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Abstract. With the expansion of IoT ecosystem, there is 

an explosion of the number of devices and sensors and 
the data generated by these devices. However, the tools 
available to analyze such data are limited. Word 
embeddings, widely used in the natural language 
processing (NLP) domain, provides a way to get similar 
words to the current word. In this paper, we extend the 
theory of word embeddings to the area of IoT devices, 
proposing a method to generate the word embeddings 
for IoT devices and sensors in a smart home based on 
their activity. We model IoT devices as vectors using a 
concept like Word2Vec and App2Vec, where the time 
between the device firings is also taken into account. 
These computed word embeddings can be used for a 
variety of use cases, such as to find similar devices in an 
IoT device store, or as a signature of each type of IoT 
device. We show results of a feasibility study on the 
CASAS dataset and a private real-world dataset of IoT 
device activity logs, using our method to identify the 
patterns in embeddings of various types of IoT devices 
in a household. We get a probability of more than 0.65 
for similar types of devices clustering together, 
independent of session gap value and embedding vector 
size for the CASAS dataset. We also get a probability of 
0.4 on the private dataset, independent of session gap 
value and embedding vector size. 

Keywords. Word2Vec, IoT2Vec, word embeddings, 

smart home, internet of things, natural 
language processing. 

1 Introduction 

The Internet of Things (IoT) has grown 
exponentially in recent times, with IoT sensors and 
devices being used in many real-life use cases 
such as smart homes. These sensors generate lots 
of data each second.  

Analysis of the data generated by the IoT 
sensors and devices in a smart home can lead to 
valuable insights about the usage habits and the 
devices themselves. However, the number of 
studies on real-life smart home IoT datasets to get 
insights about the device usage patterns is limited.  

The popular Word2Vec model [1] provides 
ways to generate word embeddings based on the 
usage of the words in one or more documents. 
Here, an IoT usage log can be considered as a 
document, and the logs of a given IoT device within 
a given small time window can be treated as 
a word. Such word embeddings can be used, for 
example, to find similarity between two documents. 
App2Vec [2] is a modified adaptation of Word2Vec 
for apps based on app behavior, with additional 
weightage based on time of firings.  

Using an approach like Word2Vec and 
App2Vec, we attempt to create embeddings for IoT 
devices based on their usage, using data obtained 
from the usage logs of the devices. These 
embeddings can be used, for example, to find 
similar IoT devices for a given device. Such a 
model we call IoT2Vec. 

In this paper, we describe the generation of 
embeddings using some publicly and privately 
available IoT datasets and describe some 
principles how this can be adapted for different IoT 
device usage data. We create a model to take the 
device usage data as input, create embeddings for 
the devices and identify a new device of the same 
type based on similar usage data. There can be 
several applications for such a model to create 
embeddings and find similar IoT devices.  

One application of such a model is to make a 
search function to search for similar devices in the 
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vicinity. Using this method, defective devices can 
be replaced based on their function. 

If we know the footprint of the IoT device, we 
can identify which another device is best suited to 
replace it. This can also be used to recommend 
similar IoT devices from different vendors, such as 
in an online e-store. Another useful application for 
such a model is routine disruption due to 
faulty/malfunctioning devices, where a 
faulty/malfunctioning device in the routine can be 
replaced by similar devices in the vicinity. It can 
also be used to transfer a given user’s routine from 
one location to another in case the user has 
changed their home location or gone for an outing 
or leisure travel.  

An-other common application can be to build a 
location classifier based on IoT de-vices in that 
location. For example, given that a pub usually has 
dim lights, it is likely that another pub will also have 
similar light settings. Therefore, knowing the IoT 
devices and their footprint in each location, we can 
identify the type of location. Another useful 
application is routines identification, which is the 
primary enabler for automating user’s action in a 
smart home.  

Automatically identified routines allow users to 
control and automate many aspects of a home 
without user intervention and without going into 
unnecessary hassle of creating home automation 
recipe for themselves. Especially for elder persons 
living alone at home, it is very difficult as they need 
to be aware of their own routine, variations 
followed to pursue routine and technical 
knowledge of the relevant home automation 
devices in home. 

The rest of this paper is organized as follows: in 
the following section we sur-vey approaches to 
current approaches related to identifying similar 
IoT devices. Section 3 describes the theory and 
method which we use to generate the embeddings. 
Section 4 gives the results of our method applied 
on public and private IoT datasets, along with 
validation and real-life use cases. Section 5 
concludes the paper. 

2 Related Work 

There are a few instances of related work in 
applying machine learning to find similar 
IoT devices.  

Xu [3] proposed a system for searching for and 
finding similar IoT devices as a result of user 
queries, based on a similarity measures based on 
the semantic and other properties of the IoT 
objects such as the object location. Kang [4] 
suggested various methods to identify correlations 
between IoT devices, including attributes such as 
location, usage count, sensor list, service name 
etc. They also suggested using Word2Vec model 
to calculate the adjacency between IoT devices. 
However, they did not provide concrete details on 
exactly how the vectors would be calculated and 
the issues involved when working with 
real datasets.  

Tian [5] mentioned a mechanism to 
automatically collect security related information 
from an IoT app. Palit [6] mentioned a system to 
identify IoT resource requirements such as sensor 
accesses from service descriptions, using NLP 
techniques to parse the Android app descriptions 
to determine which sensors were required. Hong 
[7] used similarity measures between IoT devices 
to provide context aware services to users. Truong 
[8] proposed a method for searching similar IoT 
sensors, computing a similarity score based on 
fuzzy sets.  

The patent of Derek Lin [21] describes analysis 
of device similarity using methods such as principal 
components analysis. However, most of these 
approaches require prior information about the IoT 
devices, such as the parameters needed to 
determine similarity. Such prior information might 
not be readily available. 

Word embeddings have been used for a variety 
of use cases including product and item 
recommendations [15, 16], similar nodes in a 
network [17], and multi-media [18-20]. However, 
they have not been applied to determine similarity 
for IoT devices as of late. In this paper, we use IoT 
sensor or device usage patterns to create the word 
embeddings and identify the type of IoT device. 
Having such an approach has the advantage of not 
needing prior information about the devices, only 
their usage data is needed instead. 

3 Model for Generation of Word 
Embeddings 

Most IoT devices are used in certain patterns that 
repeat over time. Similar kinds of IoT devices will 
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have similar activity footprints. The IoT device type 
can be identified by the pattern of usage. 

The time of usage and location of devices also 
carries useful information. A model can be trained 
to encode this pattern as word embeddings, which 
will help to identify the IoT device that has 
similar patterns. 

3.1 Theory of Word Embeddings for IoT 
Devices  

In the Word2Vec model [1], a neural network is 
trained to map a word to a vector in such a way that 
the probability of predicting a word (target) given a 
context of words (in CBOW model) is maximized. 
The model is trained on a large dataset of 
documents, so it is expected to capture all possible 
variations and patterns in which the words are 
used together. So it aims to maximize the following 
log likelihood for all words in the dictionary: 

log P(Wi|context) = similarity(Wi|context) /  

∑k similarity (Wk|context), 
(1) 

where Wi is the word vector corresponding to the 
ith word, and similarity between vectors is 
measured by cosine distance. For example if the 
model is trained on the sentence ‘the cat is on the 
table’, the aim is to maximize the probability of 
predicting ‘cat’ when the following words are 
presented to the model ‘the ___ is on the table’. In 
the Skip-Gram model, on the other hand, the 
objective is to present a word and predict its 
surrounding words in a given window (or context 
length). So if the word ‘cat’ is presented as input, 
the model should learn to predict ‘the, is, on, the, 
table’ as output. 

In this paper, for IoT devices and sensors, we 
aim to create a word vector for each unique IoT 
device such that its activity can be predicted given 
its context. If sensor 1 fires along with sensor 2 and 
3, then given the sensor 2 and 3 firing, the model 
should be able to predict sensor 1. In this sense, it 
is like the Word2Vec model. We train our model on 
a dataset of IoT device activities and hope to 
capture the patterns of cooccurring sensor activity 
for different types of sensors. 

In our approach, we define an IoT device 
session sequence as being similar to the app 
sequence defined in the App2Vec paper: If D1, D2, 

D3 are three IoT devices or sensors in a household, 
and g1, g2, g3 etc. are the time gaps between the 
transition times of these devices, then an example 
usage session can be represented as (D1, g1, D2, 
g2, D3, g3, D1, g4, D2). 

Here, we define a session as a certain length of 
time, say 60 seconds or 600 seconds. We only 
consider the transitions of the sensors (OFF to ON 
and ON to OFF for binary states, or a defined range 
of values for bins in case of sensors like 
thermostat) for our purpose. Within a session, the 
aggregate activities of all the sensors in sequential 
order (D1, D2, D3, D1, D2) is a sentence and the 
activity of any single device or sensor (D1) is a 
word. After getting the words and sentences for all 
the sessions in our dataset, we analyze them to 
create the embeddings vectors using the 
Word2Vec or App2Vec method. 

We have two choices regarding the time gap 
between sensor activations (g1, g2, g3): 

1. Ignore the time gap and consider only the 

order of transitions of devices within a session 

(D1, D2, D3, D1, D2) when creating the sentence 

and words for the embeddings vector. 

2. Consider the time gap and introduce a weight 

xt for the context words in the CBOW model, 

where t is the time gap in minutes from the 

target word and x<1.0 is a similarity factor that 

decays with time difference between the 

activation of the target device and context 

device. The App2Vec model [2] used a similar 

weightage concept (with x empirically 

determined as 0.8) to determine the similarity 

of app usage vectors. The idea is that if two IoT 

devices have a small time gap, their vectors 

should be more similar than if two devices 

have a larger time gap. 

3.2 Method to Create a Word Embeddings 
Vector for IoT  

Using the previously discussed theory, we define 
some steps to generate and analyze the word 
embeddings from IoT device sensor logs.  

Our method includes the following steps: 

1. Filter out the IoT sensors whose data is not 
meaningful or we cannot make sense of 
the data. 
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2. Examine the activity data of the selected 
sensors to see whether it shows meaningful 
activity or actions. 

3. Extract only the values where the sensor state 
is in transition (e.g. ON to OFF or OFF to ON). 

4. Build a session of the sensor values (similar to 
sentence in NLP domain) by choosing a 
session gap. Session gap is the gap of time 
where we construct the boundaries of each 
session. Within a session, we consider both 
the discussed approaches (a) only consider 
the order of firings of different devices or 
sensors. The exact time gap between firings 
within a session is ignored and (b) set a 
weightage xt where x<1.0 and t is the time gap 
in minutes. 

5. Once the sessions are defined, we treat each 
session as a sentence and the device Id as a 
word. Each sentence will contain a sequence 
of IoT device Ids such as (M008, M009, D010) 
which is the order of firings of the devices 
within the session. 

6. Train the Iot2Vec model using the session data 
extracted from the dataset. The input to the 
training model is the document comprising of 
the created sentences in the previous step. 
The output of the model is the embedding 
vector for each type of sensor or device. We 
can select a certain dimension, such as 100, 
for the size of the vector embeddings. 

7. Compute the similarity between the vector 
embeddings of each sensor/device with the 
other sensors. Furthermore, we perform 
dimensionality reduction and construct a t-
SNE plot for easier visualization of the sensor 
activities in terms of contextual similarity, i.e. 
which IoT devices or sensors are being 
activated together. 

8. Visually examine the t-SNE plots to detect 
patterns of similarity in the activity data for 
each type of IoT device or sensor with 
other sensors.Following the above steps, the 
embeddings vector of a given device or sensor 
type can be generated from its activity logs.  

Table 1 shows the algorithm to generate the 
word embeddings with and without the weighed 
similarity factor. 

3.3 Method to Identify the Device Type of a 
New or Unknown IoT Devices from its 
Usage Logs 

The table 2 shows the algorithm for identifying the 
device type of a new or unknown IoT sensor or 

Table 1. Algorithm to identify the embeddings vector for a 

given device  

Input: Input: Device activation sequence for the 
devices D1, D2, … Dn 

Output: Embeddings vector for devices D1, D2, 
… Dn 

1. Break the device activation sequence into 
sessions for a given value of session gap, 
considering only device state transitions. The 
session represents a sentence. 

2. Train a model using CBOW, similar to 
word2vec, using the generated 
session sequences 

3. Once training is completed, the embeddings for 
each device are generated 

4. Repeat the steps 2-3, using a weighed CBOW 
model with weight xt where t is the time gap in 
minutes between device activations and x is a 
similarity factor <1. 

5. exit: end procedure 

Table 2. Algorithm to identify device type from activity logs 

Input: Stored device embeddings for different 
device or sensor types D1 (E1), D2 (E2) etc.  

Output: Device type of a new device Di given its 
usage data  

1. Generate embeddings vector Ej from the usage 
data of the new device Dj  

2. Compute the similarity of the embedding vector 
Ej with each of the stored embedding vectors 
E1, E2 … 

3. Find the device Di whose similarity value of the 
embedding vector Ei with Ej is highest and 
above a threshold 

4. Define the device type of Dj as equal to the 
device type of Di 

5. exit: end procedure 
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device from its activity logs, once we have stored 
device embeddings of a set of devices. The 
principle is to generate the embeddings vector for 
the new device and determine which of the stored 
embeddings is closest to the generated 
embeddings vector. 

4 Experimental Details and Results 

For our experiments to validate our method and to 
explore the possibility of generating embeddings 
for IoT devices, we needed one or more datasets 
that would provide us with data from multiple IoT 
devices in the same locations over a period of time. 

For our purpose, we tried several candidate 
datasets [9-12] and finally chose a dataset 20 from 
the Kyoto dataset list of CASAS [11, 12]. This 
dataset has 2 years’ worth of data from a 
household consisting of two residents, with various 
IoT devices including motion sensors, doors 
(fridge, freezer, and microwave), shelves etc. Each 
data item consists of the following fields: time, 
sensor name, sensor state. 

Fig. 1 shows an extract from a layout of a room 
in a house in the CASAS Kyoto dataset 20 [11, 12]. 

We then created word embeddings for various 
devices in the dataset for which we have data. We 
then used this embeddings to identify the devices. 

We analyzed the dataset in Spark and used 
Word2Vec to find patterns in the data. 

During the preprocessing step, we ignored the 
light sensor, gyro sensor and a few others, since 
they were firing without any discernible patterns. 
We selected the following sensors for analysis: 
Motion sensor, door sensor, item sensor, shake 
sensor, fan sensor, experimental switch. 

We then obtained a sequence of sensor states, 
belonging to multiple sensors, ordered by time. We 
ignored the actual time of sensor state change and 
only noted the sequence.  

Our objective, as mentioned earlier, was to 
determine the similarity between different sensors 
on the basis of their activity. 

In our chosen dataset [11, 12], the device D008 
is a door sensor corresponding to a freezer door, 
where the freezer is located in the kitchen. 

The similarity between vector embeddings that 
we obtained for this D008 sensor for the 60 second 
session gap is as below: 

D008 [('M017', 0.49945521354675293),  
('M016', 0.48164984583854675),  
('MA202', 0.4487079977989197),  
('M018', 0.4332207143306732),  
('D009', 0.41653889417648315),  
('D015', 0.3721662163734436),  
('M015', 0.3238069415092468),  
('M051', 0.2985246777534485),  
('D010', 0.2684941589832306),  
('D014', 0.24952027201652527)]. 

From the above similarity between vector 
embeddings, we can derive the same conclusion, 
that door sensor D008 is close to motion sensors 
M017 and M016 which are in close proximity. 

 

Fig. 1. Extract from the layout of a room in the CASAS 

Kyoto dataset [11], showing how some motion sensors 
(beginning with M) and doors (beginning with D) are 
located close together in the kitchen 

 

Fig. 2. Extract from the t-SNE plot of the activity of 

sensors from the CASAS Kyoto dataset [10], using 60 
seconds as the interval, showing the contextual 
proximity of the motion sensors close to the kitchen 
(M015, M016) and door sensors of fridge (D009) and 
freezer (D008) 
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a) 

 

b) 

Fig. 3. (a) Extract from the t-SNE plot for Kyoto-20 Dataset (b) Sensor activity for 600 seconds gap. Here, sensors 

located near the toilet M038, M039, M040, M041, D006, D005 show similar patterns of activity across session gaps 

 

Fig. 4. Extract from the t-SNE plot of the activity of sensors from the CASAS Kyoto-20 dataset [11], using 600 seconds 

as the interval and time decay factor weight xt for x= 0.9 and t being the time gap in multiples of 15 sec, showing the 
contextual proximity of the motion sensors close to the toilet (M038 to M041) and door sensor D005 

 

a) 

 

b) 

Fig. 5. Extract from the t-SNE plot for Kyoto-11 Dataset of CASAS, with (a) 60 seconds and (b) 600 seconds as the 

interval. In both cases we can see the sensors D005, D006, M037 to M040, which are in the toilet area, having 
similar activity 
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Examining the figure 2, we see that door sensor 
D008 (freezer, located in the kitchen) comes 
contextually close to motion sensors M015 and 
M016, located close to the kitchen, and the door 
sensor D009 of the fridge, also located in the 
kitchen. Looking at the layout of the house in fig. 1, 
we see that the sensors D008 and D009 are 
located in the kitchen and motion sensors M015, 
M016, M017 are located close to the kitchen. We 
can explain their contextual similarity as follows: 
when a person comes into the kitchen, they would 
activate the motion sensors close to the kitchen, 
after which they would open the fridge and freezer 
to get or make some food.  

Based on this, we conclude that it is feasible to 
identify IoT devices based on their 
contextual similarity. In the following subsections, 
we analyze a few trends of device activity based 
on various parameters. 

4.1 IoT Device Activity for a Given Value of 
Session Gap, with Time Gap Ignored 

In this subsection, we attempt to find some trends 
in IoT device activity plotted using the t-SNE 
method using our word embeddings computed for 
various devices. 

First, we determine whether the IoT device 
activity across different session gaps shows any 
significance. For example, it is possible that when 
we choose a small gap such as 10 seconds, device 
A and B are close, however when we increase the 
time gap to say 600 seconds, device A and C 
are close. So, we visually inspect the T-SNE plots 
[13] of the activity data to see if that can indeed be 
the case, or whether similar devices always 
cluster together. 

Fig. 3(a) shows the device activity and sensor 
locations near the toilet area for a 10 seconds 
session gap. On visual inspection, we can see that 
motion sensors M039, M040, M041, D006, D005 
etc. show correlated activity patterns. This is also 
confirmed from a look at the similarity measure of 
distance, where the vector embeddings for these 
sensors show closest Euclidean similarity between 
each other.  

Fig. 3(b) shows the same sensors activity for a 
600 seconds gap for a session. We see that the 
same sensors that were active together for a 10 

second session gap are also active for a 600 
seconds session gap. 

Hence, we conclude that for this choice of 
sensors, the proximity of location (all these sensors 
are in the toilet area) translates into contextual 
proximity as well, regardless of session intervals. 
This could be because whenever someone uses 
the toilet, the motion sensors and door would 
always be triggered together.  However, for a 
different choice of sensors, this might not be the 
case and the timer could be a factor in deciding 
which sensors trigger together. 

4.2  IoT Device Activity, Weighing for Time 
Gaps within a Session 

In this subsection, we repeat the previous 
experiment for session gap 60 seconds but 
weighing for time gaps within a session. We 
choose a session gap of 600 seconds, and time 
decay factor weight xt for x= 0.9 and t measured in 
multiples of 15 seconds. The results are shown in 
fig. 4.  

We can see that here too we get the same trend 
as when ignoring time gaps: the sensors in close 
proximity M38 to M41 also show closeness in the 
t-SNE plot. 

Perhaps repeating the experiment in the future 
for a larger time gap (to allow for the distance to be 
more pronounced when the sensors fire further 
apart) and varying the x and t parameters might 
show more interesting observations in trends. 

4.3  IoT Device Activity for Varying Datasets 
for the Same Sensor Type, with Time Gap 
Ignored 

In this analysis, we seek to learn if the co activity 
of different types of sensors is sustained across 
different datasets. 

For this experiment, we chose the Kyoto 11 
dataset which was part of CASAS [11, 12]. It had 
the same layout as the Kyoto 20 dataset that we 
used earlier. However, the year the data was 
collected is different. The sensors M40, M41, door 
sensor D006 are located in the toilet-
cum- bathroom. 

As earlier, we plotted the word embeddings for 
the sensors with 60 seconds and 600 seconds gap. 
The plots are shown in Fig. 5. As we can see, here 
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too the sensors near the toilet area have similar 
activity as before. Although a larger study is 
needed, we can postulate from this data that it is 
feasible to believe that the patterns of sensor co-
activity as per contextual similarity can hold 
across datasets. 

4.4  Validation: Probability of Similar Device 
Types Clustering Together 

In order to validate the usefulness of out IoT2Vec 
model to predict similar devices, we also calculated 
and plotted the vector similarity of the embedding 
vectors of similar devices from other devices of the 
same device type. For each unique device, we first 
determine the closest device, then determine the 
type of the closest device. We compute the ratio of 
positive matches Vs the number of total devices 
and plot this across different session gap values. 
We repeat this experiment with and without the 
weighed decay factor, as explained in 
earlier sections. 

The result is plotted in Fig. 6 for an embedding 
size of 300. As we can see, the probability is higher 
than 0.65 across session gaps for similar types of 
devices clustering together, thus validating our 
approach. The session gap of 600 seconds 
produced the best results. The probabilities with a 
weighed decay factor of 0.9 (where longer time 
differences between device activations is 
penalized with a decay factor) were higher across 
session gaps than the probabilities with no decay 
factor, indicating that most device activations 
appear close together in time. 

Fig. 7 is a plot of the probability when the word 
embedding size is varied from 50 to 300, for a 
session gap of 600s. As we can see, the choice of 
word embedding size does not affect the 
probability significantly. Regardless of the 
embedding size, we get more than 0.65 probability 
that similar types of devices have similar word 
embedding vectors. 

4.5  Private Dataset Validation: Validating the 
IoT2Vec Model on Real Life Use Cases 

As part of developing a home automation solution, 
our organization has collected smart home 
users’ data.  

The dataset has 2 weeks’ worth of data, which 
has been collected from smart home flats of 17 
different users. 

These smart homes had a mixture of single 
users and couples, with a variety of IoT sensors 
and appliances including Monoprice Z-Wave Plus 
Door/Window Sensor, Nest Weather, Switch, 
Smoke Detector, Smart Plug, TED5000, uDTH, 
Arlo Pro Basestation Siren, Evohome Heating 
Zone, Camera, Moisture Sensor, Rachio Zone, 
Aeon Key Fob, Smart Lock, Samsung SmartCam, 
Network Audio, Light, Hue Dimmer Button 
Controller AB, Lightwave On Off Device, Weather, 
Simulated Contact Sensor, Aeon Minimote, Motion 
Sensor, Z-Wave Device Multichannel, Remotec 
ZRC-90 Scene Master, Z-Wave Switch Generic, 
LAN Hue White Ambiance Bulb, Lightwave 
Dimmer Switch, LIFX Color Bulb, Door Bell, Multi-
functional Sensor and Logitech Harmony Hub 

 

Fig. 6. Graph showing the probability of the word 

embeddings vectors coming close to the same device 
types, for an embedding size of 300, plotted with and 
without the decay factor 

 

Fig. 7. Graph showing the probability of the word 

embeddings vectors coming close to the same device 
types, for a gap of 600 seconds, plotted with and 
without the decay factor 
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C2C. In this dataset, the device data is time 
ordered and is represented by a sensor event tuple 
as follows: <timestamp;masked device id;device 
state; device category>  

This dataset is more significant than the 
previous (public) dataset, since the variety of the 
users and the complexity of the devices / 
appliances and number of possible device states 
is higher. In addition, the home layout is unknown, 
so we can only find information on the type of 
device along with state transitions, and not where 
it is physically situated.  

However, our organization has extracted 
routines for these users, which are available to us.  

Fig. 8 is a plot of the probability when the word 
embedding size is varied from 50 to 600, for a 
session gap of 600s for the private dataset. We can 
see that the embedding size of 500 provides the 
best results. We have utilized this dataset to 

validate the usefulness of the IoT2Vec model on 
real life use cases. One of these real-life use cases 
where we applied the solution was identifying 
alternative for faulty/malfunctioning devices, which 
are part of the user’s routine. 

Whenever any device, which is part of the 
user’s daily routine, becomes faulty or 
malfunctioning, it would lead to the user’s 
discomfort. Therefore, there is a need to find an 
alternative device, which can be used to act as a 
replacement of malfunctioning device. To evaluate 
the usefulness of our IoT2Vec model in this case, 
we tried to identify the replacements for devices 
(randomly assuming one of the devices are 
faulty/malfunctioning) in user’s routine. For each 
user routine, we first randomly choose a device 
and assume it is faulty. Then we try to identify 
contextually similar top-K devices to the 
faulty device.  

The identified contextually similar device is 
plugged into the unmodified user routine and 
provided to the routine identification team for 
evaluation. The assumption here is that using the 
modified routine (with the replacement device), the 
user should be able to perform his or her daily 
tasks, which the same user was originally 
performing using unmodified routines, without 
any discomfort. Fig. 9 is a plot of the probability of 
minimizing user discomfort in case of routine 
disruption by providing a new user routine after 
replacing faulty/malfunctioning device with top-
k  alternatives.  

As we can see, the probability of minimizing 
user discomfort increases with the increase in the 
number of closest devices matched for similar 
type. However, after closest devices is set to 3, it 
does not increase any further. This is because for 
some devices such as a refrigerator, the user does 
not have alternate devices in the house which can 
be used as replacements in case of some fault in 
the original device. 

5 Conclusion 

We have proposed a method to generate word 
embeddings for IoT devices, based on their usage 
patterns. We showed that IoT devices in similar 
areas in a given household can be found to have 
similar usage patterns. We get a probability of at 

 

Fig. 8. Graph showing the probability of the word 

embeddings vectors coming close to the same device 
types, for an embedding size of 50 to 600, plotted with 
the decay factor, for the private dataset 

 

Fig. 9. Graph showing the probability of minimizing user 

discomfort in case of Routine Disruption, for the private 
dataset. The X axis plots K, where the top K similar 
devices are identified, and Y axis plots the probability of 
minimizing user discomfort 
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least 0.65 similar types of devices clustering 
together regardless of the session gap or word 
embedding size chosen. We found that the session 
gap does not affect the similarity, whereas using a 
decay factor showed a higher value of clustering 
similarity. Thus, it is feasible to recognize IoT 
devices based on the embeddings.  

In future, we plan to focus on smart city 
scenarios. We plan to build a location classifier 
based on IoT devices used in that location and 
embedding similarity could capture the location 
type. We also plan to focus on activity generated 
by smart fridge and TV, to get higher level 
understandings of the patterns. 

We also plan to generate routines using the 
IoT2Vec model. In such a scenario, rather than 
creating a word vector for each unique IoT device, 
we will generate sentence vectors using 
Sentence2Vec [22] for each session. Further, 
clustering could be utilized to identify recurring 
patterns in the data. Then, routines can be 
generated from each segment cluster using 
CLIQUE [23]. Another such routine generation 
approach we plan to evaluate is by Chanda et. al 
[24] who used NLP techniques such as language 
modeling to recommend routines.  
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