
Predicting and Integrating Expected Answer Types into a Simple
Recurrent Neural Network Model for Answer Sentence Selection

Sanjay Kamath1,3, Brigitte Grau1,2, Yue Ma3

1 LIMSI, CNRS, Université Paris-Saclay, Orsay,
France

2 ENSIIE, Université Paris-Saclay, Évry,
France

3 LRI, Univ. Paris-Sud, CNRS, Université Paris-Saclay, Orsay,
France

{sanjay, bg}@limsi.fr, yue.ma@lri.fr

Abstract. Since end-to-end deep learning models have
started to replace traditional pipeline architectures of
question answering systems, features such as expected
answer types which are based on the question semantics
are seldom used explicitly in the models. In this
paper, we propose a convolution neural network model
to predict these answer types based on question
words and a recurrent neural network model to find
sentence similarity scores between question and answer
sentences. The proposed model outperforms the current
state of the art results on an answer sentence selection
task in open domain question answering by 1.88% on
MAP and 2.96% on MRR scores.

Keywords. Question answering, deep learning, answer
sentence selection, expected answer types, sentence
similarity.

1 Introduction

Question answering systems in recent times
have mainly been dominated by neural network
approaches that fetch state of the art results across
different NLP tasks. Open domain question an-
swering tasks include answer sentence selection,
reading comprehension, multi-hop reasoning and
reading etc. An example of a question answer pair
from a dataset:
Q: How a water pump works?

A: pumps operate by some mechanism ... to
perform mechanical work by moving the fluid.

An answer sentence selection model would
retrieve the entire sentence from a paragraph
as an answer. A common goal of the neural
network models is to build end to end approaches
which do not rely on intermediate tools or data
provided by other systems. Some recent works
such as BERT [3] and ELMO [11] use pre-trained
language models trained with large neural network
architectures and use it to fine tune downstream
NLP tasks. These methods outperform current
state of the art systems for reading comprehension
as well as many other tasks. However,
training such models on large datasets and the
requirement of large scale computation power is
sometimes not a feasible solution.

Other state of the art models such as QANet [19]
on SQUAD and other end to end approaches try
to implicitly learn information such as entity types,
part of the speech tags, named entities, syntactic
dependencies etc. and perform downstream tasks.
But the challenge still remains in understanding
whether or not they utilize such information
implicitly or just overfit over the datasets and
their unintended bias. A feasible yet challenging
approach would be to utilize both the power
of neural networks approaches and explicit

Computación y Sistemas, Vol. 23, No. 3, 2019, pp. 665–673
doi: 10.13053/CyS-23-3-3241

ISSN 2007-9737

information such as entity types, dependencies,
tags, together. Expected Answer Types (referred
to as EAT hereafter) is one such vital information
which is important for question answering systems
to detect which type of answers do the questions
require. Some examples of EAT with questions are
listed below:

Question: Which NFL team represented the AFC
at Super Bowl 50?

Expected Answer Type: HUM.

Question: Where was franz kafka born ?
Expected Answer Type: LOC.

[15] refer to this information as Question
Classes in their work and show a significant
improvement over a previous state of the art DNN
model on TrecQA dataset which uses only word
level information.

Our contributions in this article are as follows.
We introduce two different ways of using Question
Classes which is further referred as EAT or
Expected Answer Types and experiment with
several datasets along with TrecQA to determine
if this would work better for a wider range of
large scale datasets by using a simple model
of a recurrent neural network which uses a
pre-attention mechanism. To annotate other
datasets apart from TrecQA, with EAT information,
we propose a multiclass classifier model which
is trained on a dataset built by using an
existing rule-based system which predicts EAT
for questions.

We report our findings on WikiQA, SQUAD-Sent
and TrecQA dataset performance and show that
we outperform state of the art results on TrecQA
dataset1 by the two different ways of highlighting
Expected Answer Types in the data.

Answer sentence selection task has been
extensively studied with different approaches
ranging from n-gram models to neural network
models. In former feature based QA systems, the
Expected Answer Type (EAT) has been shown as
a very important feature [7].

1https://aclweb.org/aclwiki/Question Answering (State of
the art)

The EAT corresponds to an entity type organized
in answer type taxonomies, as in [8] for the open
domain or semantic types in biomedical domain as
in [5].

Recent works on this task focus mainly on
convolutional neural network approaches. [14]
propose a CNN model using learning to rank
approach, which computes a representation of
both entries, candidate passage and question,
and a similarity between these two representations
using a pooling layer followed by similarity matrix
computation. In [18], the similarity of the two
entries is evaluated by computing interactions
between words of the two texts by an attention
layer. [4] propose a Multi-Perspective CNN for this
task which was further used by [13] with a triplet
ranking loss function to learn pairwise ranking from
both positive and negative samples.

[15] use the same model but use Question
Classes to enhance the dataset with highlighting
entities in it. Highlighting entities were done
by mainly two ways called Bracketing (appending
a special token before and after the entity
occurrence) and Replacement (replacing the entity
word with a special token) methods. Our work uses
a similar technique by replacing the entity word with
special tokens but allows to learn them according
to the expected types. The leaderboard of TrecQA
evaluation1 reports the state of the art scores from
different methods reported by several articles.

2 Answer Sentence Selection

Answer sentence selection is a question answering
task which is also referred sometimes as sentence
reranking task. The task involves reranking a set
of sentences S = {S1,,Sm} for a question
Q, so that the correct sentences are ranked first.
Sentence set S can contain the mixture of both
negative and positive sentences relevant to the
question, often more than one positive sentence.

We model this task as a pairwise similarity
scoring task. For each sentence related to a
question, we compute a similarity score against
the question sentence and answer sentence. i.e.,
(Qi − Si,j , Qi − Si,j+1, Qi − Si,j+2,Qi − Si,j+n).

Computación y Sistemas, Vol. 23, No. 3, 2019, pp. 665–673
doi: 10.13053/CyS-23-3-3241

Sanjay Kamath, Brigitte Grau, Yue Ma666

ISSN 2007-9737

2.1 RNN-Similarity

Recurrent neural networks such as LSTMs
and GRUs are widely used in several NLP
tasks like machine translation, sequence tagging,
and question answering tasks such as reading
comprehension and answer sentence selection.

Fig. 1. Proposed RNN-Similarity model

We propose a simple model with recurrent neural
networks and an attention mechanism to capture
sequential semantic information of words in both
questions and sentences and predict similarity
scores between them. We refer to this model
further in this article as RNN-Similarity model.
Figure 1 shows the architecture of the model.

Question words Q = {q1,, qm} and Sentence
words S = {s1,, sn} are sequences which
are encoded using an embedding layer of
dimension D:

E(Q) = {E(q1), ..,E(qm)}, (1)

E(S) = {E(s1), ..,E(sn)}, (2)

A pre-attention mechanism captures the similar-
ity between sentence words and questions words
in the same layer. For this purpose, a feature
Falign shown in Equation 3 is added as a feature
to the LSTM layer:

Falign(pi) = Σjai,jE(qj), (3)

where ai,j is,

ai,j =
exp (α(E(si)) · α(E(qj))

Σj′ exp(α(E(si)) · α(E(qj′))
, (4)

which computes the dot products between nonlin-
ear mappings of word embeddings of question and
sentence.

The above process is similar to [1] who use
LSTMs to model Question and Paragraph to
encode the words for reading comprehension task.
We use 3-layer Bidirectional LSTM layers for both
question and sentence encodings:

{E(q1), ..,E(qn)} = Bi-LSTM({Ẽ(q1), .., Ẽ(qn}),
(5)

{E(s1), ..,E(sn)} = Bi-LSTM({Ẽ(s1), .., Ẽ(sn}).
(6)

The LSTM output states are further connected
to a linear layer and a sigmoid non-linear activation
function is applied on the output of the linear
layer which outputs the score ranging between 0-1,
which signifies the similarity between the question
and the answer sentence.

For the Expected Answer Types (EAT) version of
question and sentences, we create special tokens
for the entity type that are used for encoding the
question Q and each sentence S.

Computación y Sistemas, Vol. 23, No. 3, 2019, pp. 665–673
doi: 10.13053/CyS-23-3-3241

Predicting and Integrating Expected Answer Types into a Simple Recurrent Neural Network Model for Answer... 667

ISSN 2007-9737

Table 1. Three methods for replacing entities along with an example from TrecQA dataset

- Method Question Sentence

1 Original text

Who is the author of the
book, ‘The Iron Lady:
a biography of Margaret
Thatcher’

in ‘The Iron Lady,’ Young
traces the greatest
woman political leader
since Catherine the
Great.

2
Replacement
- [15] (EAT Single
type)

Who is the author of the
book, ‘The Iron Lady:
a biography of Margaret
Thatcher’ max entity left
entity left

in ‘The Iron Lady,’
max entity left traces
...... the greatest woman
political leader since
entity left.

3 EAT
(Different types)

Who is the author of the
book, ‘The Iron Lady:
a biography of Margaret
Thatcher’ max entity left
entity hum

in ‘The Iron Lady,’
max entity left traces
...... the greatest woman
political leader since
entity hum.

4
EAT
(MAX + Different
types)

Who is the author of
the book, ‘The Iron
Lady: a biography of
Margaret Thatcher’
max entity hum
entity hum

in ‘The Iron Lady,’
max entity hum traces
...... the greatest woman
political leader since
entity hum.

2.2 Highlighting Single Entity and Multiple
Entity Types

The authors of [15] propose a method of
replacing words by special token embeddings
for highlighting entities that catch the EAT entity
in sentences. In our work, this method is
referred to as “EAT (single type)” in the following
experiments. The entities belong to (HUM, LOC,
ABBR, DESC, NUM or ENTY). HUM refers to a
description, group, individual, title. LOC refers
to city, country, mountain, state. ABBR refers
to abbreviation, expansion. DESC refers to a
definition, description, manner, reason. NUM
refers to numerical values such as code, count,
date, distance, money, order etc. ENTY refers
to a numerous entity types such as animal, body,
color, creation, currency, disease etc. More details
regarding the taxonomy can be found in [9].

The entities, irrespective of which class they
belong to, are treated similarly by replacing
them by two special tokens entity left for entity

occurrences and max entity left for maximum
occurring entity that corresponds to an entity that
is at least twice the number of occurrences when
compared to the second maximum occurring entity.
Entity types are recognized using the named entity
recognition tool. When an entity type in a sentence
matches the EAT from the question, entity left
token is used to replace the entity mentions in
the sentences; same applies for the maximum
occurring entity token max entity left as well.

Our proposition is to replace an entity according
to the type it belongs to instead of replacing all
kinds of entity by just one word i.e. entity left. We
do it based on the different types of EAT it belongs
to based on the taxonomy used in the original work.
The intuition behind this method is that the model
would learn to better map the relations between
question words and specific entity type tokens
when used in a model with attention mechanisms,
rather than learning the relation between question
words and the same generic entity type token for
all entities.

Computación y Sistemas, Vol. 23, No. 3, 2019, pp. 665–673
doi: 10.13053/CyS-23-3-3241

Sanjay Kamath, Brigitte Grau, Yue Ma668

ISSN 2007-9737

This way, we can learn a different behaviour with
an entity about location and with an entity about a
person for example.

The example in Table 1 line 3 refers to an
example that has an EAT as “HUM” from the
taxonomy, so we replace it as entity hum. We do
the same for other expected answer types such as
entity loc for “ LOC” type, entity enty for “ ENTY”
type, entity num for “NUM” type, entity desc for
“DESC” type, entity abbr for “ABBR” type. We
replace the entity mentions in the text whose types
are matching the EAT from questions.

We also experiment with a variant where the
max entity left is replaced with the entity type
along with other entities. If the maximum entity is
of type “HUM”, we replace it as max entity hum.
This method is referred to as “EAT (MAX + different
types)” in the following experiments. We create a
random word embedding ranging between (-0.5 -
0.5) with dimension D for each of the EAT words
and encode the word with this embedding when it
appears in all our experiments.

3 Experiments

We perform experiments on three datasets namely
1) TrecQA, 2) WikiQA, 3) SQUAD-Sent with and
without EAT annotations. Thus we had to develop
our own annotation tools.

3.1 Annotation of the EAT

Since SQUAD-EAT (see section 3.3) is the result
of a rule-based method with a high accuracy score
(97.2% as reported in [9]), we use it to train a
multiclass classifier based on a CNN model for
text classification2 by [6], by modifying the outputs
into a multi-class setting. We further refer to this
as EAT Classifier. We use 300 dimensions GloVe
embeddings by [10].

The output classes of the classifier refer to a type
based on the taxonomy such as ABBR, DESC,
ENTY, HUM, LOC, NUM and a ”NO EAT” class
to signify an EAT which is not in the above list of
classes. We do not use the fine level taxonomy in
this work because of a resulting large number of

2https://github.com/cmasch/cnn-text-classification

classes with sparse distribution of samples in the
dataset. Below is an example from SQUAD-EAT
with HUM:

Question: Which NFL team represented the
AFC at Super Bowl 50?

Expected Answer Type: HUM.
We train the multi-class classifier model using

the SQUAD-EAT dataset which gets an accuracy
score of 95.17% on the SQUAD-EAT dev in our
experiment, according to the annotation done by
[15] as reference.

3.2 Annotation of the Entities

We detect the entities in the sentences using
Dbpedia Spotlight tool by [2]. The detected entities
by spotlight are verified for their entity type match
using the Spacy NER tool which is mapped to
EAT using the mapping shown in table 2. Only
the matching entities are highlighted and others
are discarded. We replace the special token by
adding one for the maximum occurring entity, which
is described in Section 2.2.

3.3 The Data

TrecQA dataset is a standard dataset used to
benchmark state of the art systems for answer
sentence selection task. The authors of [9, 15]
provide the EAT annotations for the TrecQA dataset
based on their rule-based approach.

We modify the QA dataset SQUAD by [12]
designed for machine comprehension, into an
answer sentence selection dataset to provide the
answers in their original context. We name it
as SQUAD-Sent. We do this by processing the
dataset where each example is usually a triple of
Question, Paragraph and Answer span (Text and
the answer start offset in the paragraph) into a
dataset where each triple is a Question, Sentence
and Sentence label. The sentence label is 1 if the
answer is present inside the sentence, else it is
0. We perform sentence tokenization using spacy
toolkit3 on paragraphs of SQUAD and perform a
check for an exact match of answer strings in them.

SQUAD-Sent is a special case dataset where
there is just one positive sentence per question and

3https://spacy.io

Computación y Sistemas, Vol. 23, No. 3, 2019, pp. 665–673
doi: 10.13053/CyS-23-3-3241

Predicting and Integrating Expected Answer Types into a Simple Recurrent Neural Network Model for Answer... 669

ISSN 2007-9737

Table 2. Spacy named entity annotation scheme following OntoNotes 5 corpus mapped with EAT types

EAT Spacy annotated tag
HUM PERSON, ORG, NORP
LOC LOC, GPE
ENTY PRODUCT, EVENT, LANGUAGE, WORK OF ART, LAW, FAC
NUM DATE, TIME, PERCENT, MONEY, QUANTITY, ORDINAL, CARDINAL

the other sentences are negative examples. The
motivation to do this is because of the large scale
property of this dataset, compared to the other
datasets, with human-generated questions. For
the expected answer types of SQUAD questions,
we use SQUAD-EAT which is a dataset with
EAT annotated questions on SQUAD v1 dataset
questions which is annotated by the authors of
[9, 15] on our request. WikiQA dataset by [17]
is another dataset used for answer sentence
selection task which was built using Bing search
engine query logs. We use a preprocessed
version as used by [13] which has removed
certain examples without any positive answers and
questions with more than 40 tokens to compare
the scores. The questions and answer sentences
are annotated with EAT information as described in
section 3.1.

Table 3 shows the statistics of the datasets
with EAT annotated questions and plain word level
questions (regular datasets) and the number of
entities annotated in each set. EAT version of
TrecQA dataset is as reported in [15] and available
through this link4.

3.4 Implementation

We implement the RNN-Similarity model in
Pytorch, and we use MSELoss (Mean Squared
Error loss) to minimize the error of predictions
for relevance scores. We use adamax optimizer
and keep the missing word embeddings as zero
embeddings. We implement the EAT Classifier
using the CNN model available online5 and
used Keras to implement the multiclass classifier
which uses GloVe embeddings as input. The

4www.harishmadabushi.com/research/answer-selection/
5https://github.com/yoonkim/CNN sentence

Table 3. Statistics of datasets with plain and EAT
annotated questions. ‘#’ refers to “Number of.”

Dataset Split #Plain Q #EAT Q #Entities

Trec QA Train 1229 649 9064
Dev 82 76 382
Test 100 82 597

SQUAD-Sent Train 87,599 78,740 35087
Dev 10,570 9,606 4757
Test - - -

Wiki QA Train 873 859 132
Dev 126 124 4
Test 243 236 38

code for both the models along with default
hyperparameters is publicly available on Github 6.

3.5 Results

Table 4 shows various results on different versions
of datasets. Note that the questions in the following
experiments of Table 4 contain all the questions
from the datasets, which includes questions which
are highlighted with EAT and questions which are
not highlighted with EAT as well. Note that we test
our systems on the Raw version of TrecQA test
dataset.

3.5.1 TrecQA

The current state of the art system is by [15]
that uses EAT on word level model of [13].
Henceforth both results are presented. Our model
RNN-Similarity on plain word level data fetches
better result than the model of [13] by 2.24 %
on MAP and 1.41 % on MRR. Our EAT words
(single type), EAT words (different types) and EAT

6https://github.com/rsanjaykamath

Computación y Sistemas, Vol. 23, No. 3, 2019, pp. 665–673
doi: 10.13053/CyS-23-3-3241

Sanjay Kamath, Brigitte Grau, Yue Ma670

ISSN 2007-9737

Table 4. Results reported on TrecQA, WikiQA, and SQUAD-Sent datasets. SQUAD-Sent dataset is a modified version
for answer sentence selection task. RNN-S is RNN-Similarity model.

Datasets Method Acc.@1 MAP MRR

TrecQA

Plain words - [13] - 78 83.4
EAT words - [15] - 83.6 86.2
Plain words - RNN-S 78.95 80.24 84.81
EAT words (single type) - RNN-S 85.26 85.28 89.16
EAT words (different types) - RNN-S 85.26 85.48 88.11
EAT words (MAX+different types) - RNN-S 86.32 85.42 88.86

WikiQA

Plain words - [13] - 70.9 72.3
Plain words - [16] - 75.59 77.00
Plain words - RNN-S 56.79 69.07 70.55
EAT words (single type) - RNN-S 56.38 68.63 70.59
EAT words (different types) - RNN-S 58.4 70.04 71.56
EAT words (MAX+different types) - RNN-S 57.20 69.17 70.89

SQUAD-Sent

Plain words - Implementation7 of model by [13] - - 58.08
Plain words - RNN-S 83.94 - 90.5
EAT words (single type) - RNN-S 84.21 - 90.65
EAT words (different types) - RNN-S 84.26 - 90.70
EAT words (MAX+different types) - RNN-S 84.24 - 90.69

words (MAX + different types) models outperforms
the state of the art performance for both MAP
(1.68%) and MRR (2.96%) scores of the previous
state of the art model by [15] where the MAP and
MRR scores are higher for correct sentences being
ranked as top 1.

3.5.2 WikiQA

Although a recent model by [16] which uses kernel
methods outperforms all the scores of our model,
we note that the performance on our EAT level
models is higher than the ones on plain words.
Only a few number of entities are annotated
by spotlight compared to other datasets which
is shown in the table 3. To annotate entities
better we experimented using Spacy NER types
directly which resulted in more annotated entities
but reduced the performance lower than the word
level scores.

3.5.3 SQUAD-Sent

SQUAD official test set is hidden to the public
users. Although the difference between word

level and EAT word level is little, the difference
highlights the fact that the entity words replaced in
the sentence would not worsen the performance
of the systems; instead it improves it subtly. We
would like to note that the MAP and MRR values
were the same because of the existence of just
1 positive sentence amongst other negative per
question. Hence we only report MRR on this
dataset. Plain words - [13] performance is obtained
using the implementation available online8, which
we experimented on SQUAD-Sent dataset.

One aspect to be highlighted is that the
implementation8 of word level model by [13]
originally made for TrecQA dataset performs poorly
(58.05%) SQUAD-Sent dataset (maybe because
SQUAD-Sent has only one positive answer
sentence per question whereas other datasets
have several ones) which motivated us to build a
model (RNN-Similarity) which works robustly for
all the three datasets we have experimented with,
without changing any specific hyperparameters of
these models. Table 5 shows various results

8https://github.com/castorini/Castor

Computación y Sistemas, Vol. 23, No. 3, 2019, pp. 665–673
doi: 10.13053/CyS-23-3-3241

Predicting and Integrating Expected Answer Types into a Simple Recurrent Neural Network Model for Answer... 671

ISSN 2007-9737

Table 5. Results reported on TrecQA and SQUAD-Sent datasets using RNN-Similarity model trained only on EAT
annotated questions

Datasets Method Acc.@1 MAP MRR
TrecQA EAT words (single type) 84.15 84.81 87.17
(EAT) EAT words (different types) 85.37 85.45 88.18

EAT words (MAX+different types) 85.37 85.06 89.20
WikiQA EAT words (single type) 58.02 68.91 70.99
(EAT) EAT words (different types) 55.14 67.70 69.52

EAT words (MAX+different types) 56.38 68.16 69.83
SQUAD-Sent EAT words (single type) 83.81 - 90.53

(EAT) EAT words (different types) 84.04 - 90.61
EAT words (MAX+different types) 84.16 - 90.73

on TrecQA and SQUAD-Sent datasets with only
the questions which are annotated with EAT
information in the train and test sets.

Training datasets with questions which contain
EAT information only; if the question does not have
a EAT value, it is discarded from the dataset below
are the set of experiments and results:

— TrecQA (EAT): Apart from EAT words (MAX
+ different types) version of the dataset, the
other two methods outperform word level
models and EAT word level by [15] where
the dataset statistics of this method can also
be found.

— SQUAD-Sent(EAT): There is a difference of
8,800 questions from SQUAD-Sent dataset,
which is considerably a huge number of
missing questions. Yet the results from
these experiments, do not decrease a lot, but
rather perform better than SQUAD-Sent’s plain
word level model compare to EAT (different
types) data.

— WikiQA (EAT): We remove the questions
with ‘NO-EAT’ class which were 23 questions
overall. The results are better with EAT (single
type) which shows that the method works well
in certain cases better than different types
of EAT.

The results reported in table 5 shows that there
is not a significant improvement over different
methods when trained only on questions with

EAT information. Henceforth it is better to train
models with the entire dataset and highlight EAT
information only when the question contains the
EAT information.

4 Conclusion and Future work

The Expected Answer Types are a useful piece of
information that used to be extensively exploited
in the traditional QA systems. Using them
with the current state of the art DNN systems
improves the system performance. We propose
a simple model using recurrent neural networks
which works robustly on three different datasets
without any hyperparameter tuning and annotate
entities belonging to the expected answer type of
the question. Our model outperforms the previous
state of the art systems in answer sentence task.
We also propose a model to predict the expected
answer type based on the question words using
a multiclass classifier trained on a rule based
system’s output on a large scale QA dataset.

Future work involves using the expected answer
types information in other downstream tasks such
as in reading comprehension or multihop reading
systems for extracting a short answer span.

Acknowledgements

We would like to thank Harish Tayyar Madabushi
from the University of Birmingham for providing us
with the annotated questions for SQUAD dataset.

Computación y Sistemas, Vol. 23, No. 3, 2019, pp. 665–673
doi: 10.13053/CyS-23-3-3241

Sanjay Kamath, Brigitte Grau, Yue Ma672

ISSN 2007-9737

This work is funded by the ANR project GoAsQ
(ANR-15-CE23-0022).

References

1. Chen, D., Fisch, A., Weston, J., & Bordes, A.
(2017). Reading wikipedia to answer open-domain
questions. Proceedings of the 55th Annual Meeting
of the Association for Computational Linguistics
(Volume 1: Long Papers).

2. Daiber, J., Jakob, M., Hokamp, C., & Mendes,
P. N. (2013). Improving efficiency and accuracy
in multilingual entity extraction. Proceedings of the
9th International Conference on Semantic Systems,
ACM.

3. Devlin, J., Chang, M.-W., Lee, K., & Toutanova,
K. (2018). Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv
preprint arXiv:1810.04805.

4. He, H., Gimpel, K., & Lin, J. (2015). Multi-
perspective sentence similarity modeling with
convolutional neural networks. Proceedings of the
2015 Conference on Empirical Methods in Natural
Language Processing.

5. Kamath, S., Grau, B., & Ma, Y. (2018). Verification
of the expected answer type for biomedical question
answering. Companion Proceedings of the The Web
Conference 2018, WWW ’18.

6. Kim, Y. (2014). Convolutional neural networks
for sentence classification. Proceedings of the
2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP).

7. Kolomiyets, O. & Moens, M.-F. (2011). A
survey on question answering technology from
an information retrieval perspective. Information
Sciences, Vol. 181, No. 24.

8. Li, X. & Roth, D. (2006). Learning question
classifiers: the role of semantic information. Natural
Language Engineering, Vol. 12, No. 3.

9. Madabushi, H. T. & Lee, M. (2016). High
accuracy rule-based question classification using
question syntax and semantics. Proceedings of
COLING 2016, the 26th International Conference on
Computational Linguistics: Technical Papers.

10. Pennington, J., Socher, R., & Manning, C. (2014).
Glove: Global vectors for word representation.
Proceedings of the 2014 conference on empirical
methods in natural language processing (EMNLP).

11. Peters, M., Neumann, M., Iyyer, M., Gardner, M.,
Clark, C., Lee, K., & Zettlemoyer, L. (2018). Deep
contextualized word representations. Proceedings
of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1
(Long Papers).

12. Rajpurkar, P., Zhang, J., Lopyrev, K., &
Liang, P. (2016). Squad: 100,000+ questions for
machine comprehension of text. Proceedings of the
2016 Conference on Empirical Methods in Natural
Language Processing.

13. Rao, J., He, H., & Lin, J. (2016). Noise-contrastive
estimation for answer selection with deep neural
networks. Proceedings of the 25th ACM Interna-
tional on Conference on Information and Knowledge
Management, CIKM ’16.

14. Severyn, A. & Moschitti, A. (2015). Learning to
rank short text pairs with convolutional deep neural
networks. Proceedings of the 38th international
ACM SIGIR conference on research and develop-
ment in information retrieval, ACM.

15. Tayyar Madabushi, H., Lee, M., & Barnden,
J. (2018). Integrating question classification and
deep learning for improved answer selection.
Proceedings of the 27th International Conference
on Computational Linguistics, Association for
Computational Linguistics.

16. Tymoshenko, K. & Moschitti, A. (2018). Cross-pair
text representations for answer sentence selection.
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing (EMNLP).

17. Yang, Y., Yih, W.-t., & Meek, C. (2015). Wikiqa:
A challenge dataset for open-domain question
answering. Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing.

18. Yin, W., Schütze, H., Xiang, B., & Zhou, B.
(2016). Abcnn: Attention-based convolutional neural
network for modeling sentence pairs. Transactions
of the Association for Computational Linguistics,
Vol. 4.

19. Yu, A. W., Dohan, D., Le, Q., Luong, T., Zhao,
R., & Chen, K. (2018). Fast and accurate reading
comprehension by combining self-attention and
convolution. International Conference on Learning
Representations.

Article received on 29/01/2019; accepted on 04/03/2019.
Corresponding author is Sanjay Kamath.

Computación y Sistemas, Vol. 23, No. 3, 2019, pp. 665–673
doi: 10.13053/CyS-23-3-3241

Predicting and Integrating Expected Answer Types into a Simple Recurrent Neural Network Model for Answer... 673

ISSN 2007-9737

