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Abstract. We present a system that improves the
quality of noisy and incomplete depth maps captured
with inexpensive range sensors. We use a model-based
approach that measures the discrepancy between a
model hypothesis and observed depth data. We
represent the model hypothesis as a 3D level-set
embedding function and the observed data as a point
cloud coming from a segmented region associated to the
object of interest. The discrepancy between the model
and the observed data defines an objective function,
that is minimized to obtain pose, scale and shape. The
variation in shape of the object of interest is mapped
with Gaussian Process Latent Variable Models GPLVM
and the object pose is estimated using Lie algebra. The
integration of a synthetic depth map, obtained from the
optimal model, and the observed depth map is carried
out with variational techniques. As a consequence we
work in the observed space (depth space) rather than in
a high dimensional volumetric space.

Keywords. Shape prior, 3D level-set embedding
function, Levenberg-Marquardt, lie algebra, depth
integration, variational techniques, Gaussian process
latent variable models, denoising and inpainting.

1 Introduction

High-quality depth information is important for
many applications, such as 3D scene re-
construction [35], visual odometry [14], action
recognition [4, 26], scene understanding [21, 37],
3D segmentation [9, 11], among others. However,
specular or light absorbing materials, out of
range regions and occlusions produce corrupted

depth maps with missing information. These
problems are more common in depth sensors
that are manufactured with smaller size and lower
power requirements but compromising the quality
of the data. The most challenging situation
arises when unknown regions become large and
irregular, affecting considerably the results of
the applications.

To overcome these drawbacks we consider the
outstanding performance of variational techniques
applied to fusion of color images [17] and propose
to use them for merging two sources of depth data;
one that is noisy and incomplete, coming from the
depth camera and the other one that is high-quality
data, coming from an optimal 3D model. This
model (shape prior) is the one that best fits to its
associated depth data in the scene. In this way,
we improve the quality of a noisy and incomplete
depth map, especially in the region of the object
of interest.

The main steps of our system are the following.
First, we estimate the optimal model. Second,
we place the model using the optimized pose,
shape and scale, and read the depth buffer
from the current camera pose. Third, we
integrate the two depth maps using variational
techniques. These steps are intended to serve
as a pre-processing stage for the aforementioned
applications, specially for 3D scene reconstruction.

We can outline three main contributions: 1. We
propose an approach to enhance depth maps by
integrating depth measurements and shape prior

Computación y Sistemas, Vol. 24, No. 1, 2020, pp. 221–239
doi: 10.13053/CyS-24-1-3004

ISSN 2007-9737



data using a novel formulation of an objective
function with a variational approach; 2. The object
pose optimization is solved using Lie algebra se(3)
instead of the group of rigid transformations in 3D
space, SE(3); 3. We quantify the accuracy of
pose, shape and scale optimizations. Moreover,
we compute the completeness and accuracy of
inpainted and denoised depth maps.

This work is structured as follows. In section
II similar works are presented. In section III
the main processes carried out by the system
are described: model alignment, truncated
signed distance function TSDF estimation, model
compression, dimension reduction, estimation of
the optimal pose and scale, search of the optimal
latent variable, and integration of the optimal
model with a novel variational method. In section
IV experiments for optimizing pose, scale and
shape with synthetic and real data are carried out.
Moreover, experiments for quantifying the accuracy
of the enhanced depth maps are described. Finally,
the conclusions are presented in section V.

2 Related Work

Techniques for depth recovery include morpho-
logical filters [32], Laplace filters [23, 33], Markov
Random Fields [27], multilateral filters [13, 22],
non-linear diffusion and variational frameworks [7,
10, 28] and learning-based methods [12, 19, 34].
Our system presents a novel approach motivated
by outstanding works in object shape priors, scene
shape priors and variational techniques. Next, we
describe some details about these systems and we
compare them with ours.

The system [30] is the first one that back projects
depth images and evaluates the resulting point
cloud in a 3D level-set embedding function that
represents an object model implicitly, instead of
projecting the model to the image plane and
measuring the discrepancy between expected
image cues and the observed ones. Moreover, no
point correspondence is required, unlike Iterative
Closest Point ICP, since the alignment consist
in evaluating the closeness of the points to the
zero-level of the embedding function. The authors
in [18] remove point cloud artifacts like noisy points,

missing data and outliers using a learned shape
prior of an object of interest.

They use the discrete cosine transform DCT
for compressing the SDF values and GPLVM for
dimension reduction.

The system [1] learns a semantic prior
comprised of a mean shape for a category
(common aspects in shape of a category) and
a set of weighted anchor points for instances of
the category (specific details). The augmented
reconstruction consists in matching anchor points
(HOG features), warping by anchor points (an
extension of thin-plate spline transformations [31])
and refinement. The system [6] combines shape
priors and live dense reconstruction using a
monocular camera. Photo-consistency and a
variational approach are used for building depth
maps [25] that are fused for creating a dense
reconstruction, PTAM [16] for tracking the camera,
a part-based object detector [8], and GPLVM to
represent shape priors. The energy function,
besides depending on the evaluation of the 3D
points on the embedding function like [30] and
[18], depends on the matching between the 2D
object segmentation, defined by the foreground
and background, and the projected 3D SDF.

The system [29] estimates depth maps using a
monocular camera in workspaces with large plain
structures like floors, walls or ceilings. Good depth
data is propagated to an interior pixel (inpainting)
from the closest valid pixels along the main 8
star directions by using a non-local high-order
regularisation term, in a variational approach,
that favours solutions with affine surfaces (prior).
The energy is minimized in straight way with the
primal-dual algorithm. The system [5] includes
a term, besides the data term and regularization
term, that depends on three scene priors: planarity
of homogeneous color regions (using superpixels),
the repeating geometry primitives of the scene
(data-driven 3D primitives learned from RGBD
data), and the Manhattan structure of indoor
rooms (layout estimation and classification of
box-like structures).

Our system is not based on scene shape priors
like [5, 29] but on object shape priors like [1, 6,
18, 30]. However, it does not uses neither anchor
points like [1] nor a depth and intensity-based
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energy function like [6], but GPLVM like [6,18] and
a depth-based energy function like [18,30].

We use a variational technique, like is done
in [5, 29] for merging scene shape priors, but
we exploit the idea of integrating two depth
maps, one coming from the sensor and the other
one coming from the object shape prior, in a
similar way as is done for aerial color images
in [17]. The latter system transforms a large
point cloud into a common orthographic aerial
view. This noisy color image with undefined areas
due to occlusions and non-stationary objects is
subjected to denoising and inpainting by integrating
redundant observations of the same scene using
variational techniques. It uses the primal-dual
algorithm for minimizing the proposed energy.
Finally, our approach implies that, in a future work,
the enhanced depth maps will be fused instead of
including directly the shape prior as a volumetric
structure into the general reconstruction of the
scene like is done in [6].

3 Methodology

The main pipeline of the system is shown in fig. 1.
The set of reference models (predefined database
of cars) are aligned using ICP for getting models
with the same scale, translation and rotation. A
volumetric grid with TSDF values is computed and
a compression is done using DCT, for maintaining
just the low-frequency components of the reference
models. A continuous, nonlinear, probabilistic
and lower dimensional latent shape space that
captures the prior knowledge on the 3D shapes
that an object can take is found with Gaussian
Process Latent Variable Models GPLVM.

Scaled conjugate gradient SCG is employed for
leaning the mapping between the latent variables
and the low-frequency components (coefficients).
Next, the optimal pose, scale and shape are
computed and the coefficients associated to the
latent variable that best fits to depth data are
estimated. The 3D level-set embedding function
encoded in the coefficients is computed with
the inverse discrete cosine transform IDCT. The
optimal model is used for creating a synthetic depth
map by reading the depth buffer of the explicitly

represented model seen from the estimated
camera pose.

The synthetic depth map is merged with the
depth data coming from the sensor using a novel
variational formulation. In the next sections, the
main modules of the system are explained.

3.1 Alignment and TSDF Estimation of the 3D
Models

We downloaded 49 models of cars from Tur-
bosquid, a vast online catalog of 3D models. We
align each model w.r.t a base model (see fig. 2(h),
model chosen arbitrarily) using just the vertices of
the triangular mesh, read from an .obj file. Initially,
the point cloud of the base car is translated from
their center of gravity to the origin. Then, it is
scaled for fitting it to the volumetric grid, and the
average distance of each point to the new origin is
computed (see [3] for more details):

sbase =

∑Nbase
i=1

√
X2
i + Y 2

i + Z2
i

Nbase
, (1)

where Nbase is the number of points of the
base model. The same process is carried out
(translation and average distance computation) for
the point cloud of the model i for getting si. The
scale is computed as:

s =
sbase

si
. (2)

This scale is applied to model i in order to get
models with the same size. Then, the models are
manually oriented in such a way that their frontal
sides point to the same direction, standing over a
parallel supporting plane. This initial alignment is
refined using ICP, implemented in CloudCompare.

Once the models have been aligned, the model
i is loaded in OpenGL using the vertices and
facets (just geometry data), creating a continuous
surface. The virtual camera is moved in such a
way that circular and vertical scanning at different
longitudes (changes in azimuth and elevation of
10◦) are performed.

The optical axis of the virtual camera is always
pointing to the origin that coincides with the center
of gravity of the loaded model. Depth images,
obtained by reading the depth buffer of OpenGL,
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Fig. 1. Main pipeline of the proposed system. The final result is a denoised and inpainted depth map

are fused into a volumetric structure, storing in
each voxel a TSDF value. We have Nm = 49 3D
models of cars with different shapes (see 9 of the
49 models in fig. 2 ). Each model is a 3D level-set
embedding function defined by a volumetric grid of
Ng × Ng × Ng voxels, with Ng = 128. The matrix
M ∈ RNm×N3

g stores these models as row vectors.
However, searching for a model that best fits to
data in this high dimensional space is too complex,
so we compress the data using DCT. Then, we
find a lower dimensional space and the mapping
parameters for passing from this latent space to the
space of DCT coefficients:

3.2 Compression of the Embedding Function

The DCT transforms a time domain signal to
a frequency domine signal. It is used for
compression of audio (e.g. MP3) and images (e.g.
JPEG) where small high-frequency components
can be discarded. We use here this technique
for compressing the TSDF values of the volumetric
grid. Let φ(u, v,w) ∈ RNg×Ng×Ng be the volumetric
grid that stores the TSDF values of a 3D model.
The two-dimensional DCT for slices φi in direction
u of φ, it means, ci(v,w) = DCT (φi(v,w)) is
given by:

ci(v,w) = α(v,w)

Ng−1∑
y=0

cos

(
π(2y + 1)v

2Ng

)
Ng−1∑
z=0

φi(y, z)cos

(
π(2z + 1)w

2Ng

)
,

(3)

where α(v,w) = αv(v) ∗ αw(w), with:

αv(v) = αw(w) =


1√
Ng

if v,w = 0,

2√
Ng

if v,w 6= 0.
(4)

Since we have Ng = 128 slices, the size of φi
is (Ng × Ng). Equation (3) can be expressed as
matrix and array multiplications:

ci = α. ∗ (AφiA
T ), (5)

where A ∈ RNc×Ng with Nc the number of DCT
coefficients (desired low-frequency components).
Each row of A stores the cosine cos

(
π(2x+1)u

2Ng

)
for

a common u, with u = 1, 2, ...,Nc.

We extend it to the three-dimensional DCT and
apply the property of separability (see [15] for more
details), computing the 3D-DCT in two steps with
2D transformations over the slices for each i along
dimension u and a final 1D operation. Figure 3
shows the 3D models obtained using 10, 25, 35,
50, 75 and 100 coefficients of the model visualized
in 2(b). Here we can see that the information about
the general shape is stored in the low-frequency
components and the fine details are store in the
high-frequency components.

Note that for 50, 75 and 100 coefficients there
are not significant changes in appearance. We
consider that 25 × 25 × 25 coefficients are enough
for our purposes (like in [18]).
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i)

Fig. 2. 9 of the 49 3D models of instances of the
class car (object of interest), used for estimating the
latent space

3.3 Learning the Latent Space

The Latent variable Model LVM is used for
dimensionality reduction, to capture the shape
variance as low dimensional latent shape spaces,
such that the resulting latent variables have less
dimensions than the original observed data. Let
Y ∈ RNm×N3

c be the matrix that stores in row
Yj ∈ R1×N3

c theNc = 25 low-frequency coefficients
in each dimension of the volumetric grid, and for
each model j, with j = 1 : 1 : Nm.

Let χ ∈ RNm×Nx , with N3
c � Nx, be the matrix

that stores in each row the latent variable χj ∈
R1×Nx that represents the coefficients of model j.
Now, we learn from the coefficients the parameters
(θ1, θ2, θ3, θ4) that map any latent variable χj to the
corresponding row vector of coefficients Yj , where
its relationship is non-linear.

(a) Using 10 coeff. in
each dimension

(b) Using 25 coeff. in
each dimension

(c) Using 35 coeff. in
each dimension

(d) Using 50 coeff. in
each dimension

(e) Using 75 coeff. in
each dimension

(f) Using 100 coeff.
in each dimension

Fig. 3. 3D model of fig. 2(b) using different number of
coefficients in each dimension (degree of compression)

Since the mapping χj → Yj is modelled using
a Gaussian process, we can define areas of high
probability, it means, areas where there are high
certainty of getting a valid shape. Moreover,
this technique allows to map coefficients from a
continuous latent space (no just the ones used for
learning), creating a continuous search of the latent
variable that best fits to data. We define the vector
W ∈ R1×(Nm∗Nx+4) as:

W = {χ1,1 ... χ1,Nm
... χNx,1 ... χNx,Nm

θ1 θ2 θ3 θ4}.
(6)

It is the vector of parameters that solves the
following optimization problem:

min
W

E(W ) =
Nm
2
ln(2π) +

1

2
ln|K|+ 1

2
tr(K−1S),

(7)
where Nm is the number of models, K is the
covariance matrix which is estimated with a Kernel
function, and S = D−1Y Y T , with D the number of
coefficients for a model (N3

c ). The components of
K, denoted as kij = K(χi,χj), for a latent variable
with two dimensions (Nx = 2) and a Radial Basis
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Function kernel, are:

kij =θ1exp

(
−θ2

2
((χ1,i − χ1,j)

2 + (χ2,i − χ2,j)
2)

)
+ θ3 + δijθ4, (8)

where δij is the Kronecker delta function. We
initialize the latent variables of the vector of
parameters W with the estimation got with Dual
Probabilistic PCA. Then, we use the scaled conju-
gate gradient SCG algorithm for refining the initial
estimation. It combines the model trust region
approach, known from the Levenberg-Marquardt
algorithm, with the conjugate gradient approach.

The pseudocode and more details about SCG
can be found in [24]. The parameters for the kernel
are set according to [20]; θ1 = 1, θ2 = 1, θ3 =
exp(−1), and θ4 = exp(−1). With these values we
can set the initial kernel and continue the iterative
process until convergence.

The resulting latent space is employed in section
4.1 for shape optimization. Besides the mean
value, each point χp in the latent space has a
variance which is computed as:

σ2 = K(χp,χp)−K(χ,χp)K−1K(χ,χp)T . (9)

The parameters for mapping converged to θ1 =
10.4195, θ2 = 1.6784, θ3 = 84.5378, and θ4 =
1.1679.

3.4 Shape Prior Estimation. Shape
Optimization

We define an energy that depends on the sum of
squared residuals:

E(Φ) =
1

2

∑
(Φ)2, (10)

where the residual vector Φ is defined with the
German-McClure function, which is robust to
outliers:

Φ =
φ(Xq)2

φ(Xq)2 + σ
, (11)

where σ is a constant parameter, Xq =
[Xq Yq Zq] is one of the Np 3D points that
are evaluated (3D interpolation) in the embedding
function φ. Points that are back-projected outside

the volumetric grid are assigned a large value. The
derivative of the energy w.r.t. the latent variable χp
is computed through the chain rule:

δE

δχp
=
δE

δΦ
∗ δΦ
δχp

. (12)

The first term on the right is the residual vector
Φ. The variations of the residual vector Φ due to
changes in the latent variable χp corresponds to
the Jacobian:

J =
δΦ

δχp
=
δΦ

δφ
∗ δφ

δχp
, (13)

where:
δΦ

δφ
=

2σφ(Xq)

(φ(Xq)2 + σ)2
. (14)

For defining the second term on the right of eq.
13 we express the embedding function φ in terms
of the latent variable:

φ = IDCT(ν(χp)). (15)

The function IDCT(·) is the inverse discrete
cosine transform applied to the mean ν of the
coefficients associated with the latent variable χp
through a Gaussian process:

ν(χp) = K(χ,χp)K−1Y . (16)

Considering that the derivative of the IDCT of a
variable is the IDCT of the derivative of the variable,
we have:

δφ

δχp
=
δ(IDCT(ν))

δχp
= IDCT

(
δν

δχp

)
, (17)

where:
δν

δχp
=
δK(χ,χp)

δχp
K−1Y , (18)

K(χ,χp) ∈ R1×Nm is the row kernel for the latent
variable χp. It depends on the squared euclidean
distance between the latent variable χp and each
one of the Nm latent variables used for learning the
parameters for mapping. Each element of the row
kernel for χp, with Nx = 2, is found using eq. (8),
replacing χj by χp. The derivative ofK(χ,χp) w.r.t
each component of the latent variable is computed
in a straight way. The latent variable is updated by
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addition, χk+1
p = δχp+χkp, where δχp is found with

Levenberg-Marquardt:

δχp = −(JTJ + αdiag(JTJ)I)(JTΦ). (19)

We start with α = 1e − 4. After each iteration,
the new energy is compared with the previous one.
If the energy has decreased, α is reduced by a
factor of 10 and the parameters are updated. If
the energy has increased, the parameters are not
updated and α is increased by a factor of 10.

3.5 Shape Prior Estimation: Pose and Scale
Optimization

We now differentiate the energy of eq. (10)
w.r.t. the pose and scale, optimizing them
in separated and alternating way. The pose
is minimally parametrized with a vector ζ =
[wx,wy,wz, vx, vy, vz], where the first three ele-
ments define the axis of rotation and its norm
defines the magnitude of the rotation. The
remaining elements define the translation after
carrying out the rotation. The derivative of the
energy w.r.t. ζ is:

δE

δζ
=
δE

δΦ
∗ δΦ
δζ

. (20)

Again, the first term on the right is the residual
Φ. The variations of the residual vector Φ due to
changes in pose ζ correspond to the Jacobian for
this problem:

J =
δΦ

δζ
=
δΦ

δφ
∗ δφ
δζ

. (21)

The first term on the right was defined in
equation (14). The second term on the right is:

δφ

δζ
=

δφ

δXq
∗ δXq

δζ
, (22)

δφ
δXq

is computed numerically, using the central
difference formula:

δf(x)

δx
=
f(x+ h)− f(x− h)

2h
. (23)

Since a point Xq = [Xq Yq Zq] (coordinates
of voxels referenced to the initial coordinate system
q), we get:

δφ

δXq
=

[
δφ

δXq

δφ

δYq

δφ

δZq
1

]
, (24)

with h = 10−8 for all the components. For defining
δXq

δζ we first express a point Xq in terms of Xw.
We have that:

Xw = MwoSMoqXq, (25)

Mwo is the transformation matrix between the
object and the world system. Moq is the
transformation matrix between the initial and the
object system. It corresponds to a translation to
the center of the volumetric grid. Figure 4 shows
the initial coordinate system q, the object system o,
and the world system w. Since the point cloud is
referenced to the world coordinate system, the 3D
model is also referenced to this system and then,
aligned with the point cloud.

Fig. 4. Initial coordinate systme q, object coordinate
system o and world coordinate system w

S scales the points Xo and is defined as:

S =


s 0 0 0
0 s 0 0
0 0 s 0
0 0 0 1

 . (26)

Solving for the point Xq, we get:

Xq = (Moq)
−1S−1MowXw , (27)

The transformation matrix Mow is updated as:
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Mk+1
ow = ∆MowM

k
ow, (28)

where the incremental change in the transforma-
tion is expressed using the exponential mapping
and the lie algebra:

∆Mow = exp([∆ζ]x). (29)

The operator [·]x transform a six-elements vector
to the skew matrix:

[∆ζ]x =


0 −wz wy vx
wz 0 −wx vy
−wy wx 0 vz

0 0 0 0

 . (30)

∆ζ is computed in similar way as δχp in equation
(19). Replacing Mk+1

ow of eq. (28) and ∆Mow of eq.
(29) into eq. (27), we get:

Xq = (Moq)
−1S−1exp([∆ζ]x)Mk

owXw , (31)

Mk
owXw is the 3D point Xk

o previous to update
the transformation matrix Mow. Now, δXq

δζ ,
considering the scale constant, is:

δXq

δζ
= M−1oq S

−1 δ(exp([δζ]x))

δζ
Xk
o , (32)

where the derivative of the exponential w.r.t the first
element of the vector ζ is:

δ(exp([δζ]x))

δwx
=


0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

 . (33)

This derivative is a generator for rotations in x-
axis in the lie algebra. The same process is carried
out for the remaining five parameters. Multiplying
by the homogeneous form of Xo and organizing,
we get a 4× 6 matrix.

δ(exp([δζ]x))

δζ
Xk

o =


0 Xoz −Xoy 1 0 0

−Xoz 0 Xox 0 1 0
Xoy −Xox 0 0 0 1
0 0 0 0 0 0

 .

(34)

Following a similar process for scale optimiza-
tion, we consider the parameters of pose constant

and derive Xq from eq. (27) w.r.t the scale
parameter:

δXq

δs
= −M−1oq S−1

δS

δs
S−1Xk

o , (35)

where δS
δs is easily computed.

3.6 Inpainting and Denoising

TV-based methods are well suited for tasks like
depth data integration, as was probed in [36]. In
our context, an energy defined by a TV-based
regularization together with a data term that
measures the discrepancy between two sources of
data (the depths coming from the model Dm(µ)
and from the sensor Ds(µ)) and the sought
solution Df (µ), is implemented:

min
Df

E(Df (µ)) =

∫
(‖∇Df (µ)‖1︸ ︷︷ ︸

regularizer term

+

λ

2∑
k=1

wk(µ)‖Df (µ)−Dk(µ)‖ε︸ ︷︷ ︸
data term

)dµ,
(36)

where λ defines the balance between the
regularizer term and the data term, D1(µ) =
Ds(µ), andD2(µ) = Dm(µ). We apply the robust
Huber norm over the data term where:

‖x‖ε =

{
‖x‖22
2ε if ‖x‖2 ≤ ε,
‖x|1 − ε

2 otherwise
(37)

The L2
2 norm works for small values, which is

appropriate for handling Gaussian noise, getting
smooth regions, while the L1 norm allows
discontinuities at depth edges (larger errors).
Missing data in depth maps (undefined pixels)
defines the inpainting domain:

wk(µ) ∈ {0, 1}, (38)

where w(µ) = 0 corresponds to pure inpainting at
location µ. In consequence, the regularizer term
allows smooth solutions and the data term allows
solutions similar to the depth sources. The energy
defined in eq. (36) is minimized using a first-order
primal-dual algorithm.
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3.6.1 Primal-Dual Algorithm

The regulariser and the data term of eq. (36) can
be written in a more general form:

min
y
F (Ay) +

2∑
k=1

Gk(y), (39)

In our case, A = ∇ the gradient operator,
F (Ay) = ‖Ay‖1, Gk(y) = λ$k‖y − ϕk‖ε, y,
ϕk and $k are row-wise vector versions of the
sought solution Df (µ), the depth sources Dk(µ),
and the matrix wk that defines the inpainting
domain, respectively. We do Legendre-Fenchel
transformations in this way:

F (Ay) = max
‖%‖2≤1

〈Ay,%〉 − F ∗(%), (40)

Gk(y) = max
|rk|1≤λ$k

〈y −ϕk, rk〉 −Gk∗(rk), (41)

where % and rk are dual variables associated to
the primal variables y andϕk respectively, and 〈·, ·〉
corresponds to the dot product. Replacing (40) and
(41) in (39) we get the primal-dual formulation of
this nonlinear problem. It is a generic saddle-point
problem:

min
y

max
|rk|1≤λ$k,‖%‖2≤1

〈Ay,%〉 − F ∗(%)+

2∑
k=1

[〈y −ϕk, rk〉 −Gk∗(rk)],
(42)

where F ∗(%) and Gk
∗(rk) are the convex

conjugates of F (Ay) and Gk(y), respectively, and
are defined as:

F ∗(%) = δ%(%), (43)

Gk
∗(rk) = δrk(rk) +

ε

2
‖rk‖22, (44)

where δ% and δrk are indicator functions of the
convex sets, defined as:

δ%(%) =

{
0 if ‖%‖1 ≤ 1,
∞ otherwise,

(45)

δrk(rk) =

{
0 if |rk|1 ≤ λ$k,
∞ otherwise.

(46)

Following the algorithm 1 of [2] and the
parameter setting of [17] we set the primal and
dual time steps with τ = 0.05 and σ = 1/(8τ),
respectively. The Huber norm parameter ε = 0.1
and the balance λ = 1.2. We set the initial primal
variable as ȳ0 = ϕs since it is the most informative
depth source. The dual variables rk and % are
initialized with zeros.

Based on [2], the iterative optimization cor-
responds to perform in alternating way gradient
ascent over the dual variables and gradient
descent over the primal variable, projecting the
results onto the constraints and updating the primal
variable, as is summarized next:


%n+1 = proj%(%n + σAȳn),

rn+1
k = projrk

(
rnk+σ(ȳn−ϕk)

1+σε

)
k = 1, 2,

yn+1 = yn − τ(A∗%n+1 +
∑2
k=1 r

n+1
k ),

ȳn+1 = yn+1 + Φ(yn+1 − yn),
(47)

where A∗ is the adjoint operator of the gradient op-
erator and corresponds to the negative divergence
operator, Φ = 1, proj% and projrk are projections
of the dual variables % and rk, respectively, onto
convex sets. They are defined for each element of
the vectors as:

proj%(%̃) =
%̃

max(1, |%̃|)
, (48)

projrk(r̃k) =

 r̃k if |r̃k| < λ$k,
λ$k if r̃k > λ$k,
−λ$k if r̃k < −λ$k.

(49)

4 Results

For testing our optimization algorithms when one
of the three variables is unknown (shape, pose and
scale) we use a down-sampled point cloud coming
from the vertices of the triangles computed with
the marching cubes algorithm for the compressed
version of the base model (fig. 2(h)).

When shape, pose and scale are unknown, we
test our algorithms with data coming from the
kinect 1.0 and with synthetic data got from a 3D
scene. For these experiments we also carry out
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depth integration using our proposed variational
formulation and quantify the completness and
accuracy of the enhanced depth maps.

4.1 Results in Shape Optimization

The goal is to refine the shape associated
to an initial latent variable in order to reduce
the residual computed by evaluating the current
embedding function in the point cloud (eq. (10)).
In this experiment, the pose and scale are
considered known. Figure 5(a) shows an explicit
representation of the model for the initial latent
variable.

Figures 5(b) and 5(c) show the model for
iterations 1 and 8, respectively. Figure 6 shows
the path of the iterative search in the latent
space. It starts with a latent variable χp =
[−0.2723 2.3048] and in iteration 15 χp has
evolved to [0.500114 1.63515], with a ground truth
of χp = [0.3895 1.6162]. Note that after iteration 8
(χp = [0.582774 1.62765]) the energy diminishes
slowly.

The Euclidean distance between the estimated
latent variable and the ground truth decreased from
0.9551 in the initialization to 0.1122 in iteration 15,
getting a reduction in error of 88.25%.

(a) Initial 3D model (b) Iteration 1

(c) Iteration 8

Fig. 5. Evolution of the shape in the optimization
process. The search is done in the latent space and
the model is obtained with the inverse DCT. It takes 15
iterations for converging. The model is drawn in green
and the point cloud in red

Fig. 6. Latent Space with the 49 latent variables (in
black) used for learning the mapping parameters. Low
variance regions are drawn in blue while high variance
regions are drawn in red. More likely valid shapes are
obtained in blue areas. The green point is the ground
truth in latent variable. The search path of the latent
variable that best fits to data is drawn in orange. The
resulting latent variable is drawn in dark orange

4.2 Results in Pose Optimization

In this experiment the shape and scale are
considered known and an initial pose is refined
in order to align the embedding function with the
point cloud. The ground truth in position is the
origin and in orientation is the identity matrix. The
initial position is two = [−0.2 0.2 0.2] with an
Euclidean distance to the origin of 0.3464. The
initial orientation corresponds to a rotation of αz =
−30 around z-axis w.r.t the ground truth.

Figure 7(a) shows the initial pose, while fig.
7(b) and 7(c) show the pose for iterations 20 and
50, respectively. The evolution of the Euclidean
distance from the model to the origin and the
evolution of the model orientation w.r.t. the
ground truth are presented in fig. 8(a) and 8(b),
respectively. The orientation Rwo is represented
with rotations over the fixed axis x, y, and z (in this
order).

The final position is two = [0.0032 −
0.0104 0.0035], with an Euclidean distance to the
origin of 0.0114. The final orientation is αx =
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−0.0017◦, αy = −0.0663◦, and αz = −0.0209◦.
It converges at iteration 59, achieving a reduction
in position error of 96.70% and in rotation around
z-axis of 99.93%.

(a) Initial pose. (b) Pose for iter. 20.

(c) Pose for iter. 50.

Fig. 7. Evolution of the pose of the embedding function
in the optimization process. The model is drawn in green
and the point cloud in red

4.3 Results in Scale Optimization

For scale optimization, the shape and pose are
considered known. Recall that the same scale is
used in the three dimensions. The initial value in
scale is s = 0.4. The ground truth in scale is
s = 1.0. Figure 9(a) shows the model with the
initial scale (s = 0.4), meanwhile figs. 9(b) and
9(c) show the model with the scale of iterations
1 (s = 1.5855) and 10 (s = 1.0053), respectively.
The error for iteration 10 is 0.53% of the ground
truth. The reduction in error is 99.12%. Figure 10
shows how the scale gets close to the ground truth
(s = 1.0).

4.4 Results in Pose, Scale and Shape, with
Real Data

Now, we use a point cloud coming from a depth
map taken with the Kinect V1 of Microsoft. The
Kinect was moved by hand in front of a toy car while
VGA images were captured at 30fps. We selected
one depth and intensity image (see figs. 14(a) and
14(b)) and manually segmented the toy car, getting
the mask of fig. 11(a). The resulting 3D points

(a) Distance from model to origin

(b) Model Orientation w.r.t world coordinate system.

Fig. 8. Evolution of the position and orientation with
respect to the ground truth. It takes 59 iterations for
converging

Xr associated to the segmented car (red points in
fig. 11(b)) are referenced to the camera coordinate
system, where the z-axis is perpendicular to the
image plane.

Then, we compute 3D points referenced to the
world coordinate system, Xw = MwrXr, where
Mwr is a rotation of 90◦ around the y axis followed
by a rotation of−90◦ around the new z axis. As was
doing for model alignment in section 3.1, the point
cloud of the toy car referenced to the world system
Xw is translated from its center of gravity to the
origin Xc

w = Xw− X̄w, and the average distance of
each point to the new origin spc is computed using
eq. (1). The same process is carried out for the
vertices of the 3D model for getting sm. The initial
scale is computed with eq. (2).

The initial position of the car is defined as the
center of gravity of the point cloud referenced
to the world coordinate system, adding 4% of
the x-component (z-axis in the camera coordinate
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(a) Initial scale of the
model (s = 0.4)

(b) Scale for iteration
1 (s = 1.5855)

(c) Scale for iteration
10 (s = 1.0053)

Fig. 9. Evolution of the scale of the embedding function
in the optimization process. The model is drawn in green
and the point cloud in red

Fig. 10. Evolution of the scale. It takes 10 iterations for
converging

system) to itself since the data belongs just to a
side of the whole car:

two = [1.04X̄wx
X̄wy

X̄wz
]′. (50)

As in [6], we assume that the toy car is over a flat
surface, so computing the normal of this surface
allows us to estimate an initial orientation of the car.
This process begins by calculating 3D points for
pixels in a region bellow the segmented area which
belong to the supporting plane. Then, RANSAC
is applied: three points are randomly selected and
the parameters that define a plane are computed.

The points that fulfill with the computed plane
(under a threshold) are counted. The random

(a) Mask of segmented car.

(b) Point cloud of segmented region (in
red), of the supporting plane (in blue)
and its normal (red line).

Fig. 11. a) Mask of the segmented car. b) Point cloud
associated to the segmented region (lateral side of the
toy car)

selection process was repeated 100 times and we
chose the parameters that generated the largest
number of inliers (points under a threshold when
the plane is evaluated).

The resulting normal n, shown in figure 11(b), is
used for computing two angles α and β that moves
the embedding function to the supporting plane:

α = acos

(
nz√

n2x + n2z

)
, β = acos(

√
n2x + n2z).

(51)
The transformation consists of a rotation of −α

over the y-axis followed by a rotation of β over the
new x axis. The third angle γ needed for totally
defining the orientation of the embedding function
is the rotation around the unit normal (new z axis).
This angle is found through exhaustive search with
α between 10◦ and 360◦ and with an increment
of 10◦; the selected α is the one that produces
the minimum energy when eq. (10) is evaluated.
Finally, the initial transformation matrix Mwo is:

Mwo =

[
Rwo two
01×3 1

]
, (52)
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with Rwo = Rot(Y ,−α)Rot(X ′,β)Rot(Z ′′, γ).
Summarizing, the initial position is two =
[0.8459 −0.1524 −0.2598], the initial orientation
corresponds to α = 20.0017◦, β = 2.18◦ and
γ = −20◦.

For comparing this orientation with the final one,
we use rotations over fixed axis, x, y and z (in this
order), with αx = 9.1136◦, αy = −18.0095◦, and
αz = −21.0621◦. The initial scale is s = 0.1571,
and the initial shape is the one associated to the
reference model employed in the model alignment
process χ = [0.3895 1.6162]. Figures 12(a) and
12(b) show the initial conditions for the model.

For this test, we carry out two cycles with the
sequence: 20 iterations for pose and 5 iterations
for scale. At the end of this sequence, 50 iterations
have been done and very close pose and scale
estimations are obtained (see 12(d)). With these
estimations we can perform exhaustive search over
the Nm = 49 models of cars used for learning
the latent space. The latent variable with the
3D level set that produces the minimum energy
χ = [0.4560 2.4675] is used as initial value in the
following refinement process. Finally, we carry out
three cycles with the sequence: 5 iterations for
shape, 10 iterations for pose and 5 iterations for
scale, getting a refinement in pose and scale for a
more approximated shape (see fig. 12(f)).

The final scale is s = 0.1602, and the final latent
variable is χ = [0.5858 2.6147]. The final position
is two = [0.8499 − 0.1377 − 0.2530] and the
final orientation is αx = 5.7633◦, αy = −9.0734◦

and αz = −26.0871◦.
Figure 13 shows the evolution of the energy,

drawing with red, green, and blue the pose, scale
and shape optimization, respectively. The synthetic
depth map got by reading the depth-buffer
of OpenGL from the current camera pose is
presented in fig. 14(c).

4.4.1 Results in Inpainting and Denoising

Since the main goal is to reduce noise and
complete missing data in the depth map, especially
in the region of the car, we get depth data of the
optimal 3D model seen from the real camera pose.
Figure 14(b) shows the depth map coming from
the sensor while fig. 14(c) shows the depth map

(a) Initialization. (b) Initialization. An-
other view.

(c) Iteration 10. (d) Iteration 50.

(e) Iteration 70. (f) Iteration 110.

Fig. 12. Evolution of the pose, scale, and shape of
the embedding function in the alternating optimization
process, for real data using the Kinect. The point cloud
is drawn in red

Fig. 13. Evolution of the energy for pose, scale, and
shape optimization, in alternating way, using Levenberg
Marquardt and the Kinect V1

coming from the optimal 3D model. Note that the
former image has missing data due to possible
dark, very reflective and translucent objects, out
of range objects or occlusions. The last image
has defined data just for the 3D model. ws(µ)
and wm(µ) defines the inpainting domain, where
1 represents defined data and 0 missing data (see
eq. (38)).

Computación y Sistemas, Vol. 24, No. 1, 2020, pp. 221–239
doi: 10.13053/CyS-24-1-3004

Depth Map Denoising and Inpainting using Object Shape Priors 233

ISSN 2007-9737



Figure 14(d) shows the sought solution got with
the optimization process for iteration 200. Note
that the filled areas are smooth and undetectable,
achieving a real appearance. The inpainting in the
top and right side of the depth map is not so good
since there is not data neither in Ds nor Dm and
the missing data covers large areas.

(a) RGB image.

(b) Depth image Ds(µ).

(c) Depth map Dm(µ) coming
from the model.

(d) Df (µ) for iteration 200.

Fig. 14. Sought depth map Df (µ) for iteration (a) 10, (b)
40, (c) 100 and (e) 200 of the primal-dual algorithm

We analyzed the performance of the inpainting
and denoising algorithm using a slice around the
x-axis (see fig. 15). Note that missing data stays
mainly in the image borders, in the laptop region
and in the car region (inside the vertical lines in
fig. 15). It is 22.81% of the total amount of data in
the slice.

The solution remains similar to the sensor data
but it fills missing data, integrates depth data
coming from the model, is smooth but preserves
discontinuities. Evaluating the completeness of the
car, we can state that the algorithm fills 33.28% of
missing data. This estimation was done for pixels
belonging to the segmented area of the whole car.

Fig. 15. Depth map denoising and inpainting using
shape priors and variational techniques along a slice.
The vertical lines encompass the car

4.5 Results in Pose, Scale and Shape with
Synthetic Data

For this experiment we have created in Blender a
3D scene composed of a floor, a desk, a car, a mug
and a lamp. A depth map (see fig. 17(f)) and a rgb
image have been rendered from the virtual camera.
The depth data is in the range [1.2045 8.9610]m.
We added Gaussian white noise with SNR of 5dB
to the rgb image (see fig. 17(a)) and 30dB to the
depth map. Moreover, we simulated missing data
in the depth maps with rectangles of 40× 20 pixels
containing nans, randomly placed in the depth
maps. The percentages of missing data that we
used were 23.65% and 40.02% (see figs. 17(b) and
17(g), respectively).

The process for estimating the optimal shape
prior (initial estimation and the iterative refinement)
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(a) Aligned 3D model with the
point cloud for missing data of
23.65%.

(b) Aligned 3D model with the
point cloud for missing data of
40.02%.

Fig. 16. Results of the aligment process between a
3D-level set and the point cloud. a) For depth map
with missing data of 23.65% and b) For depth map with
missing data of 40.02%

and for getting a depth map of this model is similar
to the one carried out previously for real data.
Figures 16(a) and 16(b) show the aligned models
with the point clouds for 23.65% and 40.02% of
missing data, respectively.

Our algorithm performs 500 iterations for the
depth map with 23.65% of missing data and 700
iterations for the one with 40.02%. We compare the
results with the ones obtained with the outstanding
system of Pertuz and Kamarainen [28], employing
their code publicly available.

Table 1. Comparison of RMSE[m] of our algorithm
and [28]

missing data - algorithm Ours [28]
23.65% 0.1498 0.1600
40.02% 0.1869 0.2188

It uses anisotropic diffusion and a region-based
approach for inpainting sparse depth maps. Table

1 shows that our algorithm outperforms [28] for
both percentages of missing data. In fig 17 we
can see that the inpainted and denoised depth map
got with our algorithm is smoother and preserves
discontinuities in a better way than [28]. We did
not use more percentage of missing data since
it affects the alignment of the model, producing
incorrect estimations of the optimal model.

4.5.1 Time

Our system for inpainting and denoising runs
on a laptop Hewlett Packard with a processor
Intel Core i7-2.2GHz, 11.7GB of RAM memory, a
graphic processor NVIDIA GEFORCE 755M and
Ubuntu 14.04 as operating system. OpenCV is
used for processing images, Eigen3 for matrix
operations, OpenGL for drawing the 3D model and
getting depth information from it, and Cuda 7.5 for
speeding up the algorithm for merging the depth
data coming from the sensor and from the optimal
model.

Table 2. Processing time for inpainting, denoising and
merging

Process Time[ms]
First line of eq. (47) 6.501
Second line of eq. (47) 5.373
Third line of eq. (47) 3.247
Remaining processes 0.573
TOTAL ITERATION 15.694

The algorithm for estimating the optimal model
was implemented in Matlab. Table 2 shows
the average on processing time for the main
processes. The implementation on GPU of the
algorithm for estimating the optimal model is left for
future work.

The algorithm takes 7.847s (500 iterations) for
the depth map with 23.65% of missing data and
10.96s (700 iterations) for the depth map with
40.02% of missing data.

5 Conclusion

We have developed a system that optimizes a 3D
model, represented as a 3D level-set embedding
function, w.r.t. pose, scale and shape and uses
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(a) Synthetic RGB image
with noise (SNR= 5dB).

(b) Synthetic depth map
with noise (SNR= 30dB)
and missing data (23.65%).

(c) Depth map from model
for 23.65% of missing data.

(d) Inpainted and Denoised
depth map got with our
algorithm.

(e) Inpainted and Denoised
depth map got with [28].

(f) Synthetic depth map
(ground truth).

(g) Synthetic depth map
with noise (SNR= 30dB)
and missing data (40.02%).

(h) Depth map from model
for 40.02% of missing data.

(i) Inpainted and Denoised
depth map got with our
algorithm.

(j) Inpainted and Denoised
depth map got with [28].

Fig. 17. The first figure in the first and second rows are the rgb image with noise and the ground truth in depth. For
the remaining figures the first row contains images for the depth map with missing data of 23.65% while the second row
for the depth map with missind data of 40.02%. From left to right: depth map with noise and missing data, depth map
coming from the optimal model, our results, results using [28]

depth data of the optimal model for depth denoising
and inpainting of a raw depth map coming from
a depth sensor, achieving significant results in
completeness, specially in the area associated to
the object of interest that has a high percentage of
missing data. The results have been satisfactory.

First, the embedding function was successfully
compressed from 1283 to 253 DCT coefficients
(compression ratio of 134, 22) and reduced from
253 to 2 dimensions (bi-dimensional latent space)

using GPLVM, for a more efficient search of the
optimal model.

Second, the optimization was outstanding: the
shape optimization converge in 15 iterations with
a reduction in error of 88.25% w.r.t. the initial
estimation; the pose optimization converge in 59
iterations achieving a final error in position of
1.14cm and less that one tenth of degree in rotation
around each axis (reduction in position error of
96.70% and in rotation error around z-axis of

Computación y Sistemas, Vol. 24, No. 1, 2020, pp. 221–239
doi: 10.13053/CyS-24-1-3004

Andrés Díaz, Eduardo Caicedo, Lina Paz, Pedro Piniés236

ISSN 2007-9737



99.93%) validating our proposed technique based
on Lie algebra; the scale optimization converge in
10 iterations, getting a final error of 0.53% of the
ground truth (reduction in scale error of 99.12%).

Third, the inpainting and denoising process
using variational techniques achieved a significant
increase in completeness of the depth map coming
from the Kinect 1.0, filling 32.28% of missing data
of the segmented region of the car, smoothing the
data but preserving discontinuities. Moreover, the
accuracy of the enhanced depth maps got from
synthetic depth maps with 23.65% and 40.02% of
missing data is higher than the one obtained with
the outstanding algorithm for depth recovery [28].

For future work we will use shape priors and
depth integration with variational techniques for
enhancing the quality of depth maps built with a
monocular camera and we will fuse them into a
volumetric structure for getting an improved dense
reconstruction.
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