’YES’;

3

16
Cuáles vuelos tienen tarifa con descuento
SELECT flight.flight number, fare.one way cost FROM flight, fare, compound class WHERE fare.fare class =
compound class.fare class AND compound class.discounted LIKE ’YES’;

3

17
Cuáles vuelos tienen tarifa sin descuento
SELECT flight.flight number, fare.one way cost FROM flight, fare, compound class WHERE fare.fare class =
compound class.fare class AND compound class.discounted LIKE ’NO’;

3

Computación y Sistemas, Vol. 24, No. 1, 2020, pp. 61–74
doi: 10.13053/CyS-24-1-3313

Rodolfo A. Pazos R., José A. Martínez F., J. Javier González B., Andrés A. Verástegui O.70

ISSN 2007-9737

Table 5. Test results for the NLIDB (continuation for Table 4)

18

Cuáles aerolı́neas tienen tarifa de primera desde SFO a DFW
SELECT airline.airline name, fare.rnd trip cost FROM airline, fare, compound class, flight, restrict carrier,
restriction, flight fare WHERE airline.airline name = restrict carrier.airline code AND restrict carrier.restrict code
= restriction.restrict code AND restriction.restrict code = fare.restrict code AND fare.fare class =
compound class.fare class AND compound class.fare class = fare.fare class AND fare.fare code =
flight fare.fare code AND flight fare.flight code = flight.flight code AND flight.airline code = airline.airline code
AND flight.to airport LIKE ’DFW’ AND flight.from airport LIKE ’SFO’ AND compound class.premium LIKE ’YES’;

3

19 Dame los códigos de vuelo para vuelos con empresa dual
SELECT flight.flight code FROM flight WHERE flight.dual carrier LIKE ’Y’ 3

20

Dame todos los vuelos desde DFW a DEN de cuerpo ancho
SELECT flight.flight number, flight.from airport, flight.to airport, aircraft.wide body FROM flight, aircraft WHERE
flight.aircraft code = aircraft.aircraft code AND aircraft.wide body LIKE ’YES’ AND flight.to airport LIKE ’DEN’ AND
flight.from airport LIKE ’DFW’;

3

Table 6. Summary of resuts of the tests on ELF

Type of error No. of

quries

Incorrect translation 11

No translation (unable) 6

No translation 2

(words not understood

or unfamiliar)

No translation 1

(not enough parameters)

Twenty queries than involve Boolean columns
were taken from the ATIS query corpus. The
query corpus contains queries that involve one or
more columns whose implicit values are positive
and negative, as shown in Table 4. The metric
for evaluating performance is recall [7], which is
defined as follows:

recall =
number of correct query answers

number of queries
× 100.

The experimental results show that all the
queries were correctly answered. Since the test
involves only 20 queries, because the ATIS corpora
has a small proportion of queries that involve
Boolean columns and many queries are variations
of other queries; therefore, we cannot claim that
the recall is 100%, but we can conclude that the
proposed approach is highly effective.

The experiments were executed on a laptop with
an Intel Core i5 at 2.5 GHz with 4 GB of RAM

and a Windows 10 operating system. The average
processing time for the 20 queries was 0.548 sec.,
which is itemized as follows: 0.267 for the lexical
analysis, 0.008 sec. for the syntactic parsing and
0.273 sec. for the semantic analysis.

The well-informed reader might notice that
the query corpus for ATIS does not include
queries involving airport codes, but city names;
for example:

Dame los vuelos de Atlanta a San Francisco
en la aerolı́nea DELTA AIRLINES primera clase

Give me the flights from Atlanta to San Francisco
in the airline DELTA AIRLINES first class

The translation to SQL of this query generated by
the NLIDB is the following:

SELECTTblVistaTmp.flight number,
TblVistaTmp.CDO city name,
TblVistaTmp.CDD city name, airline.airline name,
compound class.premium,
compound class.class type
FROM TblVistaTmp, compound class, airline,
fare, restriction, restrict carrier
WHERE compound class.fare class =
fare.fare class AND fare.restrict code =
restriction.restrict code AND
restriction.restrict code =
restrict carrier.restrict code AND
restrict carrier.airline code = airline.airline name
AND airline.airline code =
TblVistaTmp.airline code

Computación y Sistemas, Vol. 24, No. 1, 2020, pp. 61–74
doi: 10.13053/CyS-24-1-3313

Algorithm for Processing Queries that Involve Boolean Columns for a Natural Language Interface to Databases 71

ISSN 2007-9737

Table 7. Detailed results of the tests on ELF

1 Which flights are in wide body airplanes
The following words are not understood

x

2 Give me the flight codes for flights with dual carrier
SELECT DISTINCT flight.flight code, dual carrier.fconnection name FROM airline, flight, dual carrier,
airline INNER JOIN flight ON airline.airline code = flight.airline code, airline INNER JOIN dual carrier
ON airline.airline code = dual carrier.main airline WHERE ((not (dual carrier.fconnection name Is
Null or dual carrier.fconnection name=””)));

x

3 Show me the number of engines for aircrafts with no pressurization
Unfamiliar Word pressurization

x

4 What type of aircrafts are not wide body
SELECT DISTINCT aircraft.aircraft type, aircraft.aircraft code, aircraft.wide body FROM aircraft
WHERE (((aircraft.wide body Is Null or aircraft.wide body=””)));

x

5 Which airlines are not dual carrier
SELECT DISTINCT airline.airline name, dual carrier.fconnection name FROM dual carrier, airline,
dual carrier RIGHT JOIN airline ON dual carrier.main airline = airline.airline code WHERE ((
dual carrier.fconnection name Is Null or dual carrier.fconnection name=””));

x

6 Give me the class type for flights with discount
unable

x

7 Give me the classes with discount
unable

x

8 Give me the fare class for premium flights
SELECT DISTINCT compound class.fare class, flight.flight code, compound class.PREMIUM FROM
fare, compound class, flight fare, flight, fare INNER JOIN compound class ON fare.fare class =
compound class.fare class, fare INNER JOIN flight fare ON fare.fare code = flight fare.fare code,
flight fare INNER JOIN flight ON flight fare.flight code = flight.flight code ORDER by
compound class.PREMIUM, flight.flight code;

x

9 What airlines are dual carrier
SELECT DISTINCT airline.airline name, dual carrier.fconnection name FROM dual carrier, airline,
dual carrier RIGHT JOIN airline ON dual carrier.main airline = airline.airline code WHERE (not (
dual carrier.fconnection name Is Null or dual carrier.fconnection name=””));

x

10 Which aircraft types are not wide body and are not pressurized
SELECT DISTINCT aircraft.aircraft type, aircraft.pressurized, aircraft.wide body, aircraft.aircraft code
FROM aircraft WHERE (((aircraft.wide body Is Null or aircraft.wide body=””) and (
aircraft.pressurized Is Null or aircraft.pressurized=””)));

x

11 Which aircraft type are not wide body and are pressurized
SELECT DISTINCT aircraft.aircraft type, aircraft.pressurized, aircraft.wide body, aircraft.aircraft code
FROM aircraft WHERE (((aircraft.wide body Is Null or aircraft.wide body=””) and not (
aircraft.pressurized Is Null or aircraft.pressurized=””)));

x

12 Which aircraft types are wide body and are pressurized
SELECT DISTINCT aircraft.aircraft type, aircraft.pressurized, aircraft.wide body, aircraft.aircraft code
FROM aircraft WHERE ((not (aircraft.wide body Is Null or aircraft.wide body=””) and not (
aircraft.pressurized Is Null or aircraft.pressurized=””)));

x

13 Give me the restrictions for flights with no stops
SELECT DISTINCT restriction.application, flight.flight code, restrict carrier.restrict code FROM
restrict carrier, restriction, fare, compound class, flight fare, flight, airline, restrict carrier INNER JOIN
restriction ON restrict carrier.restrict code = restriction.restrict code, restriction INNER JOIN fare ON
restriction.restrict code = fare.restrict code, fare INNER JOIN compound class ON fare.fare class =
compound class.fare class, fare INNER JOIN flight fare ON fare.fare code = flight fare.fare code,
flight fare INNER JOIN flight ON flight fare.flight code = flight.flight code, flight INNER JOIN airline
ON flight.airline code = airline.airline code WHERE ((compound class.PREMIUM = ”NO” and not (
flight.flight code Is Null or flight.flight code=0)));

x

14 Give me the application for flights with stops
unable

x

15 Premium class flights from ATL to PIT
unable

x

16 Which flights have discounted fare
not enough parameters

x

Computación y Sistemas, Vol. 24, No. 1, 2020, pp. 61–74
doi: 10.13053/CyS-24-1-3313

Rodolfo A. Pazos R., José A. Martínez F., J. Javier González B., Andrés A. Verástegui O.72

ISSN 2007-9737

Table 8. Detailed results of the tests on ELF (continuation for table 7)

17 Which flights have no discounted fare
SELECT DISTINCT flight.flight code, fare.fare code FROM flight fare, flight, fare, compound class,
flight fare INNER JOIN flight ON flight fare.flight code = flight.flight code, flight fare INNER JOIN fare
ON flight fare.fare code = fare.fare code, fare INNER JOIN compound class ON fare.fare class =
compound class.fare class WHERE (compound class.DISCOUNTED = ”NO”);

x

18 Which airlines have premium fare from SFO to DFW
unable

x

19 Give me the flight codes for flights with dual carrier
SELECT DISTINCT flight.flight code, dual carrier.fconnection name FROM airline, flight, dual carrier,
airline INNER JOIN flight ON airline.airline code = flight.airline code, airline INNER JOIN dual carrier
ON airline.airline code = dual carrier.main airline WHERE ((not (dual carrier.fconnection name Is
Null or dual carrier.fconnection name=””)));

x

20 Give me all the wide body flights from DFW to DEN
unable

x

ANDcompound class.premium ILIKE ’YES’ AND
airline.airline name ILIKE ’DELTA AIRLINES’ AND
TblVistaTmp.CDD city nam ILIKE ’San Francisco’
AND TblVistaTmp.CDO city name ILIKE ’Atlanta’;

Since the SQL statements for queries that
involve city names is lengthy, for the test queries
in Table 4, airport codes were used instead of
city names.

In order to compare the performance of the
NLIDB, the interface ELF was tested [3] using
the same queries for the ATIS database. ELF
was used because it is readily available for testing
(unlike most NLIDBs) and is one of the few
surviving commercial interfaces. The results are
summarized in Table 6, and the detailed results are
presented in the Tables 7 and 8.

According to the results obtained by ELF, its
recall was 0%.

It is convenient to mention that it has been
reported that ELF has a recall of 70-80% [2].
ELF fails in translating queries that involve Boolean
columns, because there is no explicit search value
in the queries, which shows the difficulty for dealing
with this problem, not only for ELF, but for other
NLIDBs that look for search values in the domain
dictionary or the database.

Tables 7 and 8 show the results from the tests
on ELF using the same queries as those in Tables
4 and 5. In this table, a cross indicates that the
query was not translated or the translation was
incorrect. The queries are in English, because ELF
was designed for this language.

7 Conclusion and Future Work

The use of natural language interfaces to
databases (NLIDBs) has not grown as fast as
expected at the end of the 20th century, because
of the difficulty present in natural language
processing. Natural languages (NLs) have
complex structures, whose understanding usually
require using experience, intuition and clarification
by human beings. Therefore, it is expected that
the difficulty for understanding NL be much greater
when using computational algorithms.

This article proposes an approach for translating
NL queries that involve Boolean columns to an
SQL statement. The new syntactic-semantic
method constitutes a contribution in NLIDB
research, showing that it is necessary to combine
lexical, syntactic and semantic information, as
human beings do, for obtaining high effectiveness.

The experimental results show that the proposed
approach is highly effective (a recall close to
100%) for translating queries that involve Boolean
columns. It is convenient to remark that a
survey of the literature on NLIDBs has shown that
this problem has not been identified, much less
addressed (Section 2).

In order to keep increasing the recall of the
NLIDB (which was 90% before the development
of this new approach), another problem is being
addressed: translating queries that involve search
values that are language words; for example:
business class, breakfast, excursion fare, and
coach for the ATIS database. These values are

Computación y Sistemas, Vol. 24, No. 1, 2020, pp. 61–74
doi: 10.13053/CyS-24-1-3313

Algorithm for Processing Queries that Involve Boolean Columns for a Natural Language Interface to Databases 73

ISSN 2007-9737

difficult to identify by the NLIDB, because they
are not easily detectable like proper nouns, codes
or numbers. For solving this problem, the new
syntactic parser is being used for detecting phrase
patterns where this type of search values occur in
queries, similar to the solution to the problem with
Boolean columns.

Acknowledgements

The PhD student Andrés Verástegui acknowledges
the scholarship (Grantee No. 429339) by the
Consejo Nacional de Ciencia y Tecnologı́a, Mexico.

References

1. Bhootra, R. A. (2004). Natural Language Interfaces:
Comparing English Language Front End and English
Query. Master’s thesis, Virginia Commonwealth
University.

2. Conlon, S., Colon, J., & James, T. (2004).
The economics of natural language interfaces:
natural language processing technology as a scarce
resource. Decision Support Systems, Vol. 38, No. 1,
pp. 141–159.

3. ELF (2009). ELF Software Analyze.
http://www.elfsoft.com/help/accelf/Analyze.htm.

4. Linguistic Data Consortium (1990). The 2884
ATIS0 Speaker-dependent Training Prompts.
http://www.ldc.upenn.edu/Catalog/readme files
/atis/sdtd/trn prmp.html.

5. Minock, M. (2010). C-Phrase: A system for building
robust natural language interfaces to databases. Data
& Knowledge Engineering, Vol. 5, No. 3, pp. 290–302.

6. Pazos, R. A., Aguirre, M. A., González, J. J.,
Martı́nez, J. A., Pérez, J., & Verástegui, A. A.
(2016). Comparative study on the customization of
natural language interfaces to databases. Springer-
Plus, Vol. 5, No. 1, pp. 553.

7. Pazos, R. A., González, J. J., Aguirre, M. A.,
Martı́nez, J. A., & Fraire, H. J. (2013). Natural
language interfaces to databases: An analysis
of the state of the art. In Recent Advances on
Hybrid Intelligent Systems, Studies in Computational
Intelligence, volume 451. Springer Berlin Heidelberg,
pp. 463–480.

8. Popescu, A.-M., Armanasu, A., Etzioni, O.,
Ko, D., & Yates, A. (2013). Modern natural
language interfaces to databases: composing
statistical parsing with semantic tractability. In Recent
Advances on Hybrid Intelligent Systems, Studies
in Computational Intelligence, volume 451. Springer
Berlin Heidelberg, pp. 463–480.

9. World Wide Web Consortium (1982). BNF Notation
for Syntax. https://www.w3.org/ Notation.html.

Article received on 25/11/2019; accepted on 06/01/2020.
Corresponding author is Rodolfo A. Pazos R.

Computación y Sistemas, Vol. 24, No. 1, 2020, pp. 61–74
doi: 10.13053/CyS-24-1-3313

Rodolfo A. Pazos R., José A. Martínez F., J. Javier González B., Andrés A. Verástegui O.74

ISSN 2007-9737

