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Abstract. As seismic networks continue to spread
and monitoring sensors become more efficient, the
abundance of data highly surpasses the process-
ing capabilities of earthquake interpretation analysts.
Earthquake catalogs are fundamental for fault system
studies, event modellings, seismic hazard assessment,
forecasting, and ultimately, for mitigating the seismic
risk. These have fueled the research for the
automation of interpretation tasks such as event
detection, event identification, hypocenter location, and
source mechanism analysis. Over the last forty years,
traditional algorithms based on quantitative analyses of
seismic traces in the time or frequency domain, have
been developed to assist interpretation. Alternatively,
recent advances are related to the application of Artificial
Neural Networks (ANNs), a subset of machine learning
techniques that is pushing the state-of-the-art forward in
many areas. Appropriated trained ANN can mimic the
interpretation abilities of best human analysts, avoiding
the individual weaknesses of most traditional algorithms,
and spending modest computational resources at the
operational stage. In this paper, we will survey the
latest ANN applications to the automatic interpretation
of seismic data, with a special focus on earthquake
detection, and the estimation of onset times. For a
comparative framework, we give an insight into the labor
of human interpreters, who may face uncertainties in the
case of small magnitude earthquakes.

Keywords. P and S seismic waves, earthquake
hypocenters, supervised, unsupervised and semisuper-
vised, deep and convolutional neural networks, training
and testing data sets.

1 Introduction

Large-magnitude earthquakes may induce strong
ground shaking, surface ruptures, landslides,
liquefaction and Tsunamis, being any of these
direct or indirect causes of human depths and
severe economic losses. Fortunately, earthquake
magnitude and frequency are inversely propor-
tional, so events of large and moderate magnitudes
are scarce on seismic catalogs compared to
earthquakes of low magnitudes. However, human
or automatic detection by traditional techniques
may fail for low-magnitude events, in case of
traces with poor signal-to-noise ratios or recording
overlapping events. Even though, small-magnitude
earthquakes are not usually harmful for lives
and civil structures, they must be also recorded
in seismic catalogs. These catalogs are used
in seismic hazard assessment to map the
expected ground motion under a given earthquake
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magnitude, and must influence building codes. In
addition, the detection of small earthquakes in
an aftershock sequence left by a big event, are
used to study the distribution of the fault system,
total rupture area, and the evolution of the stress
configuration. This information, in combination to
additional geological studies, allow assessing the
destructive potential of that given fault.

The detection problem of local earthquake
events consists of estimating the arrival times of
the primary (P) and secondary (S) waves to a
recording seismic station. These onset times
feed subsequent processing analyses to estimate
hypocenter location, focal source mechanism
and important spectral properties, being this
information recorded in earthquake catalogs
afterward. Detection and processing analyses are
routinely performed by a human analyst, who must
estimate arrival times based on his own knowledge
and experience. This estimation requires a
significant amount of pattern recognition, and is
tied to the identification problem of individual P and
S arrivals from their amplitude, propagation speed,
and induced signal polarization. Nowadays, the
need of automatic processing tools grows rapidly
with the amount of seismic data delivered by
expanding monitoring networks, so detection and
identification of P and S waves can be performed
in a faster, robust and objective way.

The automation of seismic phase detection and
identification must deal with characteristic features
of seismic records. As commonly used for data
analysis, signals are processed on time windows.
In these cases, those windows may contain a lot
of noise and high redundancy, so true P and S
waves can be placed anywhere in the time span
and polluted by alternative signals. For instance,
wave conversions that depend on underground
structures and site conditions, or even surface
waves, may be also present on long time windows.
Also, these windows may contain P and S waves
triggered by simultaneous or overlapping seismic
events. In many cases, seismic stations record
data in several channels, allowing either a separate
or combined processing of horizontal, vertical and
transverse components of soil kinematics.

All these features make difficult and laborious the
recognition of similar patterns on seismic signals,

and the P and S detection and identification from
one or various events. Filtering, polarization anal-
ysis, and additional signal processing techniques
have been of primary help for automation.

Artificial Neural Network (ANN) represent a
natural implementation framework for P and
S wave detection and identification because
of the huge amount of pattern recognition
involved. The pioneer applications in [16] and
[17] have been followed by multiple and diverse
networks, using either assisted, or semisupervised
or completely unsupervised learning. In the
supervised family, we find several generic and
convolutional networks, and even some scatter
cases of recurrent and residual networks. In the
unassisted family, there are applications based
on generative adversarial networks and others
exploiting autoencoders.

Only few cases are built upon ensemble
learning, but their potentials are worthy of
mentioning. Now, all these ANN applications
must deal with the processing difficulties of time
windows of seismic records, mentioned above.
These difficulties translate into more complex
heuristic rules to estimate the number of neurons
per each network level, and the size of the learning
set, if it is required. This paper reviews all these
implementation aspects, as well as the detection
and identification performance achieved by ANN.

Alternative machine learning (ML) techniques
can also offer advanced pattern-matching abil-
ities and well serve as automated earthquake
monitoring algorithms. Moreover, the expanding
ML applications to seismology have reached
areas such as earthquake early warnings, ground
motion estimations, and seismic tomography and
inversion, and we here also briefly comment on
prominent works, for the sake of completeness.
However, we refer the reader to the following
complementary survey papers [18, 23, 29],
Kong2019, for additional insights.

2 Picking of Seismic Phases by a
Trained Analyst

Modern data acquisition systems use sample rates
of more than 100 Hz, and this limits the estimation
accuracy of P and S arrival times, among
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other factors such as signal-to-noise conditions at
monitoring stations [11]. In addition, hand-picked
data are human dependent and errors are difficult
to estimate, since this activity is performed by
several analysts. Different trained analysts may
give different onset times for the same signal
phase, and sometimes the same analyst may
give different interpretations after some time has
passed.

For events at epicentral distances not larger
than 10◦ (∼ 1000 Km), recorded seismic waves
have propagated to the crust and along the Moho
discontinuity. At those stations, these waves are
called crustal waves, being triggered by local and
regional earthquakes. On the contrary, teleseismic
events refer to earthquakes that occur at distances
larger than 10◦ from the measurement site. The
next description follows [32] and it is focused on
crustal waves.

In general, a seismic phase is identified by two
main features. A signal amplitude increase that
exceeds the background noise in the case of P
waves, or exceeds the coda of earlier phases in
the case of S and later waves. A change of
the dominant frequency that is often much more
difficult to visualize and quantify [21]. Once the
phase is identified, we have to determine the
precise wavelet onset or arrival time, and the
precise phase type. That is, a Pg phase or a direct
P wave, a Pn that is the refracted P wave along the
uppermost mantle, a Sg phase or a direct S wave,
among other possibilities. The visual examination
of amplitude and frequency changes can be rather
subjective and would depend on the chosen
width of time windows. As illustrative examples,
figures 1 and 2 show the P and S phases
identified at the CUMV and CACV stations of the
Venezuelan Funvisis seismic network (2019/01/16
13:42, 4.0 Mw). In figure 1, both P and S phases
are identified through amplitude changes of the
recorded seismogram. In figure 2, identification
of the P wave is straightforward from a clear
change of the frequency content after its arrival,
with respect to the background noise.

Signal filtering can help to identify the phase
arrivals by improving the signal-to-noise ratio.
However, filtering can also introduce shape
changes on the waveform, and even a phase

shift. This time shift could modify the phase
arrivals in the order of tenth of seconds [21].
Figure 3 shows the vertical component of ground
acceleration recorded at the BAUV station of the
Funvisis network, in Cojedes, Venezuela. This
station is located 198 km away from the epicenter
of the event (2018/04/02 16:24, 2.0 Mw). Later,
this seismogram is passband filtered (5-10 Hz) and
resulting signal is depicted in figure 4. Here, we
can see how the P wave is enhanced, and it can
be easily identified by the first notorious change in
amplitude.

There are software available to assist the
human analyst that could even be used for
automatic processing, most of them being
created by university groups or seismological
institutions. Some packages widely used
are SHM, SEISAN, SeisComp3, Earthworm
and ObsPy. These processing software were
developed and published under a free, or
partially free license. Software libraries for
routinely analysis and additional research
work, can be downloaded from web sites of
the United State Geological Survey (USGS:
https://earthquake.usgs.gov/research/software/),
and of the Incorporated
Research Institutes for Seismology
(https://www.iris.edu/hq/data and software/).

3 Machine Learning Algorithms and
Deep Neural Networks

The fundamentals and pivotal developments on
automatic pattern recognition and ML techniques
can be reviewed on reference textbooks, such
as [10], [41], and [25], as well as on some
comprehensive online courses, as for instance,
the ”Neural Networks for Machine Learning” from
G. Hinton1 and the ”Machine Learning” from A.
Ng2. This section highly lacks of such generality,
and only presents a basic ML classification based
on the learning strategy, that later serves to
introduce ML and ANN applications to geophysical
data, in next sections. Thus, we recommend

1http : //www.cs.toronto.edu/ hinton/coursera slides.html
2https : //www.coursera.org/learn/machine− learning
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Fig. 1. Seismogram recorded at CUMV station in Sucre, Venezuela (2019/01/16 13:42 4.1 Mw), and used for P and S
wave identification based on the change of signal amplitude

Fig. 2. P-wave identification based on the change of the frequency content for the same event in Figure 1, but recorded
at CACV station in Bolivar, Venezuela

aforementioned books and materials for a broader
presentation.

The rich variety of ML algorithms can be grouped
according to the type of data used during training,
a stage where optimization strategies allow tuning
the algorithm parameters usually by minimizing a
cost function. To this purpose, the training dataset
can be fully or partly labelled, and even it may
present no labels at all. Coarsely speaking, this
dataset property frames the learning algorithm and
also defines its potential applications. Supervised
learning employs labelled datasets and develops
models used for either quantitative prediction
or categorical classification. In this case, the
training and evaluation stages are time consuming
because of the labelling and data preparation.
Alternatively, unsupervised learning works on
unlabelled datasets aiming at clustering the input
data into groups based on similarity measures, or
at reducing the input data dimensions. Because
of labelling is not required, the preparation of
the training and evaluation datasets takes less

effort, which allows using bigger amount of data.
Finally, semisupervised learning uses a hybrid
dataset for training and evaluation, typically with
a small fraction of labelled data, compared to a
larger amount of unlabelled data. These different
machine learning algorithms are shown in the
categorization figure 5 along with their typical
applications that vary from data classification,
quantitative regression, grouping or clustering, and
reduction of data dimensionality. An additional
application pursuing data grouping by following
implicit association rules to discover relations
among variables in large databases, is also
considered in this figure. The specific algorithms
referred in the technical literature are also shown
for each category at the bottom.

Figure 5 places ANN into the classification
hierarchy of supervised learning algorithms, de-
lineating also their possible applications when
processing earthquake data. In fact, specific
ANN implementations on earthquake detection are
mentioned in next sections, along with interesting
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Fig. 3. P wave onset on the vertical acceleration seismogram recorded at the Funvisis BAUV station in Cojedes,
Venezuela, during a local earthquake (2018/04/02 16:24 Mw=2,0)

Fig. 4. The new signal after applying a Butterworth filter in the band 510 Hz to the seismogram in figure 3.

additional works based on autoencoder algorithms,
whose applications also facilitate this interpretation
task.

To emphasize the focus of our study on these
ML algorithms, we use grey boxes in figure
5. Most of those ANN applications are based
on deep learning, as a way to achieve high
accuracy by the incorporation of several neuron
layers, and therefore heuristic rules. The ANN
prediction accuracy would partly depend on a
previous good training, but also on the number of
network layers that allow a parallel and multi-level
detection of important data features (also referred
as abstraction levels).

The presence of two or more neuron layers
is defined as deep learning, while very deep
learning is referred to using more than ten
layers. Nowadays, applications based on very

deep learning are scarce (because of complexity
of the network structure), as also those using a
shallow ANN with only one hidden layer (because
of the limited learning capability).

It is worthy of mentioning that deep architectures
could first use unsupervised learning, and then
appeal to fine-tuning in a final stage of supervised
training, aiming at a superior performance [49].

4 Machine Learning Applications to
Earthquake Data

The physics of earthquakes is very complex and
seismologists rely on processing and interpreting
massive data sets in search for insights. ANN,
among other ML strategies, have the potential to
find unseen patterns and new features, both with
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Fig. 5. Supervised, unsupervised and semisupervised algorithms for ML

physical consistency, in available datasets. Thus,
seismologists and computer scientists have been
actively developing ML tools to process earthquake
data and assist interpretation. Numerous
applications have focused on earthquake detection
and phase picking, exploiting the ML proficiency of
data classification and regression when processing
real seismic traces.

Recent and interesting ML applications to
earthquake detection are the classification Markov
model proposed in [6], the image-based search
for waveform matching presented in [56] and the
seismic arrival picking based on fuzzy clustering
developed in [14]. In next section, we review
additional and prominent works in this area, but
focus on contributions based on ANN. However,
we before comment on three main additional
ML applications to seismology, which are under
current expansion, and relate to earthquake early
warnings, ground motion estimations, and seismic
tomography and inversion.

Earthquake early-warning systems intend to
identify a seismic event onset at remote stations,
and exploits the faster propagation of P waves
compared to more destructive S and surface
waves, to trigger alerts at local sites, seconds
or few minutes before the strongest shaking
happens. Earthquake early warning require tools

for earthquake detection, and some works based
on ANN can be found in [26, 13, 30]. Alternatively,
similar applications have been also addressed by
the ML approaches in [15, 12, 30].

During an earthquake, ground motion experi-
enced at a given surface location would depend
on several parameters of the seismic source,
material properties along wave propagation paths
and local site conditions. The statistical prediction
of ground motion is based on regression models
that combines these parameters, and strives for
reducing uncertainties by increasing observational
data and model complexity. Ground motion
estimates are key inputs to probabilistic analyses
of seismic hazard, that are sensitive to these
prediction uncertainties [4].

Alternatively, Authors in [19, 20, 28] employ ANN
for ground motion estimation using as input, key
parameters of the seismic source and the velocity
model. In particular, results in [28] are more
accurate than those provided by the Central and
Eastern North America attenuation model (CENA)
developed in [8]. Alternative ML approaches
have been also used in similar applications, as
discussed in [45, 48].

Travel-time tomography and full-wavefrom inver-
sion are subsurface imaging procedures based
on the minimization of certain discrepancies
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between seismic data and simulations. Given a
reference model, the former seeks the reduction
of source-receiver travel times differences by
relocating material interfaces, while the latter up-
dates medium properties to reduce mismatchings
between data and synthetic waveforms. The
convergence of both methods to a realistic struc-
tural model is time consuming, while tomography
may require continuous intervention of a human
expert, full-wavefrom inversion is computationally
demanding and requires a good initial model.

Recent ANN applications to subsurface imaging
claim to overcome these deficiencies, using
seismic data as input to identify important
structures. In particular, [39] uses earthquake
data to accurately predict 1-D velocity models,
and applications in [5, 34, 27, 53] employ data
collected in seismic surveys for structural model
building with interest in hydrocarbon exploration.
In addition, the study in [37] applies a ANN to
infer the prior distribution of acoustic properties of
a geological model, that is later improved by full
waveform inversion. This work includes promising
applications to a synthetic reservoir-scale dataset
of channel bodies. Lastly, we would like to note
on alternative ML approaches that use data-driven
dictionaries to adaptively capture complex profiles
of geophysical parameters, and used to improve
the convergence of seismic tomography [9] or
inversion [58].

5 Neural Networks for Earthquake
Detection

According to the figure 5, the identification of P
and S waves on seismic traces is a classification
problem, while the estimation of onset arrival times,
as required for complete detection, corresponds to
a regression problem. Either processing objective
will be highlighted below when reviewing ANN
solution approaches developed during the last
thirty years, and this discussion will also include
a ANN feature suitable to achieving it. The
network input data can be the direct (probably
processed) seismograms, or some previously
extracted (primarily statistical) features from these
signals.

Full traces provide to the ANN with the whole
information carried by the seismic signal, but
due to its high dimensionality, the mapping of
learning examples to the feature space might
be highly sparse, making the ANN prone to
wrong convergences at the production stage.
Alternatively, a more compact feature space results
from a network learning process using only
relevant signal features as input data, that will
translate into high operational accuracy. However,
if some important features are omitted, the ANN
might performs poorly. In the following, we
only focus on earthquake detection ANN under
supervised and unsupervised learning given their
very active development, and enough contributions
to motivate this survey paper.

5.1 Supervised Networks

Supervised ANN fall into four main categories:
Feed forward (FFNN), recurrent (RcNN), convolu-
tional (CNN) and residual (RsNN). FFNN present a
simple structure and are commonly used for data
classification. RcNN are usually applied to time
series analysis to identify sequence patterns, while
CNN are typically employed for image recognition.
Finally, among all supervised ANN, RsNN present
a more complex structure with skipped connections
or shortcuts, that enable a fast learning and give
better performance than a plain network.

5.1.1 FFNN

For picking seismic phases on local earthquake
data, deep FFNN using the direct full waveforms
as input are employed in [16, 17, 22, 57]. Network
in [16] uses the amplitude of the three-component
input seismograms, and achieves successful
results on more of the 90% of the testing data
for both P and S phases. Same Authors in [17]
employ a single component of the input data,
and attain P and S detection performances mostly
above 80% in tested cases, with strong variations
according to the chosen signal component, given
the influences of the ray path and source position.
The input traces to the three-layer ANN in
[22] were band-pass filtered for a better arrival
time prediction of P waves. The detection
performance is assessed in terms of different
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noise levels, that consistently affects prediction
accuracy as graphically shown by Authors. The
technique in [57] behaves successfully for the
phase identification of P waves on 95% of a testing
set, that comprises 1254 seismograms of the IRIS
network. The estimated onset times present an
error less than 0.5 sec in 80% of the cases.

The parallel application in [51] for P wave
detection implements two FFNN, which employ
trace features as input data. The first one
uses an extension of the standard STA/LTA
triggering algorithm, developed in [2, 3], where
input are given by the ratios of short- and
long-term averages (STA and LTA, respectively)
of normalized trace windows. The rate of correct
phase identification was nearly 92%. The second
network operates with spectrograms of moving
trace windows, which typically present a different
behavior of those from non-earthquake signals.
For the same testing data set, 98% of correct
detection is observed. Same Authors in [50],
develop a S-phase identification and picking FFNN
that includes as input attributes, autoregressive
model coefficients and measures of the signal
power and polarization angles. On testing results,
86% correct rate of phase identification was
achieved, and 74% of them were picked with onset
time errors less than 0.1 sec.

Networks developed in all aforementioned works
have been trained on and applied to local and
regional earthquake data. FFNN’s introduced in
[46] use a training data base comprising P-wave
signals of 193 teleseismic events, and operate on
input data consisting of STA/LTA values computed
in seven frequency bands. After training, these
ANN detectors found 25% more events of the
official event bulletin, compared to the reference
Murdock-Hutt detector [40]. Appropriate ANN
weight tuning led to a reduction of the false alarm
rate. In addition, [46] explores the detection
capabilities of Elman-Jordan RcNN, but found poor
performances.

An important contribution to the automatic onset
time picking of P and S waves is the FFNN
proposed in [24], a neural tree called IUANT2,
that presents a problem adaptive structure. The
best structure of IUANT2 is inferred during
the training phase, while allowing for noise

filtering. The three-component input seismograms
are preprocessed by removing trace mean and
pass-band filtering, followed by the calculation
of the vector magnitude of both horizontal
components.

The estimation of P and S onset times are
performed on statistical features, such variance,
absolute skewness, kurtosis and combinations of
these statistics, which are altogether computed
on time windows of preprocessed traces. The
testing dataset consists of more than 300 local
earthquakes recorded by 23 different stations, and
the picking accuracy, quantified through the normal
distribution of time differences relative to manual
picks, have standard deviations of 0.06 sec and 0.1
sec, for P and S waves, respectively. The accuracy
of IUANT2 is then measured as the inverse of these
deviation values, even though manual picks could
also be erroneous.

5.1.2 RcNN

A RcNN for the real time detection of small
magnitude (below 2.5 Mw) earthquakes is pre-
sented in [52]. In this case, the distribution of
seismic stations in populated areas yields data
with significant levels of noise. This requires a
special detection method capable of recognizing
small events without using preprocessing based
on standard pass-band filtering. Instead, [52]
applies a filter bank of STA/LTA ratios of the
vertical component of seismic waveforms, with an
elaborate design to keep all important frequencies
of the signal, including the highest range, where
disturbances are less significant. Thus, this RcNN
is low prone to false detection occurrences. The
initial training set comprises about 170 events
including regional and teleseismic earthquakes,
but the full operatibility was achieved after
progressive tuning for real time P and S phase
detection, on data from various monitoring stations.
Testing was carried out during different periods of
time in 2009, and relative to the standard STA/LTA
method, this RcNN misses a few percentage of
real events, but behaves much less sensitive to
false detections, as expected. Authors found that
the number of triggering stations is an important
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parameter to adjust, so it is crucial for potential
applications in new regions.

Recent applications of RcNN to earthquake data
are given in [26, 7] with the purpose of earthquake
prediction. The common architecture of a RcNN
presents a set of Long Short-Term Memory
(LSTM) layers, combined to dropout layers to avoid
overfitting, and supply an efficient framework for
detection and inference of temporal patterns. In
both works, a series of past earthquakes is used
for network training, that is used to predict a next
trend of known events, to allow testing. Results
are encouraging, although earthquake forecast
remains as a highly controversial subject.

5.1.3 CNN

Among the state-of-the-art earthquake detection
methods, the most popular deep CNN are
probably ConvNetQuake [44], the generalized
phase detection (GPD) [42], and PhaseNet [59].
However, we next also comment on a few
additional and prominent works. Figure 6 illustrates
the schematic structure of an automatic detection
seismic system based on a fully connected ANN
for classification and regression.

The raw seismic traces are usually subjected
to waveform normalization (mean removal and
amplitude scaling), band-pass filtering to isolate
seismic phases, time splitting and windowing.
Then, preprocessed data is used for network
learning and validation, probably preceded by
data labeling to allow supervised learning. In
many cases, the network outputs reduce to class
probabilities that associate window traces with
P waves, S waves, and simple noise. The
actual architecture of CNN mentioned below are
somewhat more complex, and some cases are also
capable of locating earthquakes.

ConvNetQuake is based on collection of
nonlinear filters, and operates on time windows
of single-station three-channel seismograms for
P-wave detection and event location. Its main
application has been the detection of natural or
human-induced (related to waste water injection)
low-magnitude earthquakes in Central Oklahoma,
USA. Data preprocessing splits traces into monthly
streams, applies mean subtraction and divides

each trace component by the absolute peak
amplitude, to finally defines appropriate windows.
For training, near to two thousand cataloged
seismic events occurred during 2014-2016 were
employed, and 209 were later used for testing.

Here, ConvNetQuake displays a precision of
94.8%, measured as the fraction of detected
events that are true events, with 74.5% of them
being correctly located on a coarse Voronoi
geographic partition of the study region. Also,
the recall was 100%, defined as the fraction
of true events correctly detected. On an inde-
pendent testing set comprising 21 earthquakes
with magnitude below 4.1 Mw that occurred
in Northern California, ConvNetQuake achieves
100% detection, confirmed by autocorrelation, and
74.6% location correctness.

In seismology, nonetheless, an earthquake’s
hypocenter corresponds to be the physical location
of the starting point of the rupture process,
where stored strain energy in the rock is first
released. Commonly, hypocenter coordinates are
given in terms of longitude, latitude and depth
below surface, and those define the earthquake
location. Mapping the hypocenters of foreshocks,
main event, and aftershocks allows picturing
the three-dimensional movement of the fault
system. Thus, the event association to a cluster
of different geographical areas, as performed
by ConvNetQuake, represents an incomplete
information to seismologists. Recent CNN based
approaches aim at actually solving the location
problem.

The network in [31], handles three component
seismic records of multiple stations, and after
training the first convolutional layer becomes
sensitive to characteristic features of seismic
waveforms. Thus, this layer can behave as an
event detector by itself. Training employs an
earthquake swarm of 2000 events recorded by
nine local stations. Later, during testing, this
network successfully locates 908 earthquakes with
standard deviations nearly of 56 m, 124 m and
136 m, along east-west, north-south and vertical
directions, respectively. Alternatively, the network
in [54] operates on single-station waveforms
located in Oklahoma, USA, where earthquakes
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Fig. 6. Schematic structure of an automatic detection system of seismic phases based on a fully connected ANN for
classification and regression

have been induced by hydrocarbon (oil and gas)
production.

A training dataset consists of 1,013 historic
events, and the output is a 3D probability volume
of location likelihood inside the Earth. Testing was
carried out using 194 earthquakes, and results
present errors of approximately 4.9 km to the
epicenter and 1.0 km to the hypocentral depth, on
average, based on data from 30 network stations.

GPD employs a feature extraction system from
seismic data, that are later used as input to
a fully connected ANN, and finally outputs a
classification as P waves, S waves, or just noise.
The feature extraction system is a collection
of preprocessing layers where seismic data is
sequentially convolved with a set of digital filters

for characteristic recognition, and then decimated
for down-sampling and trace evaluation at different
length scales.

Both processes combined to an activation
function, allows the identification of seismic phases
anywhere in a seismogram, regardless their
duration and amplitude. The final stage of ANN
classification outputs probabilities of the likelihood
of each possible class (P, S or noise). For
training and validation, GDP employs 4.5 millions
of four second windows, where P and S waves
correspond to events of magnitude below 5.7
Mw, recorded by the Southern California Seismic
Network. The validation precision is nearly 99%
for both phases and various detection probability
thresholds, and recall is somewhat lower, between
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96% and 99% for most threshold choices,
suggesting a minor number of misclassifications
of seismic phases as noise. GDP detection has
been also validated on the 2016 Bombay Beach,
California swarm of small and moderate (≤ 4.8
Mw) earthquakes, and with data of the 2016 Mw
7.0 Kumamoto earthquake recorded at multiple
stations, within 100 km of the hypocenter. Highly
successful results were shown for both cases.

PhaseNet operates on three-component unfil-
tered seismograms, and estimates P- and S-wave
arrival times by generating probability time series
that quantify the likelihood of P- and S-wave
onsets. Its exhaustive training and validation
make use of the extremely large dataset of
analyst-labelled P and S arrival times from
the Northern California Earthquake Data Center.
Specifically, Authors employ stratified sampling
based on stations and divide data into a training,
validation and test sets, with more than 600K, 77K
and 78K waveform samples, respectively.

A minimum preprocessing is applied to the
training data, where each data component is
normalized by removing its mean and dividing it
by the standard deviation. Testing results are
compared to those obtained by the standard AR
picker algorithm [1], and PhaseNet outperforms
this scheme with significant improvements on both
phases, particularly for the S waves.

A densely connected CNN to capture laboratory
slip events of different durations is given in [53].
This network presents a cascaded architecture
to generate multi-scale slip proposals and detect
events with various lengths. It also exploits atrous
convolutions with different dilation rates to enrich
feature extraction.

Training, validation and testing proceed using
acoustic data acquired at the Rock and Sediment
Mechanics Laboratory of Penn State University,
that presents a thousand manually picked events,
and 800 are taken for training. Relative to a well
established template matching algorithm, Authors
report a detection accuracy significantly higher,
especially for highly different subsequent events.

5.1.4 RsNN

Residual networks are usually a combination of
the three previous types of supervised ANN,
and have achieved higher accuracy when solving
same problems already tackled by one of them,
or even dealing with more complex problems.
For earthquake detection, the RsNN proposed
in [38] and named CRED, first employs a CNN
for feature extraction, that are later used by a
RcNN for recognition of temporal patterns. The
next and last stage of this network is a fully
connected FFNN used for phase identification.
Training and validation is based on a dataset of
550K three component seismograms recorded by
889 broadband and short-period stations in North
California, and P-wave and S-wave arrivals have
been labelled by manual picking. Traces of seismic
noise are also records from the same network
stations.

A first test on 50K waveform samples, yields
detection precision higher than 96% and a recall
above 99%, regardless the threshold choice on
the output probabilities. Further testing for
microseismic detection was undertaken in Central
Arkansas, with a substantially different crustal
structure, and events of lower magnitude with
shorter epicentral distances. Without additional
training, CRED finds 3 orders of magnitude
more events compared with STA/LTA results.
Comparisons against the FAST algorithm [55],
reveal that the CRED detection rate is much
lower, but it takes less than a hundredth of the
computation time spent by FAST (non-parallel
version).

5.2 Unsupervised

In this final section, we discuss few applications
of unsupervised ANN to seismic event detection.
In general, ANN of this kind are classified as
autoencoders (AE) and generative adversarial
networks (GAN).
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5.2.1 AE

An autoencoder is a deep learning approach
with noticeable advantages over most other ML
techniques, especially when processing unlabelled
data. This unsupervised technique is able to
directly process the input raw data, with no need
for preprocessing and previous labeling. A main
application of AE is data compression, aiming
at extracting representative features of the input
and removing redundancies, so the overall size
of the data may be highly reduced [33], [36].
This concept is called Dimensionality Reduction.
Denoising AE (DAE) are also trained locally to
mitigate noise on corrupted versions of the input
data, with a consecutive step of reconstruction
a cleaner version of the data, even under the
presence of high noise levels. These networks are
known as stacked DAE’s (SDAE) [49]. In [43], a
SDAE is developed to mitigate background noise
on seismic traces, to later pick the P wave onset
times on the cleaner waveforms. For evaluation,
both synthetic and field seismic data are employed,
and the SDAE algorithm accurately picks the onset
time of 94.1% for 407 of the field seismograms,
with a standard deviation error of 0.10 s. Results
also indicates that this algorithm can make precise
arrival time inferences on data with SNR as lows
as -14 dB.

A hybrid network, that combines a SAE
and a deep-belief ANN, has been applied to
classify seven different classes of volcano-seismic
events in [47]. Classification results validate
the efficient capturing of complex relationships
on volcano-seismic data by this new network,
and compared to those delivered by other ML
algorithms, the performance is higher under faster
convergence.

5.2.2 GANs

The GAN proposed in [35] is trained to learn
the characteristics of both earthquake first arrival
P waves and background noise, resulting in
a discriminator that mitigates false triggering.
Training employs 300K seismic records from
southern California and Japan to act as an
automatic feature extractor, and then a Random
Forest classifier is subjected to a secondary

learning on a large set of earthquake signals and
noise waveforms. When tested, the recognition
performance was about 99.2% for P waves,
and 98.4% for signals of pure noise. This
excellent performance is accompanied by a very
low sensitivity to false triggers from local impulsive
noise.

6 Discussion and Conclusions

Detection of earthquake signals is fundamental
for observational seismology. Main features of a
reliable detection algorithm of seismic waves must
include: high sensitivity to small magnitude events
with variable trace patterns, low sensitivity to am-
bient noise and non-earthquake signals, enough
flexibility to account for data from one or multiple
seismic stations, and high computational efficiency
for fast real time assistance or large dataset
processing. These features are naturally fulfilled by
Artificial Neural Networks (ANN). ANN, among few
other machine learning techniques, offer advanced
pattern recognition abilities that allow matching
the detection performance of experienced human
analysts, after being appropriate trained.

During the mid-late 90s, training of pioneer ANN
proceeds on subsets of hundreds or few thousands
of seismic traces, but the paramount advances
of computational platforms and ANN implementa-
tion frameworks afterwards, have allowed using
regional-wide earthquake catalogs with hundreds
of thousands or even millions traces, during the
ANN learning over last years. Thus, training of
state-of-the-art ANN really accounts for multiple
station information, seismic and noise signals with
different shapes, local and non local earthquake
data, and labeling (in case it is required) from
various human experts. Because of different
analysts may pick seismic phases in a dissimilar
way, such a modern well-trained ANN become
practically free of any human bias or likely errors.

Inspired on the basic time and frequency
processing of seismic traces undertaken by
human analysts, usually assisted by interpretation
software, the input data to most of detecting
ANN are not raw seismograms. A big variety
of ANN operate on preprocessed traces, after
a standard normalization (with optional filtering)
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and windowing, but other specimens only treat
previously extracted statistical features, or even
more specialized data representations such as
spectrograms.

Developments before 2010 were mainly FFNN,
mostly applied to local and regional earthquake
data, although few cases target teleseismic events.
For historical reasons, this survey paper cited few
prominent works in that period, but the contribution
in [24] pushed forward the feature-based trace
processing, detection for single or multi station
information, and the performance assessment as
well. In current decade RcNN, with an inherent
efficiency for recognition and inference of temporal
patterns, have been used for real-time small-event
monitoring under poor signal-to-noise ratios, and
even have found successful applications in early
warning systems and earthquake forecasts. During
last two years, CNN and RsNN have taken the
automatic seismic phase identification and onset
estimation to a new level of regional-wide training
and operation, with few cases also capable of
seismological hypocentral location. With special
emphasis, we here discussed contributions in [38],
[44], [42] and [59].

A performance assessment among different
algorithms for automatic phase detection and
picking is rather difficult because of the specialized
target application, the variety of accuracy metrics
used, and the case-dependent testing dataset
employed by each algorithm. For a systematic
evaluation of the accuracy in phase onset pickings,
for instance in [24].

Authors use the standard deviation of the time
differences between the automatic and manual
picks. This metric tends to be insensitive to the
size of the testing dataset. They also employ
the metrics of recall and precision to measure
the ability of the system to detect the correct
onset of seismic waves and to reject false alarms,
considering the total number of reference picks.
These metrics were rapidly adopted by others
studies, and few others emerged. Because of the
highly active developments of ANN, among others
ML and general algorithms, in this area, there
is a pressing need for establishing standardized
benchmark datasets, of several sizes and SNR

levels, to facilitate full assessment with clear quality
measures.
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