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Abstract. Text generation based on comprehensive
datasets has been a well-known problem from several
years. The biggest challenge is in creating a readable
and coherent personalized text for specific user. Deep
learning models have had huge success in the different
text generation tasks such as script creation, translation,
caption generation etc. Most of the existing methods
require large amounts of data to perform simple
sentence generation that may be used to greet the user
or to give a unique reply. This research presents a
novel and efficient method to generate sentences using
a combination of Context Free Grammars and Hidden
Markov Models. We have evaluated using two different
methods, the first one is using a score similar to the
BLEU score. The proposed implementation achieved
83% precision on the tweets dataset. The second
method of evaluation being a subjective evaluation for
the generated messages which is observed to be better
than other methods.

Keywords. Text generation, sentence generation,
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HMM, selective text prediction.

1 Introduction

Machine Learning has found a lot of application
in almost all the major industries such as finance,
IT, healthcare, etc. Machine Learning has started
to replace the traditional methods mainly because
of the power of these algorithms. They are
used for a variety of tasks such as generation,
classification, localisation etc. They learn features
from the training data and then use what it has
learnt to perform the respective task. They
were not preferred initially as there wasn’t enough

computational power to run these algorithms.
With computational power easily available these
days, machine learning has emerged as the go-to
solution.

Natural Language Processing(NLP) is one such
application. In this application machine learning
models try to gain some understanding from
textual,voice data and then use it for various other
applications. Machine learning for NLP may be
used to generate text, identify parts of speech,
to perform Named Entity Recognition(NER) etc.
These kinds of tasks are used to gain intelligence
from the text, voice based data and then utilise this
information as and when required.

One of the tasks that come under NLP is
generation of text. This generation is based on
some existing textual data. At times it so happens
that somebody wants to caption an image, but that
person doesn’t know what would be a good caption
or when somebody wants to write a poem which
seems as if it’s written by Robert Frost. All these
are tasks that involve generation of text. With
the help of Machine Learning one can use the
previous occurrences of the task and learn from it
and generate text.

Neural Networks have been found to attain
state-of-the-art results in a majority of the natural
language processing tasks such as sentiment
analysis, text generation etc. Within NLP, quite a
number of tasks involve generating text based on
some input data.

Neural Networks are really powerful and can
gain more insights from the input data as compared
to the other machine learning algorithms.
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In the recent years Recurrent Neural Net-
works(RNN) and Long Short Term Memory
Networks (LSTM) have taken over in such tasks.
They have the power to remember the contexts
from before and use that context details in
generating text. Text is generally generated
from these models that takes a sample from a
distribution that is conditioned on the previous
words and the hidden state consists of some
representation of all the words generated so far.
At times they are trained with a method called
as teacher forcing, where the ground-truth words
are fed back into the model for the generation of
text. This causes problems as the model is forced
to condition on sequences that were not initially
observed during the training time. This leads to
unpredictable outcomes in the hidden state of the
RNN. Also as they require large amounts of data
to train and generate presentable sentences, they
were not preferred because of the availability of
less data.

As the target for this research work is to generate
simple sentences, it’s not worth going through
all the disadvantages of the RNN. Also as for
such tasks we are not utilising the true power of
RNN’s and LSTM’s, so using them does not make
sense. So for these cases this research work
describes a method where we combine Context
Free Grammar’s and Hidden Markov Models to
generate sentences.

A Context Free Grammar (CFG) is a set
of recursive rewriting rules which are used to
generate a variety of strings. It is a quadruple
(N,T,P,S) where:

— N is a set of non-terminal symbols.

— T is a set of terminals where N intersection T
= NULL.

— P is a set of rules, P: N -> (N U T), i.e., the
left-hand side of the production rule P does not
have any right context or left context.

— S is the start symbol.

We first start off with the starting symbol and
then replace each of the starting symbol with the
rule associated with that symbol.

Then proceed until no more substitutions can be
made or until the desired terminal state is reached.
CFG’s are used to generate patterns of strings,
pattern matching etc.

Hidden Markov Model (HMM) is a method
for representing probability distributions over a
sequences of observations. It gets its name from
two main properties. The first one being, the
prediction for the current state comes from a state
St that is hidden from the user. The second one
being the assumption that the state of the hidden
process satisfies the Markov property that is the
current state depends solely on the previous state
and none of the states before that.

2 Related Work

We have many deep learning models detecting
the text based on available corpus by providing
input text and grammar corrections. However,
these networks have fallen out of favour for
modelling sequential text data, as they require
context lengths, more computation, more data and
previous hidden state summary of different time
stamps. In the neural networks [4] approach which
chooses different entities to predict next words,
neural networks has to be trained and data is
generated based on previous entity provided which
results in additional memory being consumed.
This method performs something similar to teacher
forcing models. These models are trained by
feeding the ground truth words to the network for
generating the different parts of the sentence.

To avoid this we have popular variations of
Recurrent Neural network models such as long
short-term memory (LSTM) and Gated recurrent
unit (GRU) where text generation happens based
on usage of words and its probable occurrence
from generated sentence. In such models,
all possible words are predicted and appended
for forming sentences, reassessment will be
performed to results later. Though possible
sentence generation is high, evaluating all the
possible sentences takes more computational time
and memory.

In models where Generative Adversarial Net-
works (GANs) are used, the generator is trained
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to produce high quality samples but accuracy
obtained is more for images than for text
sequences.

Some of other deep learning models where
RNN’s are designed to process sequential infor-
mation with help of previous state i.e. memory.
At every processing step, input sequences,
accumulating information from past are presented
to RNN, which modify network state. LSTM [2]
sequence-to-sequence models are a special class
of RNN’s known for their ability to effectively learn
long-term dependencies in sequences. These
models maintain a forget gate, which determines
how much of previous cell state should be passed
on current time stamp. Sequence to sequence
models are applied in video captioning, speech
recognition etc. These models use encoder-
utilizing words of source sentence in forming
context vector, which summarizes semantics of
a sentence and decoder for operating on this
semantics vector to generate required translation
words. These models give less execution efficiency
and are compute intense.

As deep neural network models are very dense
in computing [1], we have popular methods of
analysis. Hidden Markov Model (HMM) [3] which
estimates the probability of text occurrence in given
position, based on sequence of preceding values.
Number of occurrences of words length (k+1) in
learning vector is calculated. Transition matrix
approach is used for getting probable occurrences
of data under different conditions. For smaller
values of k this approach is efficient but, as k grows
transition matrix also grows and this will cause the
problem of insufficient memory to store the vectors.

Context Free grammar (CFG) [5] tool kits
are also available which generated based on
usefulness and reachability of text. Programming
languages laboratory at university of Caligari
provided an online tool for context Free grammar
checker to check basic properties of context free
grammars, where in the tool generates not more
than 20 sentences, which are the first ones
ordered by sentence length. Generated sentences
are too simple. Some of the best CFG tools
are used in several research projects like SAQ
and grammar testing methods where Purdom’s
algorithm and CDRC-P algorithms are used but

still failed in generating appropriate text sentences.
Our approach is quite simple, we combine CFG’s
and HMM models where context free grammars
are generated from the input sentences and the
structures are stored, which results in higher
accuracy and meaningful sentences for the user.

3 Proposed Methodology

We propose the use of CFG’s to understand the
structure of the sentences from the input data and
use HMM to predict the words based on the CFG.
We use both of them together in tandem to perform
a selective prediction of words. The prediction is a
two-step process, we use the CFG’s to identify the
type of word that will be predicted next (such as
ADJ, VERB, PROPN etc.) and then with the help of
a second order markov chain we make a prediction
of the next word that is of the type expected in
the CFG.

Fig. 1. Proposed methodology to generate sentences

For example if we have to generate sentences
for the CFG [ADJ, NOUN, PUNCT]. As we are
using a second order markov chain we choose the
first two words randomly from the part of speech
(POS) as mentioned in the CFG. In this case we
choose words from the part of speech type of ADJ
and NOUN. While selecting the first two words
we should make sure that it is a part of a valid
second order markov chain (will be explained later
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Algorithm 1: Procedure for sentence generation

POS tagging on input data

POS[tag] = word_list

obtain markov_chains from input data

obtain CFG_sentence_structure from input data

for each CFG in CFG_sentence_structure

final_sentence = ""

w1 = random_word(POS[CFG[0]])

w2 = random_word(POS[CFG[1]])

while (w1,w2) not in keys(markov_chains) :

w1 = random_word(POS[CFG[0]])

w2 = random_word(POS[CFG[1]])

for i from 2 to len(CFG)

if markov_chains[(w1,w2)] intersection POS[CFG[i]]

exists

next_word = random_word(POS[CFG[i]])

while next_word not in markov_chains[(w1,w2)]

next_word = random_word(POS[CFG[i]])

final_sentence += " " + next_word

w1 = w2

w2 = next_word

print final_sentence

Fig. 2. Algorithm that is used to generate sentences

in detail). So in this case, assuming we choose
the words ‘Good’ and ‘Morning’, as it is part of a
valid second order markov chain, we proceed. The
next word predicted should be of the type PUNCT
and it should be preceded by ‘Good Morning’. We
randomly choose the next word from the second
order markov chains, assuming the selected word
is ‘!’. As we have reached the end of the CFG the
sentence generation is over and the final sentence
output is ‘Good Morning!’.

To provide more variety to the generated
sentences, synonyms of the predicted word are
placed in the generated string. Once the word
is predicted, synonyms of that particular word are
obtained and put into the generated sentence. As
synonyms have the similar meaning to the original
predicted word even if we do substitute the actual
word with the synonym word the semantics of the
generated message will not vary.

This research work presents two different
phases, the training phase and the generation
phase. The training phase involves the preparation
of the data and the creation of all the required
components for the generation phase. These
include the POS tags, the CFG list etc.

3.1 Training Phase

In this phase we extract all the necessary details
from the input data and then store them for further
use in the generation phase. The first step in this
phase is the POS tagging of the input data. This
is important as it would help in understanding the
structures of the sentence in the input data and
also would get rid of ambiguity by realising all the
parts that each word takes, for example the word
‘sun’ can either be a verb or a noun. Part of speech
also helps us understand what the word means in
that particular context.

So the first step is tag the input data to with
the POS tags, this is done with the help of the
spacy tool. Spacy internally tokenizes the text and
gives the POS tags to each token. For the tweets
input data, about 13 unique parts of speech have
been identified and used for prediction. These POS
tags are used for two different tasks. Firstly they
are used to store all the words for the 13 unique
identified parts of speech and secondly to create
the CFG’s for all the sentences in the input data.

The first use of the POS tagging is to store all
the words and their respective tags. A dictionary
is created where the keys are the 13 unique parts
of speech and the values are all the words having
the respective part of speech. This dictionary will
be used in the selective prediction of words, that is
the next selected word is not completely random
and that it will be guided by the CFG’s and this
particular dictionary.

The second use of the POS tagging is to obtain
all the sentence structures from the input data.
As we take the assumption that the input data
has the right sentence structure, we will retain the
same sentence structure and use it to generate
sentences. Each sentence from the input data
comprises of one right sentence structure and all of
them are stored. Each CFG/sentence structure will
be used to generate sentences and they are one
of the main requirements as the predictions are
based on these structures. Only unique sentence
structures are used for the prediction. These two
steps consist of the training phase of this work.
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3.2 Generation Phase

This is the phase where the actual word prediction
happens. The input data is used to store the
second order markov chains. Second Order
Chains are used used mainly because they provide
the right amount of variations in the generated
sentences and also makes sure that the generated
sentences are not truly random. Choosing a
smaller chain causes the generated sentence to
be truly random and choosing a longer chain will
reduce the variety by constricting the generation to
a specific set of words.

These chains help us in choosing on what
the sentence begins with, also as the input data
already contains the right lemma of the word, we
will reuse this when we predict words. So we will
have the right lemma in the right context when we
predict words. Having the right lemma of words
makes sure that the sentence formation and more
importantly the sentence sounds right. At this point
we have the list of CFG’s, POS dictionaries, and
the second order markov chains, that is all of the
key items required for prediction.

For each CFG there exists a start state. This
start state marks how the sentence begins. In our
case the start state is nothing but a part of speech.
So we randomly pick a word (w1) from the POS
dictionaries for the start state and then build from
it. As we are using second order markov chains
we repeat the same step that is we randomly
obtain another word (w2) as per the second part of
speech in the CFG. If the pair [w1, w2] doesn’t have
any word following it which is the part of speech
of the next position in the CFG, then we reselect
w1 and w2 and move forward. If it does have
one or more words following [w1, w2] that have
the part of speech as expected in the CFG, we
randomly select until we obtain a word (w3) that
is of the expected part of speech and then append
that word to the generated string.

As we are using a second order markov chain
the searching key changes from [w1, w2] to [w2,
w3] and then the process continues. In case
there are no words following the pair [w2,w3] that
is of the expected part of speech then we just
ignore that part of speech and move to the next
expected part of speech. Once we predict a

word, to provide more variety in the strings that
are generated we have synonyms for the words.
We once again randomly pick a synonym each
time and that particular synonym is appended to
the final generated string. As the synonyms have
the similar lemma and have the similar meaning,
replacing them with the actual predicted word will
not a cause a huge change in the semantics of
the generated sentence or the structure of the
sentence.

3.3 Dataset

The dataset that was used was the Good morning
Tweets Dataset. This dataset consists of all the
tweets that contain the phrase ‘Good Morning’ .
The dataset consists of about 3000 tweets. The
tweets were formatted by removing the retweets
and the duplicates. The data was further formatted
by getting rid of the url links. All the hashtags were
removed as they are not uselful in this particular
task. The dataset is available online[6]

4 Evaluation Criteria

We use two different evaluation criteria. The
first one is a score very similar to that of the
Bilingual Evaluation Understudy (BLEU) score. In
this scoring method, from the generated text we
calculated the number of second order markov
chains that are present from the initial input data.
All second order markov chains are obtained from
the generated dataset and counted if that chain is
present in the input data. If it is present then we
know that the predicted text has the right lemmas
for the word and that the context will mostly be
maintained, so we count it as a right chain, else
it is identified as a bad chain.

One side effect we noticed from this was that, in
the predicted text we had synonyms instead of the
actual predicted words. As some of the synonyms
were not present in the initial vocabulary of words,
it was giving a false score in some of the cases but
it’s not a wrong thing because that sequence has
similar meaning but is being wrongly penalised. So
to overcome this effect we replace all the key words
with the actual word that had been predicted.
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As one word can be part of multiple synonyms,
there will be a clash as to through which predicted
word we got the particular synonym. To solve this
problem we store each synonym with a particular
version (such as 1.0 or 1.1) to depict which
predicted word the synonym had come. So based
on the version of the synonym we replace it with
the respective predicted word. And then go forward
with this criteria:

Precision =
nv

na
, (1)

where, nv = number of valid chains in generated
sentences, na = number of chains in generated
sentences.

As seen from above, the score is the number of
matching second order markov chains divided by
the total number of markov chains.

The second criteria is a subjective evaluation of
the generated sentences. A 1000 sentences were
randomly selected from the generated sentences.
Each sentence was evaluated on 3 main key
points:

— Sentence structure,

— Vocabulary in the sentence,

— Semantic meaning preservation.

Sentence Structure means to check if the
general structure of the sentence is maintained
or not. We check how the generated sentence
is arranged grammatically, that is evaluate if the
parts of speech are placed in the right part of the
generated sentence.

Vocabulary is the second stage of checking. In
this we check the usage of the words. Also the
check of the right lemma in the different contexts
verifies that the vocabulary in the generated
sentence is right.

The third and final check in this evaluation
criteria is the revival of the semantic meaning from
the input data. This is to check if the semantic
meaning of the generated sentence is similar to the
one form the input sentence. Here the generated
sentence is compared with the ground truth and if
they do have similar semantics then it is considered
as a good generated sentence.

All the above three criteria are based on
comparison with the ground truth. If sentence
satisfies all the above criteria then it was counted
as a valid sentence.

5 Results

The evaluations were done on five different
models. The five models are as given below:

— The first model generated sentences using
only a Context Free Grammar.

— The second model generated using a Hidden
Markov Model.

— The third one was another implementation
which uses the above two technologies.

— The fourth one was our implementation which
combines both CFG’s and HMM’s.

— The fifth one being a LSTM Model.

As stated above we use two methods for
evaluation. The first one is a score similar to a
BLEU score. The second method is a subjective
evaluation.

In the first method we create all second order
markov chains from the generated sentences and
observe how many of these chains have been
observed before. With this method we have
observed a precision of 83%.

Table 1. These results depict the amount of second
order markov chains that have been retained from the
ground truth. Results are shown for all five models where
the fourth model is our implementation

Dataset Technique Chains Retained

Good Morning CFG 25.9 %

Tweets HMM 86.2 %

CFG & HMM 30.5 %

CFG & HMM II 83.7 %

LSTM 28.8 %

As seen from Table 1 a comparison was made
between the number of second order markov
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chains that were retained from the original dataset.
The Hidden Markov Model performs the best as it
works solely on the second order markov chains
and then comes our implementation. It performs
much better than the alternative implementation
that also uses both HMM and CFG to predict the
text.

Table 2. Subjective evaluation was performed on the five
different models. The fourth model is our implementation

Dataset Technique Score

Good Morning CFG 32.3 %

Tweets HMM 35.5 %

CFG & HMM 40.7 %

CFG & HMM II 52.2 %

LSTM 49.8 %

The second method we used was a subjective
evaluation. As seen from the table 2 , our
implementation performs much better than the
other methods. This is a result of combining two
methods that perform fairly poorly and to produce
a model that performs much better. When we
combine the two methods we are utilising the
advantages of each model in our own model. The
biggest advantage is that this model will work with
less input data.

6 Conclusion

Neural Network models perform really well, but are
compute intensive and require a large amount of
data. If there is no large amount of data then they
do not perform well. If there is no computation
power then these class of algorithms go for a
toss. The problem of less data for training can
be handled using CFG and HMM to predict text.
But individually they do not perform well, but when
combined together they perform much better. The
next good part is that not a lot of computation
power is required in the proposed method. It was
observed when combined together, the proposed
method was able to retain the semantic meaning,
the grammatical structure and sentence structure
from the original sentences.

The proposed method has a low memory
footprint as not all possible sentences are
generated and then evaluated. In this case we just
pick one of suitable words based on the context
and the structure. In the earlier methods all
possible words are appended to the string rather
than word, in this way the proposed method has
a low footprint. In this case the method does not
have to go through the problems of remembering
data from the past as it is involved with generating
simple sentences not based on any data from
the past.

The proposed work can be used in the cases of
greeting the user in a unique way each time, or in
the case of giving an automated reply, or when the
system wants to remind the user to do something.
When the variety is given to the user then it makes
the user feel good about the system that they have.
This work has shown that the proposed method
can achieve significant results and can be used in
the above mentioned methods.

Going forward, the proposed novel method can
be combined with deep learning techniques so
that we can attain the accuracy that is achieved
(by Neural Networks) with lesser data and as well
as a lower memory footprint. We can take the
positive things from both the models and work on
coupling them together and obtaining a model that
can achieve very high accuracies.
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