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Abstract. The lack of concentration, caused by fatigue,
is the most factor of the increasing number of accidents.
In the last few years, the development of an automatic
system which based on facial expression analysis, to
controls the driver fatigue and prevents him in advance
from accidents, has received a growing interest in
all intelligent vehicle systems. In this paper, we
propose and compare two methods to detect the driver
drowsiness state. These methods extracts geometric
features using video to characterize eyes blinking as a
nonstationary and nonlinear signal. The first method
is based on Cumulative Blink Signal analysis technique
”CBS” which locates and analyses the eyes blinking from
the obtained nonstationary and nonlinear signal to detect
the driver drowsiness state. The second method is
based on IFD technic ”Intinsic Functions Decomposition
of the nonstationary and nonlinear signal to analyse
the nonstationary and nonlinear signal by using the
combination between the two methods: Empirical Mode
Decomposition (EMD) and Band Power(BP). For both
proposed methods, this analysis is confirmed by the
Support Vector Machine (SVM) to classify the state of
driver fatigue. The synthesis results obtained by both
methods CBS and IFD are discussed and compared to
those of the literature.

Keywords. Facial expression, drowsiness detection,
circular Hough transform, Haar features, band power,
empirical mode decomposition.

1 Introduction

These last few years, much research has
been conducted to detect the driver fatigue.
Some approaches are intrusive like using the
Electroencephalography signal analysis [5, 7] and
others analyses the driver videos [3, 1, 26, 23,
13, 22, 25]. We are interested in our work to
examine the measures related to the speed of eye
closure from a sequence of images to determine
the driver state. Two categories of approaches can
be suggested:

The first category called mono-variables that
calculates the time of eye closure. Indeed, the
size of the iris change their area and depends on
the eye state (opened, semi-opened or closed).
This fact can be used to determine the state of
the eye (open or close) [26, 21, 13, 22]. Other
studies calculate the distance between the upper
and lower eyelids to locate eyes blinking. This
distance decreases if the eyes are closed and
increase when they are opened [13, 12, 27, 25].
All of, these approaches can alert the driver state
fatigue in case of prolonged eye closure.

Tansakul et al. [22] implement a driver
drowsiness detection system based on eye blinking
analysis. The system monitored the eyes blinking
rate and the blinking duration after locating the eye
region with Viola and Jones method. Tansakul
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et al. convert the color space of eye ROI image
from RGB to HSV and calculate a lightness value.
Fatigue drivers having a value higher than normal
levels (3 calculated experimentally) is considering
as fatigue. The duration of eyes closure is used as
an indication of driver drowsiness. Its varies from
one work to another. Singh et al. [21] consider
that a person is asleep if the eyes remain closed
for a period (5 to 6 seconds). Wang et al. [25] use
a traditional AdaBoost method to detect eye circle
contour in order to recognize whether the eyes are
open or closed. After locating human faces and
ocular regions, the pixels of the pupil region are
removed by a developed grid method. They use
the least squares method to adjust the contour of
the upper eyelid and extract a characteristic vector.

Finally, the state of the eyes is recognized
according to a defined threshold. Wang et al.
prove, experimentally, that the vertical coordinate
of the circle outline is the best feature for classifying
the eyes state. Wang et al. conclude that driver
fatigue is detected if the eyes closure remains
between 3 and 10 seconds. This case represents
the deep sleep. On the other side, the micro-sleep
is detected if the driver goes through a state of
sleep for a short time (2-3 seconds). For Wen
et al. [26], the driver is considered in a state of
fatigue if he/she closes his eyes for 5 consecutive
seconds. Hongbiao et al. [12] consider that
the state of drowsiness is determined when the
distance between the eyelids is less than 60% for a
period of 6.66 seconds. Yong et al. [27] divide the
eyes opening state into three categories: opened,
half opened, closed.

This division allows to conclude the driver
drowsiness state if the eyes are kept closed more
than 4 consecutive images or eyes move from
a state of half opened to a closed state for 8
successive images (each image is taken in each
second). The percentages of fatigue detection
vary in literature from a work to another. Yong et
al. [27] reached 91.16% of correct average rate
of driver drowsiness state. Wen et al. [26] explain
that the average accuracy rate for fatigue detection
can reach 88.9%. All these works compute their
results with subjects that their numbers varies from
2 to 10 people.

The second type of approach is called multi-
variable. In this context, the maximum speed
reached by the eyelid when the eye is closed
is called velocity and the amplitude of blinking
calculated from the beginning of blink until
the maximum blinking present two important
indications that have been studied by Murray et
al. [15]. They show that the amplitude and
and velocity ratio (A/PCV) is used to prevent the
driver one minute in advance for their state of
hypovigilance. Omi et al. [17], use an infra-red
camera and suggests five levels of vigilance
namely non-drowsy, slightly drowsy, sleepy, rather
sleepy, very sleepy and asleep. Omi et al.
proposes several criteria:

The percentage of eye opening, the number of
blinking, the duration of eye closure, the blinking
interval and the surface of eye opening. This
work has been tested using a base of 10 subjects.
A correlation rate that is greater than 90% is
achieved. Picot presents a synthesis of different
sizes as the duration to 50%, the PERCLOS
80%, the frequency of blinking and the veloci-ty
amplitude ratio. Picot et al. [19] show that these
criteria are more relevant to detect the drowsiness.
These variables are calculated every second on a
sliding window of 20 seconds. They are fused by
fuzzy logic to improve the reliability of the decision.

This study shows a percentage of 80% of
good detections and 22% of false alarms.
Generally, video-based approaches, rest on
the iris segmentation to extract features for the
subsequent steps. In this context, we adopt the
method of Circular Hough Transform for iris. This
method shows sturdiness in the face of the desired
shape, an ability to detect circle with poor or noisy
quality and an identification of all directions thanks
to the use of a polar description.

Following the analysis of the literature, it seems
that single-variables approaches, present a very
high rate of successes detection but the detection
of the drowsiness state is very late. In this paper,
we focus our study on the characteristics allowing
to predict the driver state before sleeping, and
analyzing the speed of closing eyes. Thereby
we propose and compare, in this paper, our two
methods for drowsiness detection.
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2 Proposed Approach

In this section, we describe successively our first
and second methods to detect the driver fatigue.
Our main idea is to use the signal extracted from
geometric features that characterize eyes blinking.
Both proposed methods are preceded by a step of
pretreatment and signal extraction.

2.1 Pretreatment and Signal Extraction

Our approach for driver drowsiness detection is
based on studying the behavior of eyes conductor
in real time by an RGB camera. Both proposed
methods require critical steps presumed through
the automatic face detection and the localization
of the eye boxes like shown in the figure 1. These
steps are described in the following section.

 RGB Camera

 Driver

 Face detection  Eyes location

Blink detection

Drowsiness detection

Features extraction

Fig. 1. Drowsiness detection steps

2.1.1 Tracking both Face and Eyes after their
Localization

In order to locate face and eyes, our approach
exploits the Viola and Jones method based on
a learning technique of Haar features [24]. This
method uses three concepts: the rapid extraction
of features using an integral image, a classifier
based on Adaboost and the implementation of
a cascade structure. The face and the eyes
located by the Haar features are then used to
initialize the tracking module. This module is
based on the CAMSHIFT algorithm [4]. The
choice of this algorithm is argued by its robustness
for real-time systems, its invariance to scale and
rotation, treatment of occlusions and finally by its
insensitivity to object distortions.

2.1.2 Iris and Eyelids Detection

We note that human eyes are characterized by
horizontal contours representing the eyelids and
the wrinkles or vertical contours as the ones of
the iris. The application of 2D Haar Wavelet
[9] allows extracting the vertical, horizontal and
diagonal contours. The vertical contours are used
in the localization of the iris with the Circular Hough
Transform [6]. The use of the wavelet allows us to
highlight the contours that we want to spot. In our
case, the scale of the second level improves the
contours of the iris and the eyelids for detecting.

Edge Extraction based on 2D Haar Wavelet
The Haar Wavelet allows splitting the image to
find the vertical and horizontal details for both iris
and eyelids detection. The wavelet transform is
characterized by its multi-resolution analysis. It is
a very effective tool for noise reduction in a digital
image. With Haar Wavelet, we can also ignore
some edges and keep only the most representative
ones. This type of analysis is allowed by the
multi-resolution.

Iris and Eyelids Detection based on Circular
Hough Transform The Circular Hough Trans-
form has two spaces, the space XY and the
parameter space which varies according to the
detected object. The parameter space of the circle
is represented by equation 1:

R2 = (x−A)2 + (y −B)2. (1)

Were A and B are the coordinates of the circle
center and R is the radius. For simplification
purposes, we can consider that the radius varies
between two values. This will reduce the
complexity of the algorithm. The equation of the
circle can be written in the polar system as follow:

x = r cosθ + a and y = r sinθ + b. (2)

The process to find circles by Circular Hough
Transform follows several stages. In order to detect
the desired edges, we apply the 2D Haar Wavelet
decomposition of the second level. Our approach
allows the detection of the iris by applying the
Circular Hough transform on the vertical details
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of the eye. Both eyelids are located using the
Circular Hough Transform on the image result
of the horizontal details of the 2D Haar Wavelet
decomposition.

2.1.3 Geometric Features Extraction

After the detection of the iris and the eyelids, we
proceed by extracting geometric features, those
able to characterize the driver drowsiness state.

Ci

C2 Dih

Dib

P1

P2

}

}

I(X0,Y0)

J(Xj,Yj)

Ph

Pb

C1
+

+

+

+

+

+

Fig. 2. Geometric eye features representation

We propose two geometric features Dih and
Dib (figure 2) to extract the nonstationary and
nonlinear signal. These features represent the
distance between the point J and the point Ph

and Pb respectively as written , respectively, in the
equations 3 and 4:

Dih =
√
((xj − x1)2 + (yj − y1)2), (3)

Dib =
√

((xj − x2)2 + (yj − y2)2). (4)

We note that Ph and Pb are calculated from the
intersection between the straight line which passes
through J and perpendicular to the line (P1P2) and
the two circles C1 and C2, where the equation of
one of the two circles C1 or C2 is represented as
follows:

R2 = (x0 − x)2 + (y0 − y)2, (5)

and the perpendicular to line (P1P2) is calculated
by applying the equation:

y = ax+ b => y2 = ax2 + b2 + 2axb. (6)

By replacing y2 into the equation 5 we obtain the
equation:

(1+a)x2+(2ab−2x0−2y0)x+(b2+x20+y
2
0−R2) = 0.

(7)
The straight line (P1P2) is determined after the

detection of two points P1 and P2 (Figure 2) which
represent the intersection of two circles C1 and C2

such as the squared equation of circle C1 is:

R2
1 = (x1 − x)2 + (y1 − y)2), (8)

and the squared equation of circle C2 is:

R2
2 = (x2 − x)2 + (y2 − y)2). (9)

The difference between equation 8 and equation
9 allows calculating the two points P1 and P2 as
follows:

x2A+x+[x21+y
2
1+N

2−R2
1−2y1N ]−R2

2+R
2
1 = 0,

(10)
such us:

N = (R2
2−R2

1−x22+x21−y22+y21)/(2(y1−y2)), (11)

and:

A = [((x1 − x2)/(y1 − y2))2 + 1], (12)

while

B = [2y1((x1−x2)/(y1−y2))−2N((x1−x2)/(y1−y2))–2x1].
(13)

2.1.4 Signal Extraction

In order to produce realistic data, a human
subject is placed in front of an RGB camera
to record different possible movements of the
head, the eyelids and the positions of the iris,
probably related to different states of fatigue. This
experimentation consists of studying the temporal
variation of both features Dih and Dib, in addition,
to normalize the initial state of the eye using the
equation 14. The signal f(xt) is calculated as
follows:

f(xt) = (Dih
t +Dib

t)/Vi. (14)
The initial value Vi is calculated at the beginning

of the algorithm when the eyes are open to 75%.
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2.2 First Method (CBS): Driver Fatigue
Detection based on Analysis of Cumulative
Blink Signal

In our case, the signal f(xt) has peaks (see figure
3). In theory, a peak is a curve extending to infinity
on both sides.

A vertex relating to a peak in the signal f(xt)
represents relevant information for detecting blinks.
Generally, in case of blinking, the top of the peak
takes the highest value. However, the maximum
point of the signal does not necessarily have
the peak following a significant oscillation of the
signal (noise case). To resolve this problem, the
first derivative of the signal f(xt) seems to be a
fair solution. Indeed, the objective of the blink
analysis at this level is to detect the positions of
state change, the beginning of eyes closing or the
beginning of eyes opening. The first derivative of
the function f(xt) makes it possible to find these
variations (figure 4) which are characterized by a
brutal negative change for the beginning of eyes
closing and by an abrupt positive change for the
beginning of eyes opening. The identification of
these sudden variations can help us to locate the
normal and slow driver blinks, possibly in a state of
drowsiness.

A second interesting idea is to to analyze
the difference between eyes closure speed of a
person in normal state and another in a state of
drowsiness. The figure 3 shows the average of
eyes closing time of a normal person (see figure
3 (a)) and sleepy (see figure 3 (b)). Thus, in
order to capture this important information, we
propose in this step to analyze the cumulative
variation (equation 15) of the signal f(xt) in order
to calculate the duration of eye closure (figure 5):

C(t) =

t∑
j=1

f ′(xt). (15)

We, therefore, use cumulative variation (equa-
tion 15) to detect the number of observations that
are above (or below) a particular value in a dataset.
In our case, we are mainly interested in the values
of slow eyes closure time. Drowsiness states are
characterized by a continuous signal because the
evolution of f(xt) is too low. According to our study

(figure 5), this duration is near to 0.07 seconds and
does not exceed 0.2 seconds [16] for a fast blink
and it is greater than 2 seconds [8, 20] for a blinking
of a person in a drowsiness state.

Thus, in our proposal, a state of drowsiness is,
firstly, identified following the location of the blink,
secondly, the blinking speed will be studied and
finally eyes closing time will be calculated. The
driver is considered to be a state of drowsiness
if the eyes closing speed exceeds 1 second (see
figure 3) and/or the eyes closing time is greater
than 2 seconds (see figure 5)

2.3 Second Method (IFD): Drowsiness
Detection by Intinsic Functions
Decomposition of the Nonstationary and
Nonlinear Signal

The obtained signal refered as nonstationary and
nonlinear signal like shown in the figure 6.

The Fourier Transform or Wavelets made the
time-frequency analysis of signals possible. These
latter methods do not properly analyze the
nonstationary and nonlinear signals.This supports
our argument to apply a method called Empirical
Mode Decomposition [10] (EMD). THe EMD
method does not depend on a core of basic
function (such as Wavelets) and depends on the
original signal. EMD method decomposes the
f(xt) signal into a local average a(xt), which is
the average of the upper and lower envelopes
f(xt) and another element oscillating intensely
IMF (xt). With iteration we can repeat the above
procedure until a non-oscillating residue r(xt)
(Equation 16):

f(xt) =
∑
i

IMFi(xt) + r(xt). (16)

The decomposition of the signal (Figure 5)
shows a strong oscillation in the first IMF1(xt)
when the driver is drowsy. This observation
supports the choice of the first IMF (xt) to extract
the most relevant information of the signal by
combining the EMD and BP algorithm on a sliding
window of a 1 second since a normal blink lasts no
more than 0.2 seconds [16].

The BP method [18] applies a bandpass filter
passing only a frequency interval, which is the
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Fig. 3. Eye closure speed, (a) normal eyes take 0.16 s, (b) abnormal eyes close for an average of 1 s

Fig. 4. Blink detection of a person by positive and
negative abrupt change localization in f

′
(x, t)

band between the high and low frequency. This
interval, is averaged after it is squared.

In fact, The features extracted are validated by
the results of classification with the SVM algorithm
[11], in order to detect the driver drowsiness states.
Figure 7 shows the states of drowsiness presented
by the value 1 and vigilance by 0 value.

We note that false alarms can appear in the
result of the classification. These false alerts (from
image 2196 to image 2220) are mainly related
to the video source quality that influenced the
geometric features extracted.

3 Experimental Study

Our experimental study is based on two databases.
The first one is a database made by our laboratory
called MIRACLHB [2], composed of 12 persons for
different sexes and in different lighting conditions.
The second database used is the DEAPT database
[14], and contains videos of 22 participants for
frontal views with different facial expressions.

Indeed, the stage of the iris and eyelids localized
is essential to calculate the signal f(xt). The
size of the rectangle locating the eye allows us
to estimate the size of the circles rays to detect
the eyelids and the iris by the Hough Circular
Transform. On this way, we ensure that the method
used is not affected by any scaling conditions. The
choice of the Hough Circular Transform is argued
for its robustness, speed and noise resistance. The
results of the iris and eyelids localization (tables
1 and 2) are calculated from the average of the
correct (TDC) and false (TFD) rates locations by
the Hough Circular Transform according to the
equation 17 and 18:

TDC =
(number of correct images localized)

(total number of images)
.

(17)

TFD =
(number of false images localized)

(total number of images)
, (18)
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Fig. 5. The duration of eye closure, (a) the eyes are closed for 0.07 s for a normal blink, (b) the eyes in a state of
drowsiness (more than 2 s)

Time (seconds)

Fig. 6. Example of the f(xt) signal calculated

Fig. 7. Result of driver fatigue detected by SVM
classification. The image in the top presents the original
f(xt) signal, in the medium IMFi(xt) and in the bottom
the classification result by the SVM algorithm

Table 1. Correct and False rates of Circular Hough
Transformation for the DEAP database

Subjects TFD TDC

S1 0,3 94,2
S2 0,1 96,01
S3 0,98 91,2
S4 1,3 90,5
S5 0,6 94,05
S6 2,56 94
S7 1,2 91,8
S8 1,87 95,06
S9 0,4 94,5
S10 0,6 93,52
S11 1,5 91,85
S12 0,6 93,74
S13 0,76 92,3
S14 0,54 95,32
S15 1,21 94,2
S16 0,45 95,84
S17 0,76 93,36
S18 0,6 96,45
S19 0,78 95,25
S20 0,34 90,1
S21 0,56 90,3
S22 0,42 91,36

Average 0,8377 93,38
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Table 2. Correct and False rates of Circular Hough
Transformation for the MiraclHB database

Subjects TFD TDC

S1 0,3 96,82
S2 0,1 95,72
S3 0,6 96,17
S4 1,5 95,43
S5 1,8 95,88
S6 0,3 96,97
S7 0,2 97,35
S8 0,4 97,27
S9 1 96,58
S10 0,2 96,83
S11 0,4 97,23
S12 0,3 98,02

Average 0,5917 96,68

The iris and eyelids localization results show
satisfactory rates using the MiraclHB database
than the DEAP database. This satisfaction is
demonstrated by the percentage average of the
correct detection rates (96.68 % for the database
MiraclHB and 93.38 % for the database DEAP)
and the rates of false detections (0.59 % for the
database MiraclHB and 0.83 % for the database
DEAP). However, the errors of iris localization and
eyelids are due mainly to occlusions or to the bad
orientations of the face compared to the camera.

These errors affect the descriptors values
Dih and Dib, which directly influences the
interpretation results of the signal f(xt) whether
by the cumulative signal analysis method or by
intrinsic function decomposition method.

The figures 8, 9, 10 and 11 show the results
of fatigue detection on both MiraclHB and DEAP
databases by both drowsiness detection methods.

An expert’s advice in this step is essential to
determine the real driver somnolence represented
by the index (|R|). The recall rate (equation 19) is
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Fig. 8. Drowsiness detection results by CBS method
tested on the MiraclHB database

0 10 20 30 40 50

S 1

S 2

S 3

S 4

S 5

S 6

S 7

S 8

S 9

S 10

S 11

S 12

S 13

S 14

S 15

S 16

S 17

S 18

S 19

S 20

S 21

S 22

S
u

b
je

ct
s

Number of appearances

Si : Subjects i

Ground truth

Total blinks generated

Correct blink

Fig. 9. Drowsiness detection results by CBS method
tested on the DEAP database

calculated from the correct alarms (|Ra|) and those
determined by a specialist (|R|):
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Fig. 10. Drowsiness detection results by IFD method
tested on the MiraclHB database
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Fig. 11. Drowsiness detection results by the IFD method
tested on the DEAP database

Recall =
|Ra|
|R|

. (19)

The precision is calculated by a ratio between

the correct alarms (|Ra|) and all the alarms
generated by our approach (|A|) according to the
equation 20:

Precision =
|Ra|
|A|

. (20)

The extraction of the characteristics as well
as the detection of somnolence states with both
methods show good results. Our two proposed
methods carried out validate the relevance of the
two geometric descriptors Dih and Dib.

This is confirmed by the good average rates of
Recall and Precision. However, a slightly better
average recall rate is found in favor of the IFD
method which reaches 92% vs. 86.5% for the
CBS method. Similarly, the average accuracy rate
is 82.5% for the CBS method, compared to 89%
for the IFD method. These values argue for the
adoption of the intrinsic decomposition method to
ensure better results.

Our non-invasive IFD method by intrinsic
decomposition function, compared to the work
done in the literature, shows also satisfactory
results. This satisfaction is demonstrated by a
comparison given in table 3. Indeed, the value of
the recall in the fatigue detection system is a very
important information to know the performance
of the system in relation to the opinion of an
expert. Our system calculates this metric and
shows an important performance up to 92%. In
fact, this value is not calculated for the two methods
compared in the literature (table 3). On the
other hand, Tansakul et al and Wang et al show
satisfactory values of accuracy, but this is not
sufficient information to know the performance of
their methods in the case where the recall is weak.
The use of two databases in our experimental
study represents another major advantage for our
work. In fact, among these databases, we created
our own database MIRACLHB [2] with free access.
The works compared to our method use some test
videos in their experimentation which influence,
thereafter, on the calculated rates and gives a
question to their relevance.
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Table 3. Comparison results obtained by our IFD method
with those of the literature

Authors Results

Our IFD method

Average recall rate=92%
Average accuracy

rate=89%

Tansakul et al [22],
2016

Average recall rate=NA
Average accuracy

rate=89%

Wang et al [25],
2017

Average recall rate=NA
Fatigue blink recognition

accuracy=91.5%

4 Conclusion and Future Work

In this paper, we presented a general overview
of the different methods of drowsiness detection
approaches in the literature.

Experimental results show that our methods
achieve good performance with a satisfactory clas-
sification rate (essentially IFD method). However,
some shortcomings limit our results by the fact that
there are errors of detections of the eyelids and the
iris due to occultations cases. These reflections
open up new perspectives for our work that we try
to address such as the analysis of the yawning,
the estimation of the 3D head pose or use a fusion
system to improve overall results.
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