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Abstract. This research deals with resources creation
for under-resourced languages. We try to adapt existing
resources for other resourced-languages to process
less-resourced ones. We focus on Arabic dialects of
the Maghreb, namely Algerian, Moroccan and Tunisian.
We first adapt a well-known statistical word segmenter
to segment Algerian dialect texts written in both Arabic
and Latin scripts. We demonstrate that unsupervised
morphological segmentation could be applied to Arabic
dialects regardless of used script. Next, we use this
kind of segmentation to improve statistical machine
translation scores between the tree Maghrebi dialects
and French. We use a parallel multidialectal corpus
that includes six Arabic dialects in addition to MSA
and French. We achieved interesting results. Regards
to word segmentation, the rate of correctly segmented
words reached 70% for those written in Latin script
and 79% for those written in Arabic script. For
machine translation, the unsupervised morphological
segmentation helped to decrease out-of-vocabulary
words rates by a minimum of 35%.

Keywords. Arabic dialects, morphological segmenta-
tion, machine translation.

1 Introduction

The linguistic situation of the Arab world is
characterized by the diglossia phenomenon, which
is the co-existence of two variants of the same

language. A standard language (standard Arabic)
used in formal speeches, newspapers, education,
etc. Arabic dialects which are informal languages
used in everyday conversations. Natural language
processing of Arabic language does not take into
account a large wide of these dialects, which lack
NLP resources until today. These vernaculars
are considered as under-resourced languages.
Compared to other under-resourced languages,
these dialects bring particular challenges because
of their oral nature.

They were not written until the advance of
Internet and mobile telephony. They have no
standard rules that normalize their transcription
therefore a word is written in different forms which
are all acceptable.

Nowadays, Arabic dialects are widely used in
social networks. They are written in Arabic and
Latin script1. Also, they are written sometimes with
a mixture of letters and numbers. Arab people
exploit the similarity between some Arabic letters
and numbers to write the dialect, for example
similarity between 3 and ¨, 7 and h and 9 and
�

�. These dialects are variants of Arabic language;

1Arabic dialect written in Latin script is called in recent
research: Arabizi, Arabish or Romanized Arabic.
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they are different from it and also they differ from
each other.

Maghrebi dialects are different from Middle-east
dialects. Also, in the same Arab country several
dialects exist. In addition, these dialects are evolv-
ing, new dialectal words appear every day and
are adopted without academic validation. Even,
Arabic dialects are influenced by other foreign
languages such as French, Spanish, Turkish and
Berber (for Maghrebi dialects). This influence
generates the code-switching phenomenon, a
dialectal sentence could include words from two
or three languages. It is common to alternate
between dialect, standard Arabic, French or
English in the same conversation.

In this paper, we focus on Maghrebi Arabic
dialects. We use a data-driven approach for
word segmentation of Algerian dialect texts. We
adapt Morfessor (a well-known statistical word
segmenter); we present for the first time to our
knowledge, a segmenter that considers dialectal
texts written in both Arab and Latin scripts.
In addition, we investigate the impact of word
segmentation on machine translation performance.
We use for this purpose statistical machine
translation (SMT) from the three Maghrebi dialects
(Algerian, Moroccan and Tunisian) to French.

To do this, we present a new version of a
parallel corpus previously created and containing
six Arabic dialects besides MSA. This new version
includes for the first time a French text.

The rest of this article is organized as follows:
we first describe briefly Arabic dialects, particularly,
Magherbi ones (Section 2). Then, we provide an
overview of related work on Arabic dialect morpho-
logical segmentation. Section 3 is dedicated to
the adaptation of Morfessor for unsupervised and
semi-supervised segmentation of Algerian dialect
texts. In Section4, we investigate the impact of
morphological segmentation on statistical machine
translation from Maghrebi dialects to French.
Section 5 concludes this paper by pointing future
directions of our work.

2 Arabic Dialects, Focus on the Three
Main Maghrebi Dialects

Arabic dialects (vernaculars or colloquial Arabic)
are considered as one of three variants of Arabic
language, which includes also classical Arabic and
Modern standard Arabic (MSA).2 Arabic dialects
are a spoken form of Arabic, used in everyday
conversations, they are different from one Arabic
country to another. They are influenced by both
local tongues and foreign languages such as
Spanish, French, Italian and English.

In terms of classification, Arabic dialects are dis-
tinguished regards to the East-west dichotomy[23]:
(a) Middle-east dialects which include spoken
Arabic of Arab Gulf countries and Yemen,
Iraqi dialect, Levantine dialect (Syria, Lebanon,
Palestine and Jordan), besides Egyptian and
Sudanese dialects. (b) Maghrebi dialects which
include the dialects of Algeria, Tunisia, Morocco,
Libya and Mauritania.

As already mentioned before, we focus in
this paper on the three main Maghrebi dialects:
Algerian, Tunisian and Moroccan, one can raise the
question: why only these dialects? The reason is
that these dialects are the only ones for which we
have relatively available resources.

In addition, the three Maghrebi countries share
a lot of social, cultural, religious and linguistic
similarities. Regarding the linguistic side, in the
three countries, the Berber is the oldest language
which has coexisted until now with the Arabic
language bring to the region with Islamic conquest.
The Algerian, Tunisian and Moroccan dialects
are mutually intelligible, speakers of the three
countries can readily understand each other. They
share a lot of common features, even though they
are different from each other. More extensive
comparative details of the three dialects could be
found in [20].

2Classical Arabic is the Arabic of the Quran and the ancient
literature of Arabian peninsula while MSA is a modern form of
classical Arabic.
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3 Morphological Segmentation of
Arabic Dialect Texts

3.1 Related Work

Many efforts have been dedicated to build
morphological segmenters for Arabic dialects
texts. There are for this issue two main
approaches; building segmenters from scratch [17,
5] or adapting MSA ones to take into account
dialectal features.

Several studies adopted this last approach.
Authors of [35] used the well known morphological
analyzer BAMA[38] by extending its affixes tables
to Levantine and Egyptian dialects. In the same
way, BAMA was adapted to deal with Algerian
dialect [19], the authors rebuilt affixes and stems
tables. They kept MSA entries that apply also
to Algerian dialect and integrated purely dialectal
entries. Similarly, in [4], Al-Khalil morphological
segmenter [8] has been adapted by enriching its
affixes dictionary with a list of affixes belonging
to four Arabic dialects. Likewise, the authors of
the work described in [15] converted an Egyptian
lexicon (ECAL, Egyptian Colloquial Arabic Lexicon)
into a representation similar to the SAMA [14]
dictionary (Standard Modern Arabic Analyzer). It
should be noted that all these segmenters are
dedicated to texts written in Arabic script.

3.2 Motivation

Our goal is to segment Algerian dialects texts
regardless of their script. To that end, we adopt
an adaptive approach. However, we do not adapt
a MSA morphological segmenter but rather a
morphological segmenter based on probabilistic
machine learning methods. The following reasons
justify this choice:

— As mentioned above, dialectal texts are
written in different forms with no standard
orthography. They are written with Arabic
and Latin script and sometimes with numbers
instead of letters. This lack of writing rules is a
challenging issue for morphological segmen-
tation. Hence, data-driven approaches seem
to be the most appropriate solution for this
task.

— Non-standard spelling of dialects texts makes
rule-based approach difficult to consider.

— Because of the evolving nature of dialectal
vocabulary, new words appear and are rapidly
spread in speakers’ community. Data-driven
methods could easily take into account this
words and their inflected forms.

3.3 Morfessor

In this respect, we opted for Morfessor, a
well-known morphological segmenter suitable for
languages with complex morphology like Finnish
and Turkish. It has been integrated into different
NLP applications like speech recognition [24, 30,
13, 36], machine translation [41, 27, 29, 9, 33] and
speech retrieval [7, 39].

Morfessor [10, 11] is a set of statistical methods
for segmenting words based on the Minimum
Description Length principle. It learns morphemes
from data in an unsupervised manner. The level
of segmentation is tuned by adjusting the weight
α between the cost of encoding the lexicon (the
parameters Θ) and the cost of encoding the training
data (D) part in the cost function:

L(Θ,Dw) = − logP (Θ)− α logP (Dw|Θ). (1)

An interesting version of Morfessor is that
described in [26], where a semi-supervised training
approach is used. The above function cost is
summarized as follows:

L(Θ,Dw) = − logP (Θ)−α logP (Dw|Θ)−β logP (A|Θ),
(2)

where A is the annotated training data, and α
and β in this order, are the weights of the
unannotated and annotated data training. In the
context of this work, we use the Morfessor 2.0
implementation [40].

3.4 Data Description

In order to train Morfessor, we used textual corpora
recently created in the context of processing
Algerian dialect. Below, we give an overview of
each corpus.

— The comparable corpus CALYOU
CALYOU3[1] is an Algerian dialect comparable

3Comparable spoken ALgerian extracted from YOUtube
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corpus of Youtube comments. It was collected
by querying Youtube with key-words related to
current Algerian events. The corpus includes
comments written with Arabic script aligned to
ones written with Latin script. This alignment
is got by using word embeddings. We give in
Tables 1 and 2 respectively, statistics about
this corpus and some comments examples
written with Arabic and Latin scripts including
even numbers.

Table 1. CALYOU corpus statistics

#Comments(K) #Words(M) #Distinct words(K)
853 12.7 88

Table 2. Examples of CALYOU comments with mapping
between Arabic letters and numbers

Dialectal comment Meaning
	

¬@
�	QK. Pñ

	
¯ It is very good

ú



	
GñK. @ @

�
ðQK
X ú




�
GðA

�	
g. Brothers! subscribe

ñ
	
¯@ �QK. A

�	
KXC

�
K. ñJ. m

�
	
' �

�¢.
	

kC
�
«Because we love our country

ñ
	
¯@ �QK. bravo

3andk l7a9 (3=¨ ,

9= �
�)

You are right

ya3tik asaha
madame (3=¨)

Thank you madam

sa7bi a9ra l’histoire
ta3 bladek (7=h)

My friend, you must learn the
history of your country

taktal badahk 5ouya
(5=p)

You are very funny my
brother

— Algerian text of PADIC (ALG-PADIC)
PADIC4[28] is multidialectal Arabic corpus
including Algerian, Tunisian, Morrocan, Syrian
and Palestinian in addition to MSA. We use for
the purpose of this work, the Algerian side of
this corpus (see statistics in Table 3).

3.5 Experimentation

The experiments were carried out using the
corpora described above. We experimented

4Parallel Arabic Dialect Corpus, downloadable on http://

smart.loria.fr/pmwiki/pmwiki.php/PmWiki/

Table 3. ALG-PADIC corpus statistics

#Sentences(K) #Words(K) #Distincts words(K)
6.4 40.75 9.15

unsupervised segmentation trained with CALYOU
corpus. Then, we conducted a semi-supervised
training of Morfessor with annotated data provided
from the ALG-PADIC corpus.
For evaluation purpose, we randomly extracted
two datasets of 200 CALYOU comments written
in Arabic and Latin scripts with respectively, 1730
and 1609 words. The two test datasets has been
segmented by hand.

3.5.1 Unsupervised Morphological
Segmentation

We trained Morfessor with CALYOU corpus. In
order to tune the weight α that controls segments
lengths (a low α favors small construction lexicons,
while a high value favors longer constructions), we
made several experiments starting with the default
value (α = 1). The figure 1 retraces the results in
terms of percentage of correctly segmented words
written in Latin and Arabic scripts according to the
different values of α.
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Fig. 1. Percentages of correctly segmented words using
unsupervised method with different values of α

It shows that 74.46% of words written with Latin
script in the test set are correctly segmented for the
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default value of α which proved to be the best of all
the ones we tested.

Indeed, the segmentation takes into account
several morphological features like function words
inflection. We give in Table 4 some examples of
valid segmentations provided by the test set.

Furthermore, for invalid segmentations, we
noticed that in most cases Morfessor could identify
some segments of the word even though he could
not identify all the segments. For example, the
circumfix negation affixes are often distinguished
(see examples in Table 5).

For Words written with Arabic script, unsuper-
vised segmentation performs worse than words
with Latin script. The best-recorded percentages
are got for an α value of 0.7 and do not reach
50%. However, even for Arabic script words,
Morfessor could identify correctly some segments
of a word although the whole segmentation is
not valid. Tables 6 and 7 show some illustrative
examples.

3.5.2 Semi-supervised Morphological
Segmentation

In this experiment, we performed tests with
semi-supervised segmentation. Unfortunately, we
did it for dialect texts written with Arabic script
only, since annotation data for Latin script are not
available for us. Indeed, we used the ALG-padic
corpus for annotation. We have segmented it using
the morphological analyzer [19] described earlier5.

Morfessor is thus trained with CALYOU corpus
and ALG-padic annotated corpus. It should be
noted that in addition to the α parameter already
described, Morfessor uses another parameter β
that controls the contribution of the annotation
data in the segmentation operation. We first
started by using the segmentation with the default
values, then we experimented different values
of α and β. We show in Figure 2 the best
achieved results in terms of percentages of
correctly segmented words.

Semi-supervised segmentation shows promising
results regards to the size of the annotated
corpus. Indeed, the best percentage of correctly
segmented word reached 78.55%. According to

5We remind that this Analyzer supports the Arabic script only.
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Fig. 2. Percentages of correctly segmented words using
semi-supervised method with different values of α and β

the test sample, Semi-supervised segmentation
could take into account many dialectal morpho-
logical features. Most agglutinated forms that
the unsupervised segmentation failed to segment
where correctly analyzed by the semi-supervised
analysis. We report in Table 8 some examples.

Furthermore, despite its ability to segment
agglutinated forms correctly, we noticed that even
with semi-supervised analysis, the negation forms
is difficult to segment for words written in Arabic
script. Morfessor failed to identify all word
segments. Some examples are reported in Table 9.

We also found that for some words, semi-
supervised analysis tends to over-segment. In
Table 10 are given some examples of these cases.

Morfessor segmentation seems to be an
interesting direction for segmenting dialectal Arabic
words, in view of the fact that it can be used
for texts in Arabic and Latin scripts. Moreover,
transcribing dialect by introducing numbers is not
problematic with Morfessor. Words written with
numbers are segmented as well as words including
only letters. Verb conjugation and noun declension
are taken into account as illustrated above in the
various examples. In addition, through the different
segmentations that we analyzed, the agglutinative
forms of the dialects (more complicated than MSA)
are for the most part parsed.
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Table 4. Examples of words written with Latin script correctly segmented using unsupervised method

Segments Word Segmentation Meaning
Conjunction+demonstrative pronoun. whada w+hada And this one
Conjunction+noun wrajel w+rajel And a man
Definition article+noun l3sal l+ 3sal The honey
Function word+pronoun 3andna 3and+na We have
Preposition+pronoun mnhoum mn+houm From them
Subject-prefix+verb yadkhol ya+dkhol He enters
Verb+suffix-subject kbarty kbar+ty You have grown

Table 5. Examples of words written with Latin script partially segmented using unsupervised method

Word Partial segmentation Valid segmentation Meaning
mayjouzch ma+yjouz+ch ma+y+jouz+ch He does not pass

yaatik ya+atik ya+ati+k He gives you
may3arfakch may+3arfak+ch ma+y+3arf+ak+ch He does not know you

Table 6. Examples of words written with Arabic script correctly segmented using unsupervised method

Segments Word Segmentation Meaning
Conjunction + personal pronoun �

I
	
K@

�
ð

�
I

	
K@+ð And you

Definition article+noun P@
�
YË@ P@

�
X+È@ The house

Function word+pronoun ø



Y
	
J« ø



+Y

	
J« I have

Verb+subject suffix+ object suffix A
�	
Kñ

�
®J.� A

�	
K+ð+ �

�J.� They have surpassed us

Preposition+noun Ñë@ �PYK. Ñë@ �PX+H. With money

Preposition+noun+ suffix pronoun ½
�
J
	
�J. Ë ¼+ �

I
	
�K.+È For your daughter

Table 7. Examples of words written with Arabic script partially segmented using unsupervised method

Word Partial segmentation Valid segmentation Meaning
ú


æ
�
�J
ª

�
K ú



æ
�
�J
«+ �

H ø


+ �

��
«+ �
H You live

ñ
�
JK. Qk. ñ

�
K+H. Qk. ð+ �

H+H. Qk. I tried it
�

�A
�

g. A
�
Óð

�
�+ A

�
g. A

�
Ó+ð

�
�+ A

�
g. + A

�
Ó+ð And he did not come

4 Impact of Morphological
Segmentation on SMT of Maghrebi
Dialects to French

Word segmentation is an important step in many
NLP tasks related to Arabic. Many work show that
it improves performance of NLP applications like
part-of-speech tagging[12, 16, 34] and machine
translation [18, 2, 3, 34].

In this respect, we attempt to measure the
impact of unsupervised segmentation on machine
translation performance in the context of translating
between Arabic Maghrebi dialects (Algerian,
Tunisian and Moroccan) and French.

It should be noted that, most research efforts in
this area concern English. For more details, the
reader is referred to [21] where a comprehensive
survey on Arabic dialects machine translation
is presented.
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Table 8. Examples of words correctly segmented with semi-supervised method

Segments Word Segmentation Meaning
Conjunction+noun+plu.
suffix+pronoun suff.

½
�
K@

�
YJ
Ëðð ¼+ �

H@+YJ
Ëð+ð And your children

Conj.+subj.pref.+verb+subj.
suff.+obj. suff.

A
�
ëðXðA

�
ª

	
Kð A

�
ë+ð+XðA

�
«+ 	

à+ð And we will repeat
it

Subj. pref.+ verb+ object suff. ÑîD�Ê
	
m�'


 Ñë+�Ê
	

g+ø



He pays them

Function word+pronoun suff. A
�	
JJ
Ê« A

�	
K+ú



Î« On us

Def. article+noun+plural suff. 	á�

	
JÓñÒ�Ë @ 	áK
+ 	áÓñÓ+È@ The believers

Table 9. Examples of words written with Arabic script partially segmented with semi-supervised method

Word Partial segmentation Valid segmentation Meaning
½ËA

�	
JÒ

�
J
	
Kð ¼+È@+ 	áÖ

�
ß+ 	

à+ð ¼+È+ A
�	
JÖ

�
ß+ 	

à+ð I wish you
�

��
ÊJ
ºj�
�
KA

�
Ó

�
�+ø



+È+ú



¾k+ �

HA
�
Ó

�
�+ø



+È+ú



¾k+ �

H+ A
�
Ó Do not tell me

�
�ñJ. m

�
�
'A

�
Ó

�
�+ñJ.k+ �

HA
�
Ó

�
�+ð+I. k+ �

H+ A
�
Ó You do not like it

Table 10. Example of over-segmented words with semi-
supervised method

Word Over Valid Meaning
Segment. Segment.

	
àñ

	
m�� 	

à+ð+ t�� 	
àñ

	
m�� Hot

éÊ�ªÓ è+É�+©Ó è+É�ªÓ Honeydew

ñ
	
¯@ �QK. ð+

	
¬@ �P+H. ñ

	
¯@ �QK. Bravo

4.1 Settings

We use a phrase-based statistical machine
translation [25], with Giza++[31] for alignment and
KenLM [22] to compute ngram language models.
We also use an unsupervised segmentation with
Morfessor. We choose unsupervised segmentation
because annotation data are not available for
Tunisian and Moroccan dialects, they are available
only for Algerian dialect.

4.2 Data Description

1. Parallel corpus of Maghrebi dialects and
French:
We use the three Maghrebi dialect texts
of PADIC corpus (Algerian, Moroccan and
Tunisian) and for the first time, a parallel

French text translated from the standard
Arabic side of PADIC (see Table 12).

2. Monolingual corpora:
For unsupervised training of Morfessor, three
monolingual dialectal corpora are used. A
brief description of these corpora is given
below (with some statistics in Table 13):

- Arabic script part of CALYOU used earlier.

- A Tunisian corpus of facebook comments
[6] collected during the period of Arab
spring events (we used only comments
written with Arabic script).

- A Moroccan corpus of texts [37] collected
from different sources (web sites, plays
and records of everyday conversations).

Also we used a French monolingual corpus
which we downloaded from OPUS6 web site to
train French language models.

4.3 Experimentation

We trained all the machine translation systems
on 5.9K parallel sentences. We allocated 0.1K

6http://opus.nlpl.eu/
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Table 11. BLEU scores and OOV rates of Maghrebi dialects to French SMT according to different training data of
Morfessor

SMT systems Algerian Moroccan Tunisian
BLEU OOV% BLEU OOV% BLEU OOV%

SMT-no-segmentation 6.90 24.7 9.01 23.5 7.43 28.3
SMT+seg(32K) 6.29 16.2 8.08 15.1 8.68 14.5
SMT+seg(62K) 7.31 12.6 8.84 15.5 - -

Table 12. The parallel corpus statistics

Corpus #Words (K) #Distinct word (K)
Algerian 40.75 9.15

Moroccan 42.58 9.70
Tunisian 38.96 10.04
French 62.02 7.91

Table 13. Statistics of dialectal monolingual corpora
used for unsupervised segmentation

Corpus #Words(K) #Distinct words (K)
Algerian 412.93 191.17

Moroccan 349.30 62.87
Tunisian 131.46 32.25

and 0.4K sentences for tuning and evaluation,
respectively. The baseline SMT systems (SMT-no-
segmentation) are trained on unsegmented data
for the three dialects (source language being the
dialect and the target language French). Next, we
segmented data for training, tuning and evaluating
SMT systems.

Regards to the size of monolingual dialectal
corpora used for learning Morfessor, we conducted
two types of experiments. In the first one, data
of the three SMT systems (SMT+seg(32K)) are
segmented by learning Morfessor with datasets of
32K distinct words for each dialect (32K is the
size of Tunisian corpus, the smallest monolingual
corpus).

In the second experiment, SMT systems
(SMT+seg(62K)) data were segmented by learning
Morfessor with datasets of 62K distinct words. This
experiment concerns only Algerian and Moroccan
dialects because we have no more data for
Tunisian dialect. We evaluated all SMT systems
described in terms of BLEU [32] metric.

Table 11 shows results. We notice that for
Tunisian dialect-to-French translation, SMT system
that uses Morfessor segmentation outperforms
the system that does not use segmentation
by 1.25 BLEU points. For Algerian-to-French
and Moroccan-to-French SMT systems whose
data were segmented by Morfessor learned with
datasets of 32K words, BLEU scores decrease by
0.61 and 0.93 points respectively.

However, when Morfessor is learned with
more dialectal data (62K words), BLEU score
of Algerian-to-French increases by 0.41 com-
pared to the baseline system score. For
Moroccan-to-French translation, the BLEU score
of SMT+seg(62K) system (segmentation learned
on a dataset of 62K words) outperforms the
SMT+seg(32K) system (segmentation learned on
a dataset of 32K words).

But, the baseline system remains the best.
Furthermore, Morfessor segmentation decreases
significantly OOV rates. Indeed, OOV rates of
Algerian-to-French and Tunisian-to-French SMT
systems trained on segmented data decrease
by almost 50%. For Moroccan-to-French SMT
system, Morfessor does not improve BLEU scores
as seen, but it decreases the OOV rates by at
least 34%.

5 Conclusion

We have adopted an unsupervised and semi-
supervised approach to segment Algerian dialect
texts written in Arabic and Latin scripts. This work
was accomplished by using Morfessor. The results
are encouraging.

Indeed, most morphological features of Al-
gerian dialects are taken into account. The
semi-supervised segmentation applied only for text
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written in Arabic script achieved the best results.
We further evaluated the impact of unsupervised
segmentation of Maghrebi dialect texts on SMT
systems that translate from the three Maghrebi
dialects to French. For the first time, we introduced
a French text to PADIC corpus. This text was
used to train the target side of the SMT systems.
The unsupervised segmentation has improved
BLEU scores especially for Tunisian-to-French and
Algerian-to-French SMT systems. Moreover, the
OOV rates decrease by nearly 50% for these two
SMT systems and by more than 34% for the
Moroccan-to-French SMT system. In the future,
we would like to use an iterative process to create
annotation data for Algerian dialect texts in Latin
script. We will use unsupervised segmentation
to segment the words, then valid outputs will be
used to create annotation data. This will allows
us to consider semi-supervised segmentation for
these texts. In the same way, we will enrich the
annotated data in Arabic script. Finally, the new
version of PADIC will be made available to the
scientific community.
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