Time Evolution of the 3-Tangle of a System of 3-Qubit Interacting through a XY Hamiltonian

Manuel Ávila Aoki, Carlos Gerardo Honorato, Jose Eladio Hernández Vázquez
Universidad Autónoma del Estado de México, Centro Universitario Valle de Chalco, Mexico
vlkmanuel@uaemex.mx, carlosg.honorato@correo.buap.mx, eladiohv2122@gmail.com

Abstract

We consider a pure 3-qubits system interacting through a $X Y$-Hamiltonian with antiferromagnetic constant J. We employ the 3-tangle as an efficient measure of the entanglement between such a 3 -qubit system. The time evolution of such a 3 -tangle is studied. In order to do the above, the 3 -tangle associated to the pure 3-qubit state $|\psi(t)\rangle=c_{0}(t)|000\rangle+c_{1}(t)|001\rangle+$ $c_{2}(t)|010\rangle+c_{3}(t)|011\rangle+c_{4}(t)|100\rangle+c_{5}(t)|101\rangle+$ $c_{6}(t)|110\rangle+c_{7}(t)|111\rangle$ is calculated as a function of the initial coefficients $\left\{c_{i}(t=0)\right\}(i=0,1, \ldots, 7)$, the time t and the antiferromagnetic constant J. We find that the 3 -tangle of the 3 -qubit system is periodic with period $t=4 \pi / J$. Furthermore, we also find that the 3-tangle as a function of the time t and J has maximal and minimum values. The maximal values of the 3 -tangle can be employed in Quantum Information Protocols (QIP) that use entanglement as a basic resource. The pattern found for the 3 -tangle of the system of three qubits interacting through a XY Hamiltonian as a function of J and the time t resembles to a quantized physical quantity.

Keywords. 3-qubits; non-classical communications; quantum information processing; entanglement.

1 Introduction

Entanglement of multipartite pure states has been object of many studies both theoretical and experimental [1, 3]. The reason for the above is that multipartite entanglement is a basic ingredient for Quantum Information Protocols (QIP). Although certainly there have been advances in the study of multipartite entanglement [4, 11], it is not yet understood the time evolution of the initial
entanglement of a system of several qubits. In particular, it arises the question about the characteristics of the time evolution of the 3 -tangle of a system of 3-qubit interacting mutually through a XY Hamiltonian.
As it has been pointed out in Ref. [4] the 3-tangle can be an important quantity for measuring the entanglement of a 3 -qubit system. In the present paper we study the time evolution of the 3 -tangle associated to a 3 -qubit system in a pure state. In order to do the above we employ the 3 -tangle introduced in Ref. [4] and also the quantum Heisenberg XY-Hamiltonian [12] for a system of 3 -qubit.
Thus, given an initial 3-qubit state $|\psi(t=0)\rangle=$ $c_{0}(t=0)|000\rangle+c_{1}(t=0)|001\rangle+c_{2}(t=0)|010\rangle+$ $c_{3}(t=0)|011\rangle+c_{4}(t=0)|100\rangle+c_{5}(t=0)|101\rangle+$ $c_{6}(t=0)|110\rangle+c_{7}(t=0)|111\rangle$, the time evolution of such a state is given by the Heisenberg operator i.e. $|\psi(t)\rangle=e^{-i H t}|\psi(t=0)\rangle=c_{0}(t)|000\rangle+$ $c_{1}(t)|001\rangle+c_{2}(t)|010\rangle+c_{3}(t)|011\rangle+c_{4}(t)|100\rangle+$ $c_{5}(t)|101\rangle+c_{6}(t)|110\rangle+c_{7}(t)|111\rangle$ where H is the XY-Hamiltonian of the 3 -qubit system. In our approach, we derive an analytic expression for the Heisenberg operator $e^{-i H t}$ with which if the initial 3 -tangle $(\tau(t=0))$ is known in terms of the initial coefficients $\left\{c_{i}(t=0)\right\}(i=0,1, \ldots, 7)$ then the final tangle $\tau(t)$ will be known in terms of the final coefficients $\left\{c_{i}(t)\right\}(i=0,1, \ldots, 7)$, the value of J and the time t.
As a result we find noticeable harmonic-like time behavior for the 3 -tangle. The later seemingly suggests that the entanglement of a 3-qubit system
interacting through a XY Hamiltonian is a quantized quantity. The paper is organized as follows: in Section 2 we derive the formalism for a 3 -qubit system interacting through a XY-Hamiltonian. In Section 3 we find an expression for the 3 -tangle as a function of time. Finally, we conclude the work by giving a discussion of our results in a section of Conclusions.

2 3-qubits XY Hamiltonian

In order to facilitate our calculations it is employed the decimal notation, which is defined as follows:

$$
\begin{align*}
|0\rangle & =|000\rangle, \\
|1\rangle & =|001\rangle, \\
|2\rangle & =|010\rangle, \\
|3\rangle & =|011\rangle, \tag{1}\\
|4\rangle & =|100\rangle, \\
|5\rangle & =|101\rangle, \\
|6\rangle & =|110\rangle, \\
|7\rangle & =|111\rangle .
\end{align*}
$$

Then, a general pure 3-qubits state can be defined in terms of a superposition of the above basis as follows:

$$
\begin{equation*}
|\psi\rangle=\sum_{i=0}^{7} c_{i}|i\rangle, \tag{2}
\end{equation*}
$$

where:

$$
\begin{equation*}
\sum_{i=0}^{7}\left|c_{i}\right|^{2}=1 . \tag{3}
\end{equation*}
$$

With the decimal notation it is possible to associate a matrix with a Hamiltonian operator. The respective associated matrix elements to the Hamiltonian operator H become:

$$
\begin{equation*}
H_{i j}=\langle i| H|j\rangle . \tag{4}
\end{equation*}
$$

The so called XY-Hamiltonian for n qubits is: [12]

$$
\begin{equation*}
H=J \sum_{i=0}^{N-1}\left(S_{i}^{x} S_{i+1}^{x}+S_{i}^{y} S_{i+1}^{y}\right), \tag{5}
\end{equation*}
$$

where $N=2^{n}, J$ is the coupling constant, and S_{i}^{a} is the $a(a=x, y)$ component of the spin of the
i - th qubit. In the present case we have $n=3$ qubits (i.e. $N=8$).

Let us observe that the states $|0\rangle$ and $|7\rangle$ are annihilated by the action of the operator H of Eq. (5), that is:

$$
\begin{align*}
& H|0\rangle=0, \tag{6}\\
& H|7\rangle=0 .
\end{align*}
$$

Furthermore, the action of the XY Hamiltonian H of Eq. (5) on the rest of the decimal states is:

$$
\begin{align*}
H|1\rangle & =\frac{J}{2}[|2\rangle+|4\rangle] \\
H|2\rangle & =\frac{J}{2}[|1\rangle+|4\rangle] \\
H|3\rangle & =\frac{J}{2}[|5\rangle+|6\rangle], \\
H|4\rangle & =\frac{J}{2}[|2\rangle+|1\rangle], \tag{7}\\
H|5\rangle & =\frac{J}{2}[|6\rangle+|3\rangle], \\
H|6\rangle & =\frac{J}{2}[|5\rangle+|3\rangle] .
\end{align*}
$$

Through the use of the Eqs. (4)-(7) and the orthonormality of the decimal basis, the construction of the matrix associated to H yields:

$$
H=\frac{J}{2}\left(\begin{array}{llllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \tag{8}\\
0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

On the other hand, the time evolution operator can be expanded in powers of H as follows:

$$
\begin{align*}
\mathcal{U}(t) & =\exp [-i H t] \tag{9}\\
& =1-i H t+\frac{(-i)^{2}}{2}[H t]^{2}+\frac{(-i)^{3}}{3!}[H t]^{3}
\end{align*}
$$

We observe that the several different powers of H of Eq. (8) behave peculiarly. For instance the quadratic power is:

$$
\begin{array}{rl}
H^{2}= & \frac{J^{2}}{4}\left(\begin{array}{cccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 2 & 1 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 2 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 2 & 0 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 & 2 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 2 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 1 & 2 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) \\
= & {\left[\begin{array}{llllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)} \\
& +\left(\begin{array}{lllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 & 0 \\
0 \\
0 & 1 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 1
\end{array}\right) \\
0 & 1
\end{array} 1
$$

In a similar way, for the other powers we obtain that:

$$
\begin{aligned}
& H^{3}=\left(\frac{J}{2}\right)^{3} 2 I_{\{2-7\}}+\left(\frac{J}{2}\right)^{2} 3 H, \\
& H^{4}=\left(\frac{J}{2}\right)^{4} 2 * 3 I_{\{2-7\}}+\left(\frac{J}{2}\right)^{3}(3+2) H, \\
& H^{5}=\left(\frac{J}{2}\right)^{5} 2 * 5 I_{\{2-7\}}+\left(\frac{J}{2}\right)^{4}(5+6) H, \\
& H^{6}=\left(\frac{J}{2}\right)^{6} 2 * 11 I_{\{2-7\}}+\left(\frac{J}{2}\right)^{5}(11+10) H,
\end{aligned}
$$

where $I_{\{2-7\}}$ has been defined in Eq. (11). In general for the $n-t h$ power we find that:

$$
\begin{equation*}
H^{n}=\left(\frac{J}{2}\right)^{n} a_{n} I_{\{2-7\}}+\left(\frac{J}{2}\right)^{n-1} b_{n} H . \tag{11}
\end{equation*}
$$

However, we can see that $a_{n}=2 b_{n-1}$ and $b_{n}=b_{n-1}+a_{n-1}=b_{n-1}+2 b_{n-2}$, then the above equation can be expressed as:

$$
\begin{align*}
H^{n}= & \left(\frac{J}{2}\right)^{n} \frac{2}{3}\left[-(-1)^{n-1}+2^{n-1}\right] I_{\{2-7\}}(1 \tag{12}\\
& +\left(\frac{J}{2}\right)^{n-1} \frac{\left[-(-1)^{n}+2^{n}\right]}{3} H, \quad n \geq 1 .
\end{align*}
$$

We observe from the above equation that for $n=$ 0 , the second term will be equal to zero and that the first one is equal to 1 . However, in this case, $H^{0}=I_{\{2-7\}}$ and this is not the identity I_{8} as can be seen from Eq. (11). Such a problem can be solved as follows:

$$
\begin{align*}
H^{n}= & I_{\{1,8\}} \delta_{0 n} \tag{13}\\
& +\left(\frac{J}{2}\right)^{n} \frac{2}{3}\left[-(-1)^{n-1}+2^{n-1}\right] I_{\{2-7\}} \\
& +\left(\frac{J}{2}\right)^{n-1} \frac{\left[-(-1)^{n}+2^{n}\right]}{3} H, \quad n \geq 0
\end{align*}
$$

where:

$$
I_{\{1,8\}} \equiv\left(\begin{array}{cccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \tag{14}\\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

From the above equation we find that the time evolution operator will always be linear on H, and

ISSN 2007-9737

472 Manuel Ávila Aoki, Carlos Gerardo Honorato, Jose Eladio Hernández Vázquez

the time evolution operator can be written as:

$$
\begin{align*}
\mathcal{U}(t)= & \sum_{n=0} \frac{(-i H t)^{n}}{n!} \\
= & \sum_{n=0} \frac{(-i t)^{n}}{n!}\left\{I_{\{1,8\}} \delta_{0 n}\right. \\
& +\left(\frac{J}{2}\right)^{n} \frac{2}{3}\left[-(-1)^{n-1}+2^{n-1}\right] I_{\{2-7\}} \\
& \left.+\left(\frac{j}{2}\right)^{n-1} \frac{\left[-(-1)^{n}+2^{n}\right]}{3} H\right\} \\
= & I_{\{1,8\}} \\
& +\frac{2 I_{\{2-7\}}}{3} \sum_{n=0} \frac{1}{n!}\left(\frac{-i t J}{2}\right)^{n}\left[-(-1)^{n-1}\right. \\
& \left.+2^{n-1}\right] \\
& +\frac{2 H}{3 J} \sum_{n=0} \frac{1}{n!}\left(\frac{-i t J}{2}\right)^{n}\left[-(-1)^{n}\right. \\
& \left.+2^{n}\right] . \tag{15}
\end{align*}
$$

It is worth to observe that the last expression can be written in terms of exponentials with which the time evolution operator takes a simple form:

$$
\begin{align*}
\mathcal{U}(t)= & I_{\{1,8\}}+\frac{2 I_{\{2-7\}}}{3}\left(e^{\frac{i J t}{2}}+\frac{1}{2} e^{-i J t}\right) \\
& +\frac{2 H}{3 J}\left(e^{-i J t}-e^{\frac{i J t}{2}}\right) . \tag{16}
\end{align*}
$$

Let us note that according to Eqs. (9) and (10) the time evolution of the state $|\psi(t=0)\rangle$ is given by:

$$
\begin{align*}
|\psi(t)\rangle= & \mathcal{U}|\psi(t=0)\rangle \\
= & \mathcal{U}\left[c_{0}(t=0)|0\rangle+c_{1}(t=0)|1\rangle\right. \\
& +c_{2}(t=0)|2\rangle+c_{3}(t=0)|3\rangle \\
& +c_{4}(t=0)|4\rangle+c_{5}(t=0)|5\rangle \\
& \left.+c_{6}(t=0)|6\rangle+c_{7}(t=0)|7\rangle\right] \\
= & c_{0}(t)|0\rangle+c_{1}(t)|1\rangle+c_{2}(t)|2\rangle \\
& +c_{3}(t)|3\rangle+c_{4}(t)|4\rangle+c_{5}(t)|5\rangle \\
& +c_{6}(t)|6\rangle+c_{7}(t)|7\rangle . \tag{17}
\end{align*}
$$

It can be observed from the above equation that we can calculate the coefficients at any time $\left\{c_{j}(t)\right\}$
$(j=0,1, \ldots, 7)$ if the initial coefficients $\left\{c_{j}(t=0)\right\}$ ($j=0,1, \ldots, 7$) are known and if it is also known the action of the time evolution operator on each of the decimal states, that is, $\mathcal{U}(t)|i\rangle$ for $i=0, \ldots, 7$. Through the use of Eqs. (6), (7), (11), (16), and (18) it is found that:

$$
\begin{align*}
\mathcal{U}(t)|0\rangle= & |0\rangle, \tag{18}\\
\mathcal{U}(t)|1\rangle= & \frac{2}{3}\left(e^{\frac{i J t}{2}}+\frac{1}{2} e^{-i J t}\right)|1\rangle \tag{19}\\
& +\frac{1}{3}\left(e^{-i J t}-e^{\frac{i J t}{2}}\right)[|2\rangle+|4\rangle], \\
\mathcal{U}(t)|2\rangle= & \frac{2}{3}\left(e^{\frac{i J t}{2}}+\frac{1}{2} e^{-i J t}\right)|2\rangle \tag{20}\\
& +\frac{1}{3}\left(e^{-i J t}-e^{\frac{i J t}{2}}\right)[|1\rangle+|4\rangle], \\
\mathcal{U}(t)|3\rangle= & \frac{2}{3}\left(e^{\frac{i J t}{2}}+\frac{1}{2} e^{-i J t}\right)|3\rangle \tag{21}\\
& +\frac{1}{3}\left(e^{-i J t}-e^{\frac{i J t}{2}}\right)[|5\rangle+|6\rangle], \\
\mathcal{U}(t)|4\rangle= & \frac{2}{3}\left(e^{e^{\frac{i J t}{2}}}+\frac{1}{2} e^{-i J t}\right)|4\rangle \tag{22}\\
& +\frac{1}{3}\left(e^{-i J t}-e^{\frac{i J t}{2}}\right)[|2\rangle+|1\rangle], \\
\mathcal{U}(t)|5\rangle= & \frac{2}{3}\left(e^{\frac{i J t}{2}}+\frac{1}{2} e^{-i J t}\right)|5\rangle \tag{23}\\
& +\frac{1}{3}\left(e^{-i J t}-e^{\frac{i J t}{2}}\right)[|6\rangle+|3\rangle], \\
\mathcal{U}(t)|6\rangle= & \frac{2}{3}\left(e^{\frac{i J t}{2}}+\frac{1}{2} e^{-i J t}\right)|6\rangle \tag{24}\\
& +\frac{1}{3}\left(e^{-i J t}-e^{\frac{i J t}{2}}\right)[|5\rangle+|3\rangle], \\
\mathcal{U}(t)|7\rangle= & |7\rangle . \tag{25}
\end{align*}
$$

To substitute Eqs. (20)-(27) into Eq. (19), we find the coefficients at any time $\left\{c_{j}(t)\right\}(j=0,1, \ldots, 7)$ in terms of both the above exponentials and the initial coefficients $\left\{c_{j}(t=0)\right\}(j=0,1, \ldots, 7)$ where $\sum_{j=0}^{7}\left|c_{j}(t=0)\right|^{2}=1$.

3 3-tangle as a Measure of Multipartite Entanglement of a 3-qubit System

The measure of entanglement for a 3-qubit system can be is obtained through the 3-tangle which is defined as [4]

$$
\begin{equation*}
\tau_{3}=4\left|d_{1}-2 d_{2}+4 d_{3}\right| \tag{26}
\end{equation*}
$$

with:

$$
\begin{align*}
d_{1}= & c_{0}^{2} c_{7}^{2}+c_{1}^{2} c_{6}^{2}+c_{2}^{2} c_{5}^{2}+c_{4}^{2} c_{3}^{2} \tag{27}\\
d_{2}= & c_{0} c_{7} c_{3} c_{4}+c_{0} c_{7} c_{5} c_{2}+c_{0} c_{7} c_{6} c_{1} \tag{28}\\
& +c_{3} c_{4} c_{5} c_{2}+c_{3} c_{4} c_{6} c_{1}+c_{5} c_{2} c_{6} c_{1} \\
d_{3}= & c_{7} c_{6} c_{5} c_{3}+c_{7} c_{1} c_{2} c_{4} \tag{29}
\end{align*}
$$

where c_{i} represents the coefficient of basic state $|i\rangle$. Thus, by calculating the coefficients $c_{i}(i=$ $0,1, \ldots, 7$) as a function of time, in the way it was explained at the end of the above section, we shall be able of finding the 3-tangle of Eq. (28) as a function of time. That is to find $\tau_{3}(t)=4 \mid d_{1}(t)-$ $2 d_{2}(t)+4 d_{3}(t) \mid$ providing the coefficients $c_{i}(t)$ are known. It is worth to observe from Eqs. (18) and (19) that the coefficients $c_{i}(t)(i=0,1, \ldots, 7)$ will depend on the initial coefficients $c_{j}(t=0)(j=$ $0,1, \ldots, 7$), the antiferromagnetic constant J and the time t. By the way, in the present work the initial coefficients $c_{j}(t=0)\left(\sum_{j=0}^{7}\left|c_{j}\right|^{2}=1\right)$ are found in a random way with which the coefficients $c_{i}(t)$ $(i=0,1, \ldots, 7)$ at time t will result a two variables function namely J and t.

Before of considering a general state we are focusing on the so called W and $G H Z$ states which are defined as:

$$
\begin{align*}
|W\rangle & =\frac{1}{\sqrt{3}}(|4\rangle+|2\rangle+|1\rangle), \tag{30}\\
|G H Z\rangle & =\frac{1}{\sqrt{2}}(|0\rangle+|7\rangle) . \tag{31}
\end{align*}
$$

The respective initial 3-tangle for the GHZ-state is unit while for the W -state the initial 3 -tangle is zero. Now, the W-state time evolution is only over the phase. Therefore the 3-tangle of the W-state does not change in time. Thus, the XY Hamiltonian keeps constant the entanglement of the W-state which is an important result. On the other hand, the

GHZ-state also is not modified by the time evolution operator of Eq. (19) hence its associated 3-tangle keeps constant in time. We conclude that the XY Hamiltonian assures that the entanglement of the GHZ-state does not change in time.

Let us now consider an arbitrary initial 3-qubit state at $t=0$ denoted by $|\psi(t=0)\rangle=c_{0}(t=$ $0)|000\rangle+c_{1}(t=0)|001\rangle+c_{2}(t=0)|010\rangle+c_{3}(t=$ $0)|011\rangle+c_{4}(t=0)|100\rangle+c_{5}(t=0)|101\rangle+c_{6}(t=$ $0)|110\rangle+c_{7}(t=0)|111\rangle$ where $\sum_{i=0}^{7}\left|c_{i}(t=0)\right|^{2}=$ 1. In order to evaluate the 3 -tangle at time t from Eqs. (28)-(31), we employ eqs. (19)-(27) where the initial coefficients $c_{i}(t=0)$ are found in a random way. We perform the above procedure in three different cases and calculate the respective 3-tangle in each one of the three different cases. In the Appendix we write the three different random initial 3-qubit states employed in the present work. In figure 6, we show the time evolution of the 3 -tangle as a function of both J and t associated to each of the three different random initial 3-qubit states employed in the present work.

4 Relevance of Entanglement for Technological Applications

Quantum entanglement is essential not only for technological applications such as quantum computation [13], data base search algorithm [14] or quantum cryptography [15] and quantum secret sharing [16] but also for non-artificial systems. For instance for photosynthesis [17]-[18], navigational orientation of animals [19], the imbalance of matter and antimatter in the universe [20] and evolution itself [21].

5 Random Initial 3-qubit States

We write the three different random initial 3-qubit states that we have employed in the present work.

Fig. 1. The 3-tangle as a function of both the time t and the antiferromagnetic factor J for a three different states which their respective initial coefficients $\left\{c_{i}(t=0)\right\}$ are found in a random way. Eqs. (28)-(31) and (19)-(27) are used. Concerning to the label, the number represent the state while the letter expresses the kind of graphic

Such a states are the following:

$$
\begin{aligned}
\left|\psi_{1}(t=0)\right\rangle \simeq & (0.0649682+0.480244 i)|0\rangle \\
& +(0.0820031+0.0744268 i)|1\rangle \\
& +(0.157695+0.567361 i)|2\rangle \\
& +(0.00990613+0.30057 i)|3\rangle \\
& +(0.159286+0.122371 i)|4\rangle \\
& +(0.136861+0.0406154 i)|5\rangle \\
& +(0.00576077+0.267818 i)|6\rangle \\
& +(0.424509+0.054595 i)|7\rangle
\end{aligned}
$$

$$
\begin{align*}
\left|\psi_{2}(t=0)\right\rangle \simeq & (0.254723+0.452791 i)|0\rangle \tag{33}\\
& +(0.205806+0.3656 i)|1\rangle \\
& +(0.119695+0.452655 i)|2\rangle \\
& +(0.10712+0.095714 i)|3\rangle \\
& +(0.000551918+0.408866 i)|4\rangle \\
& +(0.0713835+0.0732269 i)|5\rangle \\
& +(0.0279197+0.0993365 i)|6\rangle \\
& +(0.316043+0.161424 i)|7\rangle
\end{align*}
$$

Computación y Sistemas, Vol. 23, No. 2, 2019, pp. 469-476 doi: 10.13053/CyS-23-2-2309

$$
\begin{align*}
\left|\psi_{3}(t=0)\right\rangle \simeq & (0.228717+0.66739 i)|0\rangle \tag{34}\\
& +(0.124412+0.62744 i)|1\rangle \\
& +(0.0241769+0.16416 i)|2\rangle \\
& +(0.00878132+0.0690814 i)|3\rangle \\
& +(0.0589419+0.165814 i)|4\rangle \\
& +(0.0255238+0.105097 i)|5\rangle \\
& +(0.0946251+0.0750734 i)|6\rangle \\
& +(0.00977502+0.0581965 i)|7\rangle
\end{align*}
$$

We observe that all of the above three 3 -qubit states are normalized to unit.

6 Conclusions

We have studied the behavior in time of the 3 -tangle associated to a 3 -qubit system interacting through the XY Hamiltonian given by Eqs. (5) and (8). The 3-tangle associated to the state $|\psi(t)\rangle=$ $c_{0}(t)|000\rangle+c_{1}(t)|001\rangle+c_{2}(t)|010\rangle+c_{3}(t)|011\rangle+$ $c_{4}(t)|100\rangle+c_{5}(t)|101\rangle+c_{6}(t)|110\rangle+c_{7}(t)|111\rangle$ is given by Eqs. (28)-(31) where each one of the coefficients $\left\{c_{i}(t)\right\}(i=0,1, \ldots, 7)$ depend on the random initial coefficients $\left\{c_{j}(t=0)\right\}(j=$ $0,1, \ldots, 7), J$ and the time t as it can be seen from Eqs. (18)-(27).

An important result obtained in the present work is that the entanglement of both the W-state and the GHZ-state keeps constant in time providing the three qubits interact through the XY Hamiltonian given by Eq. (5).

Such a result could have important experimental advantages whereas both the W-state and the GHZ-state can be used on solid basis for testing different QIP protocols.

In Figure we have plotted the 3-tangle of Eq. (28) as a function of both the time t and the antiferromagnetic factor J for three different random 3 -qubit states. It is worth to point out that the 3 -tangle shows a noticeable periodic behavior as it is appreciated from Figure being the respective period $t=4 \pi / J$. Such a behavior in time is a consequence of the harmonic structure of the time evolution operator of Eq. (18).

Our results invoke to the present experimental facilities to measure the 3 -tangle for a system of 3 -qubits by taking into account that for
certain times the entanglement disappears and that for other values of both the time and the antiferromagnetic constant J such a quantity is maximal. The maximal values of the 3 -tangle can be used for implementing Quantum Information Processing protocols where entanglement is a resource. Our results might indicate that the 3 -tangle associated to a 3 -qubit system resembles to a quantized physical quantity providing the three qubits interact through a XY Hamiltonian.

References

1. Werner, R. (1989). Quantum states with Einstein-Podolsky-Rosen correlations admitting a hiddenvariable model. Phys. Rev. A, Vol. 40, 4277. DOI: 10.1103/PhysRevA.40.4277.
2. Bennett, C.H., Bernstein, H., Popescu, S., \& Schumacher, B. (1996). Concentrating partial entanglement by local operations. Phys. Rev. A, Vol. 53, 2046. DOI: 10.1103/PhysRevA.53.2046.
3. Bennett, C.H., DiVincenzo, D., Smolin, J.A., \& Wootters, W.K. (1996). Mixed-state entanglement and quantum error correction. Phys. Rev. A, Vol. 54, 3824. DOI: 10.1103/PhysRevA.54.3824.
4. Coffman, V., Kundu J., \& Wootters, W.K. (2000). Distributed entanglement. Phys. Rev. A, Vol. 61, 052306. DOI: 10.1103/PhysRevA.61.052306.
5. Dür, W., Vidal, G., \& Cirac, J.J. (2000). Three qubits can be entangled in two inequivalent ways. Phys. Rev. A, Vol. 62, 062314. DOI: 10.1103/PhysRevA.62.062314.
6. Acin, A., Costa, A.A.L., Jane, E., Latorre, J., \& Tarrach, R. (2000). Generalized Schmidt Decomposition and Classification of Three-Quantum-Bit States. Phys. Rev. Lett. Vol. 85, 1560. DOI: 10.1103/PhysRevLett.85.1560.
7. Carteret, H. \& Sudbery, A. (2000). Local symmetry properties of pure 3-qubit states. J. Phys. A, Vol. 33, 4981. DOI: 10.1088/0305-4470/33/28/303.
8. Acin, A., Adrianov, A., Jane, E., \& Tarrach, R. (2001). Three-qubit pure-state canonical forms. J. Phys. A, Vol. 31, 6725. DOI: 10.1088/03054470/34/35/301.
9. Acin, A., Bruss, D., Lewenstein, M., \& Sanpera, A. (2001). Classification of Mixed Three-Qubit States. Phys. Rev. Lett., Vol. 87, 040401. DOI: 10.1103/PhysRevLett.87.040401
10. Wei, T.C. \& Goldbart, P.M. (2003). Geometric measure of entanglement and applications to bipartite and multipartite quantum states. Phys. Rev. A, Vol. 68, 042307. DOI: 10.1103/PhysRevA.68.042307.
11. Levay, P. (2005). Mott insulator to superfluid transition in the Bose-Hubbard model. Phys. Rev. A, Vol. 71, 012334. DOI: 10.1103/PhysRevA.71.033629.
12. Lieb, E., Schultz, T., \& Mattis, D. (1961). Two soluble models of an antiferromagnetic chain. Ann. Phys. N.Y., Vol.16, 407. DOI: 10.1016/0003-4916(61)90115-4.
13. Deutsch, D. (1989). Quantum computational networks. Proc. R. Soc. London, Ser. A., Vol. 425, 73. DOI: 10.1098/rspa.1989.0099.
14. Avila, M. \& Elizalde-Salas, J.B. (2017). Remedies for the Inconsistences in the Times of Execution of the Unsorted Database Search Algorithm within the Wave Approach. Computación y Sistemas, Vol. 21, 883. DOI: 10.13053/cys-21-4-2367.
15. Gisin, N., Ribordy, G., Tittel, W., \& Zbinden, H. (2002). Quantum cryptography. Rev. Mod. Phys., Vol. 74, 145.
16. Hillery, M., Buzek, V., \& Berthiaume, A. (1999). Quantum secret sharing. Phys. Rev. A, Vol. 59, 1829. DOI: 10.1103/PhysRevA.59.1829.
17. Caruso, F., Chin, A. W., Datta, A., Huelga, S.F., \& Plenio, M.B. (2010). Entanglement and entangling power of the dynamics in light-harvesting complexes. Phys. Rev. A, Vol. 81, 062346.
18. Sarovar, M., Ishizaki, A., Fleming, G.R., \& Whaley, K.B. (2010). Quantum entanglement in photosynthetic light-harvesting complexes. Nat. Phys., Vol. 6, 462. DOI: 10.1038/nphys1652.
19. Cai, J., Guerreschi, G.G., \& Briegel, H.J. (2010). Quantum Control and Entanglement in a Chemical Compass. Phys.Rev. Lett., Vol. 104, 220502. DOI: 10.1103/PhysRevLett.104.220502.
20. Hiesmayr, B.C. (2007). Nonlocality and entanglement in a strange system. Eur. Phys. J. C, Vol. 50, 73. DOI: 10.1140/epjc/s10052-006-0199-x.
21. McFadden, J. \& Al-Khalili, J. (1999). A quantum mechanical model of adaptive mutation. BioSystems, Vol. 50, 203.
